메뉴 건너뛰기




Volumn 8, Issue , 2006, Pages 537-565

Machine learning for detection and diagnosis of disease

Author keywords

Bayesian network; Blind source separation; Computational biology; Medical imaging; Support vector machine

Indexed keywords

ALGORITHMS; BIOMEDICAL ENGINEERING; BLIND SOURCE SEPARATION; DIAGNOSIS; LEARNING SYSTEMS;

EID: 33748181096     PISSN: 15239829     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.bioeng.8.061505.095802     Document Type: Review
Times cited : (317)

References (128)
  • 2
    • 0000212268 scopus 로고    scopus 로고
    • Two-year evaluation of a prototype clinical mammographic workstation for computer-aided diagnosis
    • Nishikawa RM, Schmidt RA, Osnis RB, Giger ML, Doi K, Wolverton DE. 1996. Two-year evaluation of a prototype clinical mammographic workstation for computer-aided diagnosis. Radiology 201(P):256
    • (1996) Radiology , vol.201 , Issue.P , pp. 256
    • Nishikawa, R.M.1    Schmidt, R.A.2    Osnis, R.B.3    Giger, M.L.4    Doi, K.5    Wolverton, D.E.6
  • 4
    • 0016722472 scopus 로고
    • A model of inexact reasoning in medicine
    • Shortliffe EH, Buchanan B. 1975. A model of inexact reasoning in medicine. Math. Biosci. 23:351-79
    • (1975) Math. Biosci. , vol.23 , pp. 351-379
    • Shortliffe, E.H.1    Buchanan, B.2
  • 5
    • 0020001973 scopus 로고
    • Internist-1: An experimental computer-based diagnostic consultant for general internal medicine
    • Miller RA, Pople HE, Myers JD. 1982. Internist-1: an experimental computer-based diagnostic consultant for general internal medicine. N. Engl. J. Med. 307:468-76
    • (1982) N. Engl. J. Med. , vol.307 , pp. 468-476
    • Miller, R.A.1    Pople, H.E.2    Myers, J.D.3
  • 7
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401:788-91
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 8
    • 0033093826 scopus 로고    scopus 로고
    • A new method for spectral decomposition using a bilinear Bayesian approach
    • Ochs MF, Stoyanova RS, Arias-Mendoza F, Brown TR. 1999. A new method for spectral decomposition using a bilinear Bayesian approach. J. Magn. Reson. 137:161-76
    • (1999) J. Magn. Reson. , vol.137 , pp. 161-176
    • Ochs, M.F.1    Stoyanova, R.S.2    Arias-Mendoza, F.3    Brown, T.R.4
  • 10
    • 0036612776 scopus 로고    scopus 로고
    • Conditions for non-negative independent component analysis
    • Plumbley M. 2002. Conditions for non-negative independent component analysis. IEEE Signal Proc. Lett. 9:177-80
    • (2002) IEEE Signal Proc. Lett. , vol.9 , pp. 177-180
    • Plumbley, M.1
  • 12
    • 10044269618 scopus 로고    scopus 로고
    • Non-negative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain
    • Sajda P, Du S, Brown TR, Stoyanova R, Shungu DC, et al. 2004. Non-negative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Trans. Med. Imaging 23(12):1453-653
    • (2004) IEEE Trans. Med. Imaging , vol.23 , Issue.12 , pp. 1453-1653
    • Sajda, P.1    Du, S.2    Brown, T.R.3    Stoyanova, R.4    Shungu, D.C.5
  • 13
    • 0345743695 scopus 로고    scopus 로고
    • Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis
    • Kao KC, Yang YL, Boscolo R, Sabatti C, Roychowdhury V, Liao JC. 2004. Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl. Acad. Sci. USA 101(2):641-46
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.2 , pp. 641-646
    • Kao, K.C.1    Yang, Y.L.2    Boscolo, R.3    Sabatti, C.4    Roychowdhury, V.5    Liao, J.C.6
  • 15
    • 8344236020 scopus 로고    scopus 로고
    • Blind source separation via generalized eigenvalue decomposition
    • Parra L, Sajda P. 2003. Blind source separation via generalized eigenvalue decomposition. J. Machine Learn. Res. Spec. Iss. ICA 4:1261-69
    • (2003) J. Machine Learn. Res. Spec. Iss. ICA , vol.4 , pp. 1261-1269
    • Parra, L.1    Sajda, P.2
  • 16
    • 0000914334 scopus 로고    scopus 로고
    • Convolutive blind source separation of non-stationary sources
    • Parra L, Spence C. 2000. Convolutive blind source separation of non-stationary sources. IEEE Trans. Speech Audio Proc. May: 320-27
    • (2000) IEEE Trans. Speech Audio Proc. , vol.MAY , pp. 320-327
    • Parra, L.1    Spence, C.2
  • 19
    • 0002327756 scopus 로고
    • Maximum likelihood source separation: A context-sensitive generalization of ICA
    • ed. MC Mozer, MI Jordan, T Petsche. Cambridge, MA: MIT Press
    • Pearlmutter B, Parra LC. 1995. Maximum likelihood source separation: a context-sensitive generalization of ICA. In Advances in Neural Information Processing Systems, ed. MC Mozer, MI Jordan, T Petsche, Vol. 9. Cambridge, MA: MIT Press
    • (1995) Advances in Neural Information Processing Systems , vol.9
    • Pearlmutter, B.1    Parra, L.C.2
  • 20
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell AJ, Sejnowski TJ. 1995. An information-maximization approach to blind separation and blind deconvolution. Neural Comp. 7:1129-59
    • (1995) Neural Comp. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 21
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. 1994. Independent component analysis, a new concept? Signal Proc. 36(3):287-314
    • (1994) Signal Proc. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 22
    • 0001387715 scopus 로고    scopus 로고
    • Mean-field approaches to independent component analysis
    • Hojen-Sorensen P, Winther O, Hansen LK. 2002. Mean-field approaches to independent component analysis. Neural Comp. 14:889-918
    • (2002) Neural Comp. , vol.14 , pp. 889-918
    • Hojen-Sorensen, P.1    Winther, O.2    Hansen, L.K.3
  • 23
    • 0000302959 scopus 로고
    • Separation of a mixture of independent signals using time delayed correlations
    • Molgedey L, Schuster HG. 1994. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72(23):3634-37
    • (1994) Phys. Rev. Lett. , vol.72 , Issue.23 , pp. 3634-3637
    • Molgedey, L.1    Schuster, H.G.2
  • 24
    • 0027812550 scopus 로고
    • Blind beamforming for non Gaussian signals
    • Cardoso J-F, Souloumiac A. 1993. Blind beamforming for non Gaussian signals. IEEE Proc. F 140(6):362-70
    • (1993) IEEE Proc. F , vol.140 , Issue.6 , pp. 362-370
    • Cardoso, J.-F.1    Souloumiac, A.2
  • 26
    • 0034470472 scopus 로고    scopus 로고
    • Optimal spatial filtering of single-trial EEG during imagined hand movements
    • Ramoser H, Mueller-Gerking J, Pfurtscheller G. 2000. Optimal spatial filtering of single-trial EEG during imagined hand movements. IEEE Trans. Rehab. Eng. 8(4):441-46
    • (2000) IEEE Trans. Rehab. Eng. , vol.8 , Issue.4 , pp. 441-446
    • Ramoser, H.1    Mueller-Gerking, J.2    Pfurtscheller, G.3
  • 27
    • 84898965689 scopus 로고    scopus 로고
    • Scale mixtures of Gaussians and the statistics of natural images
    • ed. SA Solla, TK Leen, K-R Müller. Cambridge, MA: MIT Press
    • Wainwright MJ, Simoncelli EP. 1999. Scale mixtures of Gaussians and the statistics of natural images. In Advances in Neural Information Processing Systems, ed. SA Solla, TK Leen, K-R Müller, 12:855-61. Cambridge, MA: MIT Press
    • (1999) Advances in Neural Information Processing Systems , vol.12 , pp. 855-861
    • Wainwright, M.J.1    Simoncelli, E.P.2
  • 28
    • 0011727062 scopus 로고    scopus 로고
    • Higher-order statistical properties arising from the non-stationarity of natural signals
    • Cambridge, MA: MIT Press
    • Parra LC, Spence CD, Sajda P. 2000. Higher-order statistical properties arising from the non-stationarity of natural signals. In Advances in Neural Information Processing Systems, pp. 786-92. Cambridge, MA: MIT Press
    • (2000) Advances in Neural Information Processing Systems , pp. 786-792
    • Parra, L.C.1    Spence, C.D.2    Sajda, P.3
  • 29
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA: MIT Press
    • Lee DD, Seung HS. 2001. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems 13, pp. 556-562. Cambridge, MA: MIT Press
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 30
  • 35
    • 33745729246 scopus 로고    scopus 로고
    • Musical audio stream separation by non-negative matrix factorization
    • Glasgow, Scotland
    • Wang B, Plumbley MD. 2005. Musical audio stream separation by non-negative matrix factorization. Proc. DMRN Summer Conf., Glasgow, Scotland
    • (2005) Proc. DMRN Summer Conf.
    • Wang, B.1    Plumbley, M.D.2
  • 36
    • 0037721406 scopus 로고    scopus 로고
    • Application of non-negative matrix factorization to dynamic positron emission tomography
    • ed. T-W Lee, T-P Jung, S Makeig, TJ Sejnowski
    • Lee JS, Lee DD, Choi S, Lee DS. 2001. Application of non-negative matrix factorization to dynamic positron emission tomography. Int. Conf. Ind. Component Anal. Blind Signal Separation, 3rd, San Diego, ed. T-W Lee, T-P Jung, S Makeig, TJ Sejnowski, pp. 629-32
    • (2001) Int. Conf. Ind. Component Anal. Blind Signal Separation, 3rd, San Diego , pp. 629-632
    • Lee, J.S.1    Lee, D.D.2    Choi, S.3    Lee, D.S.4
  • 37
  • 38
    • 27644465419 scopus 로고    scopus 로고
    • Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization
    • Inamura K, Fujiwara T, Hoshida Y, Isagawa T, Jones MH, et al. 2005. Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization. Oncogene 24(47):7105-13
    • (2005) Oncogene , vol.24 , Issue.47 , pp. 7105-7113
    • Inamura, K.1    Fujiwara, T.2    Hoshida, Y.3    Isagawa, T.4    Jones, M.H.5
  • 39
    • 13344259325 scopus 로고    scopus 로고
    • Proton magnetic resonance spectroscopy in patients with glial tumors: A multicenter study
    • Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, et al. 1996. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J. Neurosurg. 84:449-58
    • (1996) J. Neurosurg. , vol.84 , pp. 449-458
    • Negendank, W.G.1    Sauter, R.2    Brown, T.R.3    Evelhoch, J.L.4    Falini, A.5
  • 40
    • 0033694698 scopus 로고    scopus 로고
    • A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: Nosologic images
    • Edelenyi FS, Rubin C, Estève F, Grand S, Décorps M, et al. 2000. A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nat. Med. 6:1287-89
    • (2000) Nat. Med. , vol.6 , pp. 1287-1289
    • Edelenyi, F.S.1    Rubin, C.2    Estève, F.3    Grand, S.4    Décorps, M.5
  • 42
    • 0034963584 scopus 로고    scopus 로고
    • MR spectroscopy quantitation: A review of frequency domain methods
    • Mierisova S, Ala-Korpela M. 2001. MR spectroscopy quantitation: a review of frequency domain methods. NMR Biomed. 14(4):247-59
    • (2001) NMR Biomed. , vol.14 , Issue.4 , pp. 247-259
    • Mierisova, S.1    Ala-Korpela, M.2
  • 43
    • 0033185631 scopus 로고    scopus 로고
    • Time domain quantification of series of Biomed. magnetic resonance spectroscopy signals
    • Vanhamme L, Huffel SV, Hecke PV, Ormondt DV. 1999. Time domain quantification of series of Biomed. magnetic resonance spectroscopy signals. J. Magn. Reson. 140:120-30
    • (1999) J. Magn. Reson. , vol.140 , pp. 120-130
    • Vanhamme, L.1    Huffel, S.V.2    Hecke, P.V.3    Ormondt, D.V.4
  • 44
    • 0141617526 scopus 로고    scopus 로고
    • Independent component analysis for automated decomposition of in vivo magnetic resonance spectra
    • Ladroue C, Howe FA, Griffiths JR, Tate AR. 2003. Independent component analysis for automated decomposition of in vivo magnetic resonance spectra. Magn. Reson. Med. 50:697-703
    • (2003) Magn. Reson. Med. , vol.50 , pp. 697-703
    • Ladroue, C.1    Howe, F.A.2    Griffiths, J.R.3    Tate, A.R.4
  • 45
    • 0001104444 scopus 로고    scopus 로고
    • Model-free analysis of mixtures by NMR using blind source separation
    • Nuzillard D, Bourg S, Nuzillard J-M. 1998. Model-free analysis of mixtures by NMR using blind source separation. J. Magn. Reson. 133:358-63
    • (1998) J. Magn. Reson. , vol.133 , pp. 358-363
    • Nuzillard, D.1    Bourg, S.2    Nuzillard, J.-M.3
  • 46
    • 0032694577 scopus 로고    scopus 로고
    • Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological nmr spectroscopic data
    • Nicholson JK, Lindon JC, Holmes E. 1999. Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological nmr spectroscopic data. Xenobiotica 29(11):1181-89
    • (1999) Xenobiotica , vol.29 , Issue.11 , pp. 1181-1189
    • Nicholson, J.K.1    Lindon, J.C.2    Holmes, E.3
  • 48
    • 0031949067 scopus 로고    scopus 로고
    • Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins
    • Beckwith-Hall BM, Nicholson JK, Nicholls AW, Foxall PJD, Lindon JC, et al. 1998. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chem. Res. Toxicol. 11(4):260-72
    • (1998) Chem. Res. Toxicol. , vol.11 , Issue.4 , pp. 260-272
    • Beckwith-Hall, B.M.1    Nicholson, J.K.2    Nicholls, A.W.3    Foxall, P.J.D.4    Lindon, J.C.5
  • 49
    • 0033795182 scopus 로고    scopus 로고
    • Metabonomics: Evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants
    • Robertson DG, Reily MD, Sigler RE, Wells DF, Paterson DA, Braden TK. 2000. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol. Sci. 57(2):326-37
    • (2000) Toxicol. Sci. , vol.57 , Issue.2 , pp. 326-337
    • Robertson, D.G.1    Reily, M.D.2    Sigler, R.E.3    Wells, D.F.4    Paterson, D.A.5    Braden, T.K.6
  • 50
    • 4544379591 scopus 로고    scopus 로고
    • Automatic alignment of individual peaks in large high-resolution spectral data sets
    • Stoyanova R, Nicholls AW, Nicholson JK, Lindon JC, Brown TR. 2004. Automatic alignment of individual peaks in large high-resolution spectral data sets. J. Magn. Reson. 170(2):329-35
    • (2004) J. Magn. Reson. , vol.170 , Issue.2 , pp. 329-335
    • Stoyanova, R.1    Nicholls, A.W.2    Nicholson, J.K.3    Lindon, J.C.4    Brown, T.R.5
  • 51
    • 15944363863 scopus 로고    scopus 로고
    • Modelling of classification rules on metabolic patterns including machine learning and expert knowledge
    • Baumgartner C, Böhm C, Baumgartner D. 2005. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J. Biomed. Inform. 38(2):89-98
    • (2005) J. Biomed. Inform. , vol.38 , Issue.2 , pp. 89-98
    • Baumgartner, C.1    Böhm, C.2    Baumgartner, D.3
  • 53
    • 3042785758 scopus 로고    scopus 로고
    • Sample classification based on bayesian spectral decomposition of metabonomic NMR data sets
    • Stoyanova R, Nicholson JK, Lindon JC, Brown TR. 2004. Sample classification based on bayesian spectral decomposition of metabonomic NMR data sets. Anal. Chem. 76(13):3666-74
    • (2004) Anal. Chem. , vol.76 , Issue.13 , pp. 3666-3674
    • Stoyanova, R.1    Nicholson, J.K.2    Lindon, J.C.3    Brown, T.R.4
  • 55
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. 1998. A tutorial on support vector machines for pattern recognition. Data Mining Knowledge Discov. 2(2):121-67
    • (1998) Data Mining Knowledge Discov. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 58
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman M, Braverman E, Rozonoer L. 1964. Theoretical foundations of the potential function method in pattern recognition learning. Automation Remote Contr. 25:821-37
    • (1964) Automation Remote Contr. , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 61
    • 33748142258 scopus 로고    scopus 로고
    • http://www.kernelmachines.org.
  • 63
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. 1995. Support-vector networks. Mach. Learn. 20:273-97
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 64
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • Chpt. 15. Cambridge, MA: MIT Press
    • Kressel U. 1999. Pairwise classification and support vector machines. In Advances in Kernel Methods: Support Vector Learning, Chpt. 15. Cambridge, MA: MIT Press
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Kressel, U.1
  • 67
    • 0010099436 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • Standford Univ., Palo Alto, CA, June 28-July 1
    • Crammer K, Singer Y. 2000. On the learnability and design of output codes for multiclass problems. Proc. Annu. Conf. Comp. Learn. Theory (COLT 2000), Standford Univ., Palo Alto, CA, June 28-July 1
    • (2000) Proc. Annu. Conf. Comp. Learn. Theory (COLT 2000)
    • Crammer, K.1    Singer, Y.2
  • 68
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C-W, Lin C-J. 2002. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 13:415-25
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 70
    • 22944437120 scopus 로고    scopus 로고
    • Support vector machine for optical diagnosis of cancer
    • Majumder SK, Ghosh N, Gupta PK. 2005. Support vector machine for optical diagnosis of cancer. J. Biomed. Optics 10(2):024034
    • (2005) J. Biomed. Optics , vol.10 , Issue.2 , pp. 024034
    • Majumder, S.K.1    Ghosh, N.2    Gupta, P.K.3
  • 71
    • 0035544611 scopus 로고    scopus 로고
    • A statistical 3-D pattern processing method for computer-aided detection of polyps in CT colonography
    • Gokturk SB, Tomasi C, Acar B, Beaulieu CF, Paik DS, et al. 2001. A statistical 3-D pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans. Med. Imaging 20(12):1251-60
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.12 , pp. 1251-1260
    • Gokturk, S.B.1    Tomasi, C.2    Acar, B.3    Beaulieu, C.F.4    Paik, D.S.5
  • 73
    • 19044383038 scopus 로고    scopus 로고
    • A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications
    • Wei L, Yang Y, Nishikawa RM, Jiang Y. 2005. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans. Med. Imaging 24(3):371-80
    • (2005) IEEE Trans. Med. Imaging , vol.24 , Issue.3 , pp. 371-380
    • Wei, L.1    Yang, Y.2    Nishikawa, R.M.3    Jiang, Y.4
  • 74
    • 2942609237 scopus 로고    scopus 로고
    • Overview of commonly used bioinformatics methods and their applications
    • Kapetanovic IM, Rosenfeld S, Izmirlian G. 2004. Overview of commonly used bioinformatics methods and their applications. Ann. N.Y. Acad. Sci. 1020:10-21
    • (2004) Ann. N.Y. Acad. Sci. , vol.1020 , pp. 10-21
    • Kapetanovic, I.M.1    Rosenfeld, S.2    Izmirlian, G.3
  • 77
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531-37
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 78
    • 0347079826 scopus 로고    scopus 로고
    • Analysis of molecular profile data using generative and discriminative methods
    • Moler EJ, Chow ML, Mian IS. 2000. Analysis of molecular profile data using generative and discriminative methods. Physiol. Genomics 4:109-26
    • (2000) Physiol. Genomics , vol.4 , pp. 109-126
    • Moler, E.J.1    Chow, M.L.2    Mian, I.S.3
  • 79
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10):906-14
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 80
    • 10044229345 scopus 로고    scopus 로고
    • Active learning with support vector machine applied to gene expression data for cancer classification
    • Liu Y. 2004. Active learning with support vector machine applied to gene expression data for cancer classification. J. Chem. Inf. Comput. Sci. 44(6):1936-41
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , Issue.6 , pp. 1936-1941
    • Liu, Y.1
  • 81
    • 0042345041 scopus 로고    scopus 로고
    • Classification and subtype prediction of adult soft tissue sarcoma by functional genomics
    • Segal NH, Pavlidis P, Antonescu CR, Maki RG, Noble WS, et al. 2003. Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am. J. Pathol. 163(2):691-700
    • (2003) Am. J. Pathol. , vol.163 , Issue.2 , pp. 691-700
    • Segal, N.H.1    Pavlidis, P.2    Antonescu, C.R.3    Maki, R.G.4    Noble, W.S.5
  • 82
    • 0037797247 scopus 로고    scopus 로고
    • Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling
    • Segal NH, Pavlidis P, Noble WS, Antonescu CR, Viale A, et al. 2003. Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling. J. Clin. Oncol. 21(9):1775-81
    • (2003) J. Clin. Oncol. , vol.21 , Issue.9 , pp. 1775-1781
    • Segal, N.H.1    Pavlidis, P.2    Noble, W.S.3    Antonescu, C.R.4    Viale, A.5
  • 83
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. 2005. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5):631-43
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 84
    • 0012586376 scopus 로고    scopus 로고
    • Rao RPN, Olshausen B, Lewicki MS, eds. Cambridge, MA: MIT Press
    • Rao RPN, Olshausen B, Lewicki MS, eds. 2002. Probabilistic Models of the Brain. Cambridge, MA: MIT Press
    • (2002) Probabilistic Models of the Brain
  • 85
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • ed. TG Dietterich, S Becker, Z Ghahramani. Cambridge, MA, MIT Press
    • Ng AY, Jordan MI. 2002. On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In Advances in Neural Information Processing Systems, ed. TG Dietterich, S Becker, Z Ghahramani, 14:841-48. Cambridge, MA, MIT Press
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 88
    • 0035398091 scopus 로고    scopus 로고
    • Bayesian tree-stuctured image modeling using wavelet domain hidden markov models
    • Romberg JK, Coi H, Baraniuk RG. 2001. Bayesian tree-stuctured image modeling using wavelet domain hidden markov models. IEEE Trans. Image Proc. 10(7):1056-68
    • (2001) IEEE Trans. Image Proc. , vol.10 , Issue.7 , pp. 1056-1068
    • Romberg, J.K.1    Coi, H.2    Baraniuk, R.G.3
  • 89
    • 0031271066 scopus 로고    scopus 로고
    • Belief networks, hidden markov models, and markov random fields: A unifying view
    • Smyth P. 1997. Belief networks, hidden markov models, and markov random fields: a unifying view. Patt. Recogn. Lett. 18(11-13):1261-68
    • (1997) Patt. Recogn. Lett. , vol.18 , Issue.11-13 , pp. 1261-1268
    • Smyth, P.1
  • 92
    • 0141695638 scopus 로고    scopus 로고
    • Understanding belief propagation and its generalizations
    • ed. G Lakemeyer, B Nebel. San Francisco: Morgan Kaufmann
    • Yedidia JS, Freeman WT, Weiss Y. 2003. Understanding belief propagation and its generalizations. In Exploring Artificial Intelligence in the New Millennium, ed. G Lakemeyer, B Nebel, pp. 239-69. San Francisco: Morgan Kaufmann
    • (2003) Exploring Artificial Intelligence in the New Millennium , pp. 239-269
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 95
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • Rabiner L. 1989. A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2):257-85
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.1
  • 96
    • 85167872262 scopus 로고
    • MUNIN-A causal probabilistic network for interpretation of electromyrographic findings
    • J McDermott, Los Altos, CA: Morgan Kaufmann
    • Andreassen S, Woldbye M, Falck B, Andersen SK. 1987. MUNIN-A causal probabilistic network for interpretation of electromyrographic findings. Proc. Int. Joint Conf. Artif. Intell., 10th, ed. J McDermott, pp. 366-72, Los Altos, CA: Morgan Kaufmann
    • (1987) Proc. Int. Joint Conf. Artif. Intell., 10th, Ed. , pp. 366-372
    • Andreassen, S.1    Woldbye, M.2    Falck, B.3    Andersen, S.K.4
  • 97
    • 0026531680 scopus 로고
    • An evaluation of the diagnostic accuracy of Pathfinder
    • Heckerman DE, Nathwani BN. 1992. An evaluation of the diagnostic accuracy of Pathfinder. Comput. Biomed. Res. 25(1):56-74
    • (1992) Comput. Biomed. Res. , vol.25 , Issue.1 , pp. 56-74
    • Heckerman, D.E.1    Nathwani, B.N.2
  • 99
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. 2004. Inferring cellular networks using probabilistic graphical models. Science 303:799-805
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 100
    • 0034215972 scopus 로고    scopus 로고
    • Constructing bayesian networks for medical diagnosis from incomplete and partially correct statistics
    • Nikovski D. 2000. Constructing bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Trans. Knowledge Data Eng. 12(4):509-16
    • (2000) IEEE Trans. Knowledge Data Eng. , vol.12 , Issue.4 , pp. 509-516
    • Nikovski, D.1
  • 101
    • 0027670474 scopus 로고
    • Digital radiography: A useful clinical tool for computer-aided diagnosis by quantitative analysis of radiographic images
    • Doi K, Giger ML, Nishikawa RM, Hoffmann K, MacMahon H, et al. 1993. Digital radiography: a useful clinical tool for computer-aided diagnosis by quantitative analysis of radiographic images. Acta Radiol. 34:426-39
    • (1993) Acta Radiol. , vol.34 , pp. 426-439
    • Doi, K.1    Giger, M.L.2    Nishikawa, R.M.3    Hoffmann, K.4    MacMahon, H.5
  • 102
    • 0025083433 scopus 로고
    • Professional quality assurance for mammography screening programs
    • Bird RE. 1990. Professional quality assurance for mammography screening programs. Radiology 177:8-10
    • (1990) Radiology , vol.177 , pp. 8-10
    • Bird, R.E.1
  • 103
    • 0026586270 scopus 로고
    • Gains in accuracy from replicated readings of diagnostic images: Prediction and assessment in terms of roc analysis
    • Metz CE, Shen JH. 1992. Gains in accuracy from replicated readings of diagnostic images: prediction and assessment in terms of roc analysis. Med. Decision Making 12:60-75
    • (1992) Med. Decision Making , vol.12 , pp. 60-75
    • Metz, C.E.1    Shen, J.H.2
  • 104
    • 0028230453 scopus 로고
    • Benefit of independent double reading in a population-based mammography screening program
    • Thurfjell EL, Lernevall KA, Taube AS. 1994. Benefit of independent double reading in a population-based mammography screening program. Radiology 191:241-44
    • (1994) Radiology , vol.191 , pp. 241-244
    • Thurfjell, E.L.1    Lernevall, K.A.2    Taube, A.S.3
  • 106
    • 0028005364 scopus 로고
    • Prediction of breast cancer malignancy using an artificial neural network
    • Floyd CE, Lo JY, Yun AJ, Sullivan DC, Kornguth PJ. 1994. Prediction of breast cancer malignancy using an artificial neural network. Cancer 74:2944-48
    • (1994) Cancer , vol.74 , pp. 2944-2948
    • Floyd, C.E.1    Lo, J.Y.2    Yun, A.J.3    Sullivan, D.C.4    Kornguth, P.J.5
  • 107
    • 0030062375 scopus 로고    scopus 로고
    • Automated feature analysis and classification of malignant and benign microcalcifications
    • Jiang Y, Nishikawa RM, Wolverton DE, Metz CE, Giger ML, et al. 1996. Automated feature analysis and classification of malignant and benign microcalcifications. Radiology 198:671-78
    • (1996) Radiology , vol.198 , pp. 671-678
    • Jiang, Y.1    Nishikawa, R.M.2    Wolverton, D.E.3    Metz, C.E.4    Giger, M.L.5
  • 108
    • 0030270431 scopus 로고    scopus 로고
    • Digital mammography: Mixed feature neural network with spectral entropy decision for detection of microcalcifications
    • Zheng B, Qian W, Clarke LP. 1996. Digital mammography: mixed feature neural network with spectral entropy decision for detection of microcalcifications. IEEE Trans. Med. Imaging 15(5):589-97
    • (1996) IEEE Trans. Med. Imaging , vol.15 , Issue.5 , pp. 589-597
    • Zheng, B.1    Qian, W.2    Clarke, L.P.3
  • 109
    • 0031875382 scopus 로고    scopus 로고
    • Automated computerized classification of malignant and benign mass lesions on digital mammograms
    • Huo Z, Giger ML, Vyborny CJ, Wolverton DE, Schmidt RA, Doi K. 1998. Automated computerized classification of malignant and benign mass lesions on digital mammograms. Acad. Radiol. 5:155-68
    • (1998) Acad. Radiol. , vol.5 , pp. 155-168
    • Huo, Z.1    Giger, M.L.2    Vyborny, C.J.3    Wolverton, D.E.4    Schmidt, R.A.5    Doi, K.6
  • 110
    • 0028334995 scopus 로고
    • Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network
    • Zhang W, Doi K, Giger ML, Wu Y, Nishikawa RM, Schmidt R. 1994. Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med. Phys. 21(4):517-24
    • (1994) Med. Phys. , vol.21 , Issue.4 , pp. 517-524
    • Zhang, W.1    Doi, K.2    Giger, M.L.3    Wu, Y.4    Nishikawa, R.M.5    Schmidt, R.6
  • 111
    • 0029569057 scopus 로고
    • Artificial convolution neural network for medical image pattern recognition
    • Lo SC, Chan HP, Lin JS, Li H, Freedman MT, Mun SK. 1995. Artificial convolution neural network for medical image pattern recognition. Neural Networks 8(7/8):1201-14
    • (1995) Neural Networks , vol.8 , Issue.7-8 , pp. 1201-1214
    • Lo, S.C.1    Chan, H.P.2    Lin, J.S.3    Li, H.4    Freedman, M.T.5    Mun, S.K.6
  • 112
    • 0029933429 scopus 로고    scopus 로고
    • An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms
    • Zhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA. 1996. An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med. Phys. 23:595-601
    • (1996) Med. Phys. , vol.23 , pp. 595-601
    • Zhang, W.1    Doi, K.2    Giger, M.L.3    Nishikawa, R.M.4    Schmidt, R.A.5
  • 113
    • 0030314893 scopus 로고    scopus 로고
    • Computer-aided diagnosis of mammography using an artificial neural network: Predicting the invasiveness of breast cancers from image features
    • ed. MH Loew. Bellingham, WA: SPIE Press
    • Lo JY, Kim J, Baker JA, Floyd CE. 1996. Computer-aided diagnosis of mammography using an artificial neural network: predicting the invasiveness of breast cancers from image features. In Medical Imaging 1996: Image Processing, ed. MH Loew, 2710:725-32. Bellingham, WA: SPIE Press
    • (1996) Medical Imaging 1996: Image Processing , vol.2710 , pp. 725-732
    • Lo, J.Y.1    Kim, J.2    Baker, J.A.3    Floyd, C.E.4
  • 114
    • 33748167162 scopus 로고    scopus 로고
    • Integrating multi-resolution and contextual information for improved microcalcification detection
    • Sajda P, Spence C, Pearson J, Nishikawa R. 1996. Integrating multi-resolution and contextual information for improved microcalcification detection. Digital Mammography 96:291-96
    • (1996) Digital Mammography , vol.96 , pp. 291-296
    • Sajda, P.1    Spence, C.2    Pearson, J.3    Nishikawa, R.4
  • 115
    • 0031733057 scopus 로고    scopus 로고
    • Computerized analysis of mammographic microcalcifications in morphological and feature spaces
    • Chan HP, Sahiner B, Lam KL, Petrick N, Helvie MA, et al. 1998. Computerized analysis of mammographic microcalcifications in morphological and feature spaces. Med. Phys. 25:2007-19
    • (1998) Med. Phys. , vol.25 , pp. 2007-2019
    • Chan, H.P.1    Sahiner, B.2    Lam, K.L.3    Petrick, N.4    Helvie, M.A.5
  • 116
    • 0008112438 scopus 로고    scopus 로고
    • Applications of multi-resolution neural networks to mammography
    • ed. MJ Kearns, SA Solla, DA Cohn. Cambridge, MA: MIT Press
    • Sajda P, Spence C. 1998. Applications of multi-resolution neural networks to mammography. In Advances in Neural Information Processing Systems, ed. MJ Kearns, SA Solla, DA Cohn, 11:938-44. Cambridge, MA: MIT Press
    • (1998) Advances in Neural Information Processing Systems , vol.11 , pp. 938-944
    • Sajda, P.1    Spence, C.2
  • 117
    • 0036489381 scopus 로고    scopus 로고
    • Learning contextual relationships in mammograms using a hierarchical pyramid neural network
    • Sajda P, Spence C, Pearson J. 2002. Learning contextual relationships in mammograms using a hierarchical pyramid neural network. IEEE Trans. Med. Imaging 21(3):239-50
    • (2002) IEEE Trans. Med. Imaging , vol.21 , Issue.3 , pp. 239-250
    • Sajda, P.1    Spence, C.2    Pearson, J.3
  • 118
    • 0038406178 scopus 로고    scopus 로고
    • A multi-scale probabilistic network model for detection, synthesis and compression in mammographic image analysis
    • Sajda P, Spence C, Parra L. 2003. A multi-scale probabilistic network model for detection, synthesis and compression in mammographic image analysis. Med. Image Anal. 7(2):187-204
    • (2003) Med. Image Anal. , vol.7 , Issue.2 , pp. 187-204
    • Sajda, P.1    Spence, C.2    Parra, L.3
  • 119
    • 0031279385 scopus 로고    scopus 로고
    • Digital mammography: Computer-assisted diagnosis method for mass detection with multiorientation and multiresolution wavelet transforms
    • Li L, Qian W, Clarke LP. 1997. Digital mammography: computer-assisted diagnosis method for mass detection with multiorientation and multiresolution wavelet transforms. Acad. Radiol. 11(4):724-31
    • (1997) Acad. Radiol. , vol.11 , Issue.4 , pp. 724-731
    • Li, L.1    Qian, W.2    Clarke, L.P.3
  • 120
    • 0033181290 scopus 로고    scopus 로고
    • Scale-space signatures for the detection of clustered microcalcifications in digital mammograms
    • Netsch T, Peitgen HO. 1999. Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Trans. Med. Imaging 18(9):774-86
    • (1999) IEEE Trans. Med. Imaging , vol.18 , Issue.9 , pp. 774-786
    • Netsch, T.1    Peitgen, H.O.2
  • 121
    • 0347517766 scopus 로고    scopus 로고
    • Multi-resolution and wavelet representations for identifying signatures of disease
    • Sajda P, Laine A, Zeevi Y. 2002. Multi-resolution and wavelet representations for identifying signatures of disease. Dis. Markers 18(5-6):339-63
    • (2002) Dis. Markers , vol.18 , Issue.5-6 , pp. 339-363
    • Sajda, P.1    Laine, A.2    Zeevi, Y.3
  • 122
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster NM, Laird AP, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39:185-97
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 185-197
    • Dempster, N.M.1    Laird, A.P.2    Rubin, D.B.3
  • 123
    • 33747727601 scopus 로고    scopus 로고
    • Wavelet-based statistical signal processing using hidden markov models
    • Crouse MS, Nowak RD, Baraniuk RG. 1998. Wavelet-based statistical signal processing using hidden markov models. IEEE Trans. Signal Proc. 46(4):886-902
    • (1998) IEEE Trans. Signal Proc. , vol.46 , Issue.4 , pp. 886-902
    • Crouse, M.S.1    Nowak, R.D.2    Baraniuk, R.G.3
  • 124
    • 0035308978 scopus 로고    scopus 로고
    • Multiscale Bayesian segmentation using a trainable context model
    • Cheng H, Bouman CA. 2001. Multiscale Bayesian segmentation using a trainable context model. IEEE Trans. Image Proc. 10(4):511-25
    • (2001) IEEE Trans. Image Proc. , vol.10 , Issue.4 , pp. 511-525
    • Cheng, H.1    Bouman, C.A.2
  • 125
    • 0035443990 scopus 로고    scopus 로고
    • Multiscale image segmentation using wavelet-domain hidden markov models
    • Coi H, Baraniuk RG. 2001. Multiscale image segmentation using wavelet-domain hidden markov models. IEEE Trans. Image Proc. 10(9):1309-21
    • (2001) IEEE Trans. Image Proc. , vol.10 , Issue.9 , pp. 1309-1321
    • Coi, H.1    Baraniuk, R.G.2
  • 126
    • 0035391385 scopus 로고    scopus 로고
    • Random cascades on wavelet trees and their use in analyzing and modeling natural images
    • Wainwright MJ, Simoncelli EP, Willsky AS. 2001. Random cascades on wavelet trees and their use in analyzing and modeling natural images. Appl. Comp. Harmonic Anal. 11:89-123
    • (2001) Appl. Comp. Harmonic Anal. , vol.11 , pp. 89-123
    • Wainwright, M.J.1    Simoncelli, E.P.2    Willsky, A.S.3
  • 127
    • 0030088712 scopus 로고    scopus 로고
    • Multi-modal volume registration by maximization of mutual information
    • Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. 1996. Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1):35-51
    • (1996) Med. Image Anal. , vol.1 , Issue.1 , pp. 35-51
    • Wells, W.M.1    Viola, P.2    Atsumi, H.3    Nakajima, S.4    Kikinis, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.