메뉴 건너뛰기




Volumn 15, Issue 2, 2009, Pages 684-691

Prospective internal validation of mathematical models to predict malignancy in adnexal masses: Results from the international ovarian tumor analysis study

Author keywords

[No Author keywords available]

Indexed keywords

ADNEXA DISEASE; ADNEXA MASS; ARTICLE; ARTIFICIAL NEURAL NETWORK; CANCER CLASSIFICATION; CANCER RISK; CONTROLLED STUDY; FEMALE; HISTOPATHOLOGY; HUMAN; MAJOR CLINICAL STUDY; MALIGNANT NEOPLASTIC DISEASE; MATHEMATICAL MODEL; OUTCOME ASSESSMENT; PATTERN RECOGNITION; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; TRANSVAGINAL ECHOGRAPHY; UTERUS TUMOR; VALIDATION STUDY;

EID: 59449107079     PISSN: 10780432     EISSN: None     Source Type: Journal    
DOI: 10.1158/1078-0432.CCR-08-0113     Document Type: Article
Times cited : (88)

References (30)
  • 1
    • 0033011057 scopus 로고    scopus 로고
    • Subjective assessment of adnex-al masses with the use of ultrasonography: An analysis of interobserver variability and experience
    • Timmerman D, Schwärzler P, Collins WP, Claerhout F, Coenen M, Amant F. Subjective assessment of adnex-al masses with the use of ultrasonography: an analysis of interobserver variability and experience. Ultrasound Obstet Gynecol 1999;13:11-6.
    • (1999) Ultrasound Obstet Gynecol , vol.13 , pp. 11-16
    • Timmerman, D.1    Schwärzler, P.2    Collins, W.P.3    Claerhout, F.4    Coenen, M.5    Amant, F.6
  • 2
    • 1542346429 scopus 로고    scopus 로고
    • The use of mathematical models to evaluate pelvic masses; can they beat an expert operator?
    • Timmerman D. The use of mathematical models to evaluate pelvic masses; can they beat an expert operator? Best Pract Res Clin Obstet Gynaecol 2004;18:91-104.
    • (2004) Best Pract Res Clin Obstet Gynaecol , vol.18 , pp. 91-104
    • Timmerman, D.1
  • 3
    • 0032711463 scopus 로고    scopus 로고
    • Prospective cross-validation of Doppler ultrasound examination and gray-scale ultrasound imaging for discrimination of benign and malignant pelvic masses
    • Valentin L. Prospective cross-validation of Doppler ultrasound examination and gray-scale ultrasound imaging for discrimination of benign and malignant pelvic masses. Ultrasound Obstet Gynecol 1999;14:273-83.
    • (1999) Ultrasound Obstet Gynecol , vol.14 , pp. 273-283
    • Valentin, L.1
  • 4
    • 0033387657 scopus 로고    scopus 로고
    • Pattern recognition of pelvic masses by gray-scale ultrasound imaging: The contribution of Doppler ultrasound
    • Valentin L. Pattern recognition of pelvic masses by gray-scale ultrasound imaging: the contribution of Doppler ultrasound. Ultrasound Obstet Gynecol 1999;14:338-47.
    • (1999) Ultrasound Obstet Gynecol , vol.14 , pp. 338-347
    • Valentin, L.1
  • 5
    • 0030782558 scopus 로고    scopus 로고
    • Transvaginal ultrasonographic characterization of ovarian masses: A comparison of five scoring systems in a multicenter study
    • Ferrazzi E, Zanetta G, Dordoni D, Berlanda N, Mez-zopane R, Lissoni G. Transvaginal ultrasonographic characterization of ovarian masses: a comparison of five scoring systems in a multicenter study. Ultrasound Obstet Gynecol 1997;10:192-7.
    • (1997) Ultrasound Obstet Gynecol , vol.10 , pp. 192-197
    • Ferrazzi, E.1    Zanetta, G.2    Dordoni, D.3    Berlanda, N.4    Mez-zopane, R.5    Lissoni, G.6
  • 6
    • 0034116904 scopus 로고    scopus 로고
    • Prospective evaluation of logistic regression models for the diagnosis of ovarian cancer
    • Aslam N, Banerjee S, Carr J, Savvas M, Hooper R, Jurkovic D. Prospective evaluation of logistic regression models for the diagnosis of ovarian cancer. Obstet Gynecol 2000;96:75-80.
    • (2000) Obstet Gynecol , vol.96 , pp. 75-80
    • Aslam, N.1    Banerjee, S.2    Carr, J.3    Savvas, M.4    Hooper, R.5    Jurkovic, D.6
  • 7
    • 0035131736 scopus 로고    scopus 로고
    • Distinguishing the benign and malignant adnexal mass: An external validation of prognostic models
    • Mol BW, Boll D, De Kanter M, Heintz P, Sijmons E, Oei G. Distinguishing the benign and malignant adnexal mass: an external validation of prognostic models. Gynecol Oncol 2001;80:162-7.
    • (2001) Gynecol Oncol , vol.80 , pp. 162-167
    • Mol, B.W.1    Boll, D.2    De Kanter, M.3    Heintz, P.4    Sijmons, E.5    Oei, G.6
  • 8
    • 34547668779 scopus 로고    scopus 로고
    • External validation of mathematical models to distinguish between benign and malignant adnexal tumors: A multicenter study by the International Ovarian Tumor Analysis group
    • Van Holsbeke C, Van Calster B. Valentin L, et al. External validation of mathematical models to distinguish between benign and malignant adnexal tumors: a multicenter study by the International Ovarian Tumor Analysis group. Clin Cancer Res 2007;13:4440-7.
    • (2007) Clin Cancer Res , vol.13 , pp. 4440-4447
    • Van Holsbeke, C.1    Van Calster, B.2    Valentin, L.3
  • 9
    • 33644836410 scopus 로고    scopus 로고
    • International Ovarian Tumor Analysis Group. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: A multicenter study by the International Ovarian Tumor Analysis Group
    • Timmerman D, Testa AC, Bourne T, Ferrazzi E, Ameye L, Konstantinovic ML; International Ovarian Tumor Analysis Group. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol 2005;23:8794-801.
    • (2005) J Clin Oncol , vol.23 , pp. 8794-8801
    • Timmerman, D.1    Testa, A.C.2    Bourne, T.3    Ferrazzi, E.4    Ameye, L.5    Konstantinovic, M.L.6
  • 10
    • 0034487466 scopus 로고    scopus 로고
    • Terms, definitions and measurements to describe the sonographic features of adnexal tumors: A consensus opinion from the International Ovarian Tumor Analysis (IOTA) group
    • Timmerman D, Valentin L, Bourne TH, Collins WP, Verrelst H, Vergote I. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) group. Ultrasound Obstet Gynecol 2000;16:500-5.
    • (2000) Ultrasound Obstet Gynecol , vol.16 , pp. 500-505
    • Timmerman, D.1    Valentin, L.2    Bourne, T.H.3    Collins, W.P.4    Verrelst, H.5    Vergote, I.6
  • 11
    • 34249740082 scopus 로고    scopus 로고
    • Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods
    • Van Calster B. Timmerman D, Lu C, et al. Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods. Ultrasound Obstet Gynecol 2007;29:496-504.
    • (2007) Ultrasound Obstet Gynecol , vol.29 , pp. 496-504
    • Van Calster, B.1    Timmerman, D.2    Lu, C.3
  • 12
    • 52349091540 scopus 로고    scopus 로고
    • Using Bayesian Neural Networks with ARD input selection to detect malignant adnexal masses prior to surgery
    • Van Calster B, Timmerman D, Nabney I, et al. Using Bayesian Neural Networks with ARD input selection to detect malignant adnexal masses prior to surgery. Neural Comput Appl 2007;17:489-500.
    • (2007) Neural Comput Appl , vol.17 , pp. 489-500
    • Van Calster, B.1    Timmerman, D.2    Nabney, I.3
  • 13
    • 1542286171 scopus 로고    scopus 로고
    • Use of morphology to characterize and manage common adnexal masses
    • Valentin L. Use of morphology to characterize and manage common adnexal masses. Best Pract Res Clin Obstet Gynaecol 2004;18:71-89.
    • (2004) Best Pract Res Clin Obstet Gynaecol , vol.18 , pp. 71-89
    • Valentin, L.1
  • 14
    • 59449086130 scopus 로고    scopus 로고
    • Lu C, Suykens JAK, Timmerman D, Vergote I, Van Huffel S. Linear and nonlinear preoperative classification of ovarian tumors. Chapter 11 of knowledge based intelligent system for health care. In: Ichimura T, Yoshida K, editors. 7. International Series on Advanced Intelligence, Advanced Knowledge International (Magill, Australia); 2004. p. 343-82.
    • Lu C, Suykens JAK, Timmerman D, Vergote I, Van Huffel S. Linear and nonlinear preoperative classification of ovarian tumors. Chapter 11 of knowledge based intelligent system for health care. In: Ichimura T, Yoshida K, editors. Vol. 7. International Series on Advanced Intelligence, Advanced Knowledge International (Magill, Australia); 2004. p. 343-82.
  • 15
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME. Sparse Bayesian learning and the relevance vector machine. J Machine Learn Res 2001;1:211-44.
    • (2001) J Machine Learn Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 18
    • 33745644254 scopus 로고    scopus 로고
    • Support vector machines versus logistic regression: Improving prospective perfor-mance in clinical decision-making
    • Pochet N, Suykens J. Support vector machines versus logistic regression: improving prospective perfor-mance in clinical decision-making. Ultrasound Obstet Gynecol 2006;7:607-8.
    • (2006) Ultrasound Obstet Gynecol , vol.7 , pp. 607-608
    • Pochet, N.1    Suykens, J.2
  • 19
    • 0001441372 scopus 로고    scopus 로고
    • Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
    • MacKay DJC. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Netw Comput Neural Syst1995;6:469-505.
    • Netw Comput Neural Syst1995;6 , pp. 469-505
    • MacKay, D.J.C.1
  • 21
    • 0020083498 scopus 로고    scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology1982;143:29-36.
    • Radiology1982;143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.2
  • 22
    • 0024370623 scopus 로고
    • Analyzing a portion of the ROC curve
    • McClish DK. Analyzing a portion of the ROC curve. Med Decis Making 1989;9:190-5.
    • (1989) Med Decis Making , vol.9 , pp. 190-195
    • McClish, D.K.1
  • 23
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microar-ray experiments
    • Pepe M, Longton G, Anderson G, Schummer M. Selecting differentially expressed genes from microar-ray experiments. Biometrics 2003;59:133-42.
    • (2003) Biometrics , vol.59 , pp. 133-142
    • Pepe, M.1    Longton, G.2    Anderson, G.3    Schummer, M.4
  • 25
    • 31744437906 scopus 로고    scopus 로고
    • Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2. Asymptotic methods and evaluation
    • Newcombe RG. Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2. Asymptotic methods and evaluation. Stat Med 2006;25:559-73.
    • (2006) Stat Med , vol.25 , pp. 559-573
    • Newcombe, R.G.1
  • 26
    • 0032580377 scopus 로고    scopus 로고
    • Interval estimation for the difference between independent proportions, comparison of eleven methods
    • Newcombe RG. Interval estimation for the difference between independent proportions, comparison of eleven methods. Stat Med 1998;17:873-90.
    • (1998) Stat Med , vol.17 , pp. 873-890
    • Newcombe, R.G.1
  • 27
    • 0032583107 scopus 로고    scopus 로고
    • Improved confidence intervals for the difference between binomial proportions based on paired data
    • Newcombe RG. Improved confidence intervals for the difference between binomial proportions based on paired data. Stat Med 1998:17:2635-50.
    • (1998) Stat Med , vol.17 , pp. 2635-2650
    • Newcombe, R.G.1
  • 28
    • 0025134708 scopus 로고
    • A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer
    • Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas J. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. BJOG 1990;97:922-9.
    • (1990) BJOG , vol.97 , pp. 922-929
    • Jacobs, I.1    Oram, D.2    Fairbanks, J.3    Turner, J.4    Frost, C.5    Grudzinskas, J.6
  • 29
    • 59449083145 scopus 로고    scopus 로고
    • Royal College of Obstetricians and Gynaecologists guideline no, October
    • Royal College of Obstetricians and Gynaecologists guideline no. 34, October 2003.
    • (2003) , vol.34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.