메뉴 건너뛰기




Volumn 108, Issue 7, 2015, Pages 1796-1806

Allosteric effects of sodium ion binding on activation of the M3 muscarinic G-protein-coupled receptor

Author keywords

[No Author keywords available]

Indexed keywords

MUSCARINIC M3 RECEPTOR; PROTEIN BINDING; SODIUM;

EID: 84926484897     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2015.03.003     Document Type: Article
Times cited : (72)

References (51)
  • 1
    • 84857438159 scopus 로고    scopus 로고
    • Structural biology: Muscarinic receptors become crystal clear
    • R.L. Kow, and N.M. Nathanson Structural biology: muscarinic receptors become crystal clear Nature 482 2012 480 481
    • (2012) Nature , vol.482 , pp. 480-481
    • Kow, R.L.1    Nathanson, N.M.2
  • 2
    • 84856679714 scopus 로고    scopus 로고
    • Muscarinic receptor agonists and antagonists: Effects on cancer
    • E.R. Spindel Muscarinic receptor agonists and antagonists: effects on cancer Handb. Exp. Pharmacol. 208 2012 451 468
    • (2012) Handb. Exp. Pharmacol. , vol.208 , pp. 451-468
    • Spindel, E.R.1
  • 3
    • 77952340101 scopus 로고    scopus 로고
    • RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo
    • I. Ruiz de Azua, and M. Scarselli J. Wess RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo Proc. Natl. Acad. Sci. USA 107 2010 7999 8004
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 7999-8004
    • Ruiz De Azua, I.1    Scarselli, M.2    Wess, J.3
  • 4
    • 84859211563 scopus 로고    scopus 로고
    • Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels
    • K. Weston-Green, and X.F. Huang C. Deng Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels Eur. Neuropsychopharmacol. 22 2012 364 373
    • (2012) Eur. Neuropsychopharmacol. , vol.22 , pp. 364-373
    • Weston-Green, K.1    Huang, X.F.2    Deng, C.3
  • 6
    • 84863115467 scopus 로고    scopus 로고
    • Structure and dynamics of the M3 muscarinic acetylcholine receptor
    • A.C. Kruse, and J. Hu B.K. Kobilka Structure and dynamics of the M3 muscarinic acetylcholine receptor Nature 482 2012 552 556
    • (2012) Nature , vol.482 , pp. 552-556
    • Kruse, A.C.1    Hu, J.2    Kobilka, B.K.3
  • 7
    • 47049130668 scopus 로고    scopus 로고
    • Crystal structure of the ligand-free G-protein-coupled receptor opsin
    • J.H. Park, and P. Scheerer O.P. Ernst Crystal structure of the ligand-free G-protein-coupled receptor opsin Nature 454 2008 183 187
    • (2008) Nature , vol.454 , pp. 183-187
    • Park, J.H.1    Scheerer, P.2    Ernst, O.P.3
  • 8
    • 52949102889 scopus 로고    scopus 로고
    • Crystal structure of opsin in its G-protein-interacting conformation
    • P. Scheerer, and J.H. Park O.P. Ernst Crystal structure of opsin in its G-protein-interacting conformation Nature 455 2008 497 502
    • (2008) Nature , vol.455 , pp. 497-502
    • Scheerer, P.1    Park, J.H.2    Ernst, O.P.3
  • 9
    • 84855990615 scopus 로고    scopus 로고
    • Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II
    • X. Deupi, and P. Edwards J. Standfuss Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II Proc. Natl. Acad. Sci. USA 109 2012 119 124
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 119-124
    • Deupi, X.1    Edwards, P.2    Standfuss, J.3
  • 10
    • 79953234218 scopus 로고    scopus 로고
    • Crystal structure of metarhodopsin II
    • H.W. Choe, and Y.J. Kim O.P. Ernst Crystal structure of metarhodopsin II Nature 471 2011 651 655
    • (2011) Nature , vol.471 , pp. 651-655
    • Choe, H.W.1    Kim, Y.J.2    Ernst, O.P.3
  • 11
    • 80051658642 scopus 로고    scopus 로고
    • Crystal structure of the β2 adrenergic receptor-Gs protein complex
    • S.G.F. Rasmussen, and B.T. DeVree B.K. Kobilka Crystal structure of the β2 adrenergic receptor-Gs protein complex Nature 477 2011 549 555
    • (2011) Nature , vol.477 , pp. 549-555
    • Rasmussen, S.G.F.1    Devree, B.T.2    Kobilka, B.K.3
  • 12
    • 78651411166 scopus 로고    scopus 로고
    • Structure of a nanobody-stabilized active state of the β(2) adrenoceptor
    • S.G.F. Rasmussen, and H.-J. Choi B.K. Kobilka Structure of a nanobody-stabilized active state of the β(2) adrenoceptor Nature 469 2011 175 180
    • (2011) Nature , vol.469 , pp. 175-180
    • Rasmussen, S.G.F.1    Choi, H.-J.2    Kobilka, B.K.3
  • 13
    • 84889564886 scopus 로고    scopus 로고
    • Activation and allosteric modulation of a muscarinic acetylcholine receptor
    • A.C. Kruse, and A.M. Ring B.K. Kobilka Activation and allosteric modulation of a muscarinic acetylcholine receptor Nature 504 2013 101 106
    • (2013) Nature , vol.504 , pp. 101-106
    • Kruse, A.C.1    Ring, A.M.2    Kobilka, B.K.3
  • 14
    • 77957055780 scopus 로고
    • Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors
    • C.S. Stuart, Academic Press New York
    • J.A. Ballesteros, and H. Weinstein Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors C.S. Stuart, Methods in Neurosciences 1995 Academic Press New York 366 428
    • (1995) Methods in Neurosciences , pp. 366-428
    • Ballesteros, J.A.1    Weinstein, H.2
  • 15
    • 84861961427 scopus 로고    scopus 로고
    • Structural basis for allosteric regulation of GPCRs by sodium ions
    • W. Liu, and E. Chun R.C. Stevens Structural basis for allosteric regulation of GPCRs by sodium ions Science 337 2012 232 236
    • (2012) Science , vol.337 , pp. 232-236
    • Liu, W.1    Chun, E.2    Stevens, R.C.3
  • 16
    • 84899714976 scopus 로고    scopus 로고
    • The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor
    • J.L. Miller-Gallacher, and R. Nehmé C.G. Tate The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor PLoS ONE 9 2014 e92727
    • (2014) PLoS ONE , vol.9 , pp. e92727
    • Miller-Gallacher, J.L.1    Nehmé, R.2    Tate, C.G.3
  • 17
    • 84871411930 scopus 로고    scopus 로고
    • High-resolution crystal structure of human protease-activated receptor 1
    • C. Zhang, and Y. Srinivasan B.K. Kobilka High-resolution crystal structure of human protease-activated receptor 1 Nature 492 2012 387 392
    • (2012) Nature , vol.492 , pp. 387-392
    • Zhang, C.1    Srinivasan, Y.2    Kobilka, B.K.3
  • 18
    • 84893954062 scopus 로고    scopus 로고
    • Molecular control of δ-opioid receptor signalling
    • G. Fenalti, and P.M. Giguere R.C. Stevens Molecular control of δ-opioid receptor signalling Nature 506 2014 191 196
    • (2014) Nature , vol.506 , pp. 191-196
    • Fenalti, G.1    Giguere, P.M.2    Stevens, R.C.3
  • 20
    • 84889573352 scopus 로고    scopus 로고
    • The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor
    • H. Gutiérrez-de-Terán, and A. Massink R.C. Stevens The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor Structure 21 2013 2175 2185
    • (2013) Structure , vol.21 , pp. 2175-2185
    • Gutiérrez-De-Terán, H.1    Massink, A.2    Stevens, R.C.3
  • 21
    • 81755163613 scopus 로고    scopus 로고
    • Activation mechanism of the β2-adrenergic receptor
    • R.O. Dror, and D.H. Arlow D.E. Shaw Activation mechanism of the β2-adrenergic receptor Proc. Natl. Acad. Sci. USA 108 2011 18684 18689
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 18684-18689
    • Dror, R.O.1    Arlow, D.H.2    Shaw, D.E.3
  • 22
    • 80051769266 scopus 로고    scopus 로고
    • The role of conformational ensembles in ligand recognition in G-protein coupled receptors
    • M.J.M. Niesen, S. Bhattacharya, and N. Vaidehi The role of conformational ensembles in ligand recognition in G-protein coupled receptors J. Am. Chem. Soc. 133 2011 13197 13204
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 13197-13204
    • Niesen, M.J.M.1    Bhattacharya, S.2    Vaidehi, N.3
  • 23
    • 80055099699 scopus 로고    scopus 로고
    • Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques
    • D. Provasi, and M.C. Artacho M. Filizola Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques PLOS Comput. Biol. 7 2011 e1002193
    • (2011) PLOS Comput. Biol. , vol.7 , pp. e1002193
    • Provasi, D.1    Artacho, M.C.2    Filizola, M.3
  • 24
    • 84890917722 scopus 로고    scopus 로고
    • Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways
    • K.J. Kohlhoff, and D. Shukla V.S. Pande Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways Nat. Chem. 6 2014 15 21
    • (2014) Nat. Chem. , vol.6 , pp. 15-21
    • Kohlhoff, K.J.1    Shukla, D.2    Pande, V.S.3
  • 25
    • 84887620421 scopus 로고    scopus 로고
    • Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs
    • R.O. Dror, and H.F. Green D.E. Shaw Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs Nature 503 2013 295 299
    • (2013) Nature , vol.503 , pp. 295-299
    • Dror, R.O.1    Green, H.F.2    Shaw, D.E.3
  • 26
    • 78049415021 scopus 로고    scopus 로고
    • Induced effects of sodium ions on dopaminergic G-protein coupled receptors
    • J. Selent, and F. Sanz G. De Fabritiis Induced effects of sodium ions on dopaminergic G-protein coupled receptors PLOS Comput. Biol. 6 2010 e1000884
    • (2010) PLOS Comput. Biol. , vol.6 , pp. e1000884
    • Selent, J.1    Sanz, F.2    De Fabritiis, G.3
  • 27
    • 84860513814 scopus 로고    scopus 로고
    • Structure-based drug screening for G-protein-coupled receptors
    • B.K. Shoichet, and B.K. Kobilka Structure-based drug screening for G-protein-coupled receptors Trends Pharmacol. Sci. 33 2012 268 272
    • (2012) Trends Pharmacol. Sci. , vol.33 , pp. 268-272
    • Shoichet, B.K.1    Kobilka, B.K.2
  • 28
    • 84879707465 scopus 로고    scopus 로고
    • Activation and dynamic network of the M2 muscarinic receptor
    • Y. Miao, and S.E. Nichols J.A. McCammon Activation and dynamic network of the M2 muscarinic receptor Proc. Natl. Acad. Sci. USA 110 2013 10982 10987
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 10982-10987
    • Miao, Y.1    Nichols, S.E.2    McCammon, J.A.3
  • 29
    • 84884237285 scopus 로고    scopus 로고
    • The role of water and sodium ions in the activation of the μ-opioid receptor
    • S. Yuan, H. Vogel, and S. Filipek The role of water and sodium ions in the activation of the μ-opioid receptor Angew. Chem. Int. Ed. Engl. 52 2013 10112 10115
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 10112-10115
    • Yuan, S.1    Vogel, H.2    Filipek, S.3
  • 30
    • 21144443385 scopus 로고    scopus 로고
    • Discovery of 2-aminothiazole-4-carboxamides, a novel class of muscarinic M(3) selective antagonists, through solution-phase parallel synthesis
    • Y. Sagara, and M. Mitsuya T. Mase Discovery of 2-aminothiazole-4-carboxamides, a novel class of muscarinic M(3) selective antagonists, through solution-phase parallel synthesis Chem. Pharm. Bull. (Tokyo) 53 2005 437 440
    • (2005) Chem. Pharm. Bull. (Tokyo) , vol.53 , pp. 437-440
    • Sagara, Y.1    Mitsuya, M.2    Mase, T.3
  • 31
    • 14044260794 scopus 로고    scopus 로고
    • Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: Identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor
    • B. Li, and N.M. Nowak J. Wess Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor J. Biol. Chem. 280 2005 5664 5675
    • (2005) J. Biol. Chem. , vol.280 , pp. 5664-5675
    • Li, B.1    Nowak, N.M.2    Wess, J.3
  • 32
    • 84871812592 scopus 로고    scopus 로고
    • GPCR activation: A mutagenic spotlight on crystal structures
    • E.C. Hulme GPCR activation: a mutagenic spotlight on crystal structures Trends Pharmacol. Sci. 34 2013 67 84
    • (2013) Trends Pharmacol. Sci. , vol.34 , pp. 67-84
    • Hulme, E.C.1
  • 33
    • 84913603703 scopus 로고    scopus 로고
    • Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations
    • A. Ranganathan, R.O. Dror, and J. Carlsson Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations Biochemistry 53 2014 7283 7296
    • (2014) Biochemistry , vol.53 , pp. 7283-7296
    • Ranganathan, A.1    Dror, R.O.2    Carlsson, J.3
  • 34
    • 0034603147 scopus 로고    scopus 로고
    • The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation
    • P. Ghanouni, and H. Schambye B.K. Kobilka The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation J. Biol. Chem. 275 2000 3121 3127
    • (2000) J. Biol. Chem. , vol.275 , pp. 3121-3127
    • Ghanouni, P.1    Schambye, H.2    Kobilka, B.K.3
  • 35
    • 81255138340 scopus 로고    scopus 로고
    • Studying functional dynamics in bio-molecules using accelerated molecular dynamics
    • P.R.L. Markwick, and J.A. McCammon Studying functional dynamics in bio-molecules using accelerated molecular dynamics Phys. Chem. Chem. Phys. 13 2011 20053 20065
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 20053-20065
    • Markwick, P.R.L.1    McCammon, J.A.2
  • 36
    • 3142716857 scopus 로고    scopus 로고
    • Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules
    • D. Hamelberg, J. Mongan, and J.A. McCammon Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules J. Chem. Phys. 120 2004 11919 11929
    • (2004) J. Chem. Phys. , vol.120 , pp. 11919-11929
    • Hamelberg, D.1    Mongan, J.2    McCammon, J.A.3
  • 37
    • 38449096891 scopus 로고    scopus 로고
    • Sampling of slow diffusive conformational transitions with accelerated molecular dynamics
    • D. Hamelberg, C.A.F. de Oliveira, and J.A. McCammon Sampling of slow diffusive conformational transitions with accelerated molecular dynamics J. Chem. Phys. 127 2007 155102
    • (2007) J. Chem. Phys. , vol.127 , pp. 155102
    • Hamelberg, D.1    De Oliveira, C.A.F.2    McCammon, J.A.3
  • 38
    • 84866146945 scopus 로고    scopus 로고
    • Routine access to millisecond time scale events with accelerated molecular dynamics
    • L.C.T. Pierce, and R. Salomon-Ferrer R.C. Walker Routine access to millisecond time scale events with accelerated molecular dynamics J. Chem. Theory Comput. 8 2012 2997 3002
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 2997-3002
    • Pierce, L.C.T.1    Salomon-Ferrer, R.2    Walker, R.C.3
  • 39
    • 84896351138 scopus 로고    scopus 로고
    • Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics
    • Y. Miao, S.E. Nichols, and J.A. McCammon Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics Phys. Chem. Chem. Phys. 16 2014 6398 6406
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 6398-6406
    • Miao, Y.1    Nichols, S.E.2    McCammon, J.A.3
  • 40
    • 0041784950 scopus 로고    scopus 로고
    • All-atom empirical potential for molecular modeling and dynamics studies of proteins
    • A.D. MacKerell, and D. Bashford M. Karplus All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B 102 1998 3586 3616
    • (1998) J. Phys. Chem. B , vol.102 , pp. 3586-3616
    • Mackerell, A.D.1    Bashford, D.2    Karplus, M.3
  • 41
    • 1642576012 scopus 로고    scopus 로고
    • Improved treatment of the protein backbone in empirical force fields
    • A.D. MacKerell Jr., M. Feig, and C.L. Brooks 3rd Improved treatment of the protein backbone in empirical force fields J. Am. Chem. Soc. 126 2004 698 699
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 698-699
    • Mackerell, Jr.A.D.1    Feig, M.2    Brooks, C.L.3
  • 42
    • 77953377650 scopus 로고    scopus 로고
    • Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types
    • J.B. Klauda, and R.M. Venable R.W. Pastor Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types J. Phys. Chem. B 114 2010 7830 7843
    • (2010) J. Phys. Chem. B , vol.114 , pp. 7830-7843
    • Klauda, J.B.1    Venable, R.M.2    Pastor, R.W.3
  • 43
    • 0004016501 scopus 로고
    • Comparison of simple potential functions for simulating liquid water
    • W.L. Jorgensen, and J. Chandrasekhar M.L. Klein Comparison of simple potential functions for simulating liquid water J. Chem. Phys. 79 1983 926 935
    • (1983) J. Chem. Phys. , vol.79 , pp. 926-935
    • Jorgensen, W.L.1    Chandrasekhar, J.2    Klein, M.L.3
  • 45
    • 33644847828 scopus 로고    scopus 로고
    • Generalized correlation for biomolecular dynamics
    • O.F. Lange, and H. Grubmüller Generalized correlation for biomolecular dynamics Proteins 62 2006 1053 1061
    • (2006) Proteins , vol.62 , pp. 1053-1061
    • Lange, O.F.1    Grubmüller, H.2
  • 47
    • 84869418186 scopus 로고    scopus 로고
    • NetworkView: 3D display and analysis of protein·RNA interaction networks
    • J. Eargle, and Z. Luthey-Schulten NetworkView: 3D display and analysis of protein·RNA interaction networks Bioinformatics 28 2012 3000 3001
    • (2012) Bioinformatics , vol.28 , pp. 3000-3001
    • Eargle, J.1    Luthey-Schulten, Z.2
  • 48
    • 80052082999 scopus 로고    scopus 로고
    • Structural insights into agonist-induced activation of G-protein-coupled receptors
    • X. Deupi, and J. Standfuss Structural insights into agonist-induced activation of G-protein-coupled receptors Curr. Opin. Struct. Biol. 21 2011 541 551
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 541-551
    • Deupi, X.1    Standfuss, J.2
  • 49
    • 0031009124 scopus 로고    scopus 로고
    • Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor
    • R. Pals-Rylaarsdam, and M.M. Hosey Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor J. Biol. Chem. 272 1997 14152 14158
    • (1997) J. Biol. Chem. , vol.272 , pp. 14152-14158
    • Pals-Rylaarsdam, R.1    Hosey, M.M.2
  • 50
    • 0034680750 scopus 로고    scopus 로고
    • Acidic amino acids flanking phosphorylation sites in the M2 muscarinic receptor regulate receptor phosphorylation, internalization, and interaction with arrestins
    • K.B. Lee, and J.A. Ptasienski M.M. Hosey Acidic amino acids flanking phosphorylation sites in the M2 muscarinic receptor regulate receptor phosphorylation, internalization, and interaction with arrestins J. Biol. Chem. 275 2000 35767 35777
    • (2000) J. Biol. Chem. , vol.275 , pp. 35767-35777
    • Lee, K.B.1    Ptasienski, J.A.2    Hosey, M.M.3
  • 51
    • 84862777405 scopus 로고    scopus 로고
    • Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist
    • K. Haga, and A.C. Kruse T. Kobayashi Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist Nature 482 2012 547 551
    • (2012) Nature , vol.482 , pp. 547-551
    • Haga, K.1    Kruse, A.C.2    Kobayashi, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.