메뉴 건너뛰기




Volumn 37, Issue 4, 2015, Pages 761-772

Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals

Author keywords

Biofuel; Ethanol; Lignocellulosic ethanol; Metabolic engineering; Saccharomyces cerevisiae; Xylose fermentation; Yeast

Indexed keywords

BIOETHANOL; BIOFUELS; ETHANOL; FERMENTATION; GENETIC ENGINEERING; LIGNOCELLULOSIC BIOMASS; METABOLIC ENGINEERING; OPERATING COSTS; YEAST;

EID: 84925489058     PISSN: 01415492     EISSN: 15736776     Source Type: Journal    
DOI: 10.1007/s10529-014-1756-2     Document Type: Review
Times cited : (92)

References (94)
  • 1
    • 68349155855 scopus 로고    scopus 로고
    • A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains
    • COI: 1:CAS:528:DC%2BD1MXovVOitr0%3D, PID: 19462190
    • Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 36:1085–1091
    • (2009) J Ind Microbiol Biotechnol , vol.36 , pp. 1085-1091
    • Albers, E.1    Larsson, C.2
  • 3
    • 64849089980 scopus 로고    scopus 로고
    • Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate
    • COI: 1:CAS:528:DC%2BD1MXltVWqtrw%3D, PID: 19329297
    • Almeida JRM, Karhumaa K, Bengtsson O, Gorwa-Grauslund MF (2009b) Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol 100:3674–3677
    • (2009) Bioresour Technol , vol.100 , pp. 3674-3677
    • Almeida, J.R.M.1    Karhumaa, K.2    Bengtsson, O.3    Gorwa-Grauslund, M.F.4
  • 4
    • 79952181277 scopus 로고    scopus 로고
    • Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXisFyqs7k%3D, PID: 21305697
    • Almeida JRM, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299
    • (2011) Biotechnol J , vol.6 , pp. 286-299
    • Almeida, J.R.M.1    Runquist, D.2    Sànchez Nogué, V.3    Lidén, G.4    Gorwa-Grauslund, M.F.5
  • 5
    • 77949874216 scopus 로고    scopus 로고
    • Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
    • COI: 1:CAS:528:DC%2BC3cXjvFynsbg%3D, PID: 20042329
    • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861
    • (2010) Bioresour Technol , vol.101 , pp. 4851-4861
    • Alvira, P.1    Tomás-Pejó, E.2    Ballesteros, M.3    Negro, M.J.4
  • 6
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
    • COI: 1:CAS:528:DC%2BD1MXlsFSgtLs%3D, PID: 19416101
    • Bellissimi E, van Dijken JP, Pronk JT, van Maris AJA (2009) Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 9:358–364
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    van Dijken, J.P.2    Pronk, J.T.3    van Maris, A.J.A.4
  • 7
    • 4544380928 scopus 로고    scopus 로고
    • The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate
    • COI: 1:CAS:528:DC%2BD2cXptVKqu7w%3D, PID: 16233676
    • Brandberg T, Franzen CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125
    • (2004) J Biosci Bioeng , vol.98 , pp. 122-125
    • Brandberg, T.1    Franzen, C.J.2    Gustafsson, L.3
  • 8
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1MXlsFChsro%3D, PID: 19218403
    • Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75:2304–2311
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 9
    • 84857056878 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties
    • PID: 22136139
    • Çakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182
    • (2012) FEMS Yeast Res , vol.12 , pp. 171-182
    • Çakar, Z.P.1    Turanli-Yildiz, B.2    Alkim, C.3    Yilmaz, U.4
  • 10
    • 85067734592 scopus 로고    scopus 로고
    • Cellulosic biofuels. In: Industry progress report (2012–2013) Advanced Ethanol Council. Accessed Oct 2014
    • Cellulosic biofuels. In: Industry progress report (2012–2013) Advanced Ethanol Council. www.advancedethanol.net. Accessed Oct 2014
  • 11
    • 0023987716 scopus 로고
    • Cloning the yeast xylulokinase gene for the improvement of xylose fermentation
    • COI: 1:CAS:528:DyaL1MXht12rtrg%3D, PID: 2843089
    • Chang SF, Ho NWY (1988) Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Appl Biochem Biotechnol 17:313–318
    • (1988) Appl Biochem Biotechnol , vol.17 , pp. 313-318
    • Chang, S.F.1    Ho, N.W.Y.2
  • 13
    • 84879489028 scopus 로고    scopus 로고
    • Adaptive laboratory evolution - principles and applications for biotechnology
    • PID: 23815749
    • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact 12:64
    • (2013) Microb Cell Fact , vol.12 , pp. 64
    • Dragosits, M.1    Mattanovich, D.2
  • 14
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • COI: 1:CAS:528:DC%2BD3cXlsFarsrc%3D, PID: 10919795
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hägerdal, B.4
  • 15
    • 0035812350 scopus 로고    scopus 로고
    • The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD3MXmt1Klur4%3D
    • Eliasson A, Hofmeyr JHS, Pedler S, Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enz Microb Technol 29:288–297
    • (2001) Enz Microb Technol , vol.29 , pp. 288-297
    • Eliasson, A.1    Hofmeyr, J.H.S.2    Pedler, S.3    Hahn-Hägerdal, B.4
  • 17
    • 84857985263 scopus 로고    scopus 로고
    • Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw
    • COI: 1:CAS:528:DC%2BC38XnslyhsL4%3D
    • Erdei B, Franko B, Galbe M, Zacchi G (2012) Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol Biofuel 5:12
    • (2012) Biotechnol Biofuel , vol.5 , pp. 12
    • Erdei, B.1    Franko, B.2    Galbe, M.3    Zacchi, G.4
  • 18
    • 84875106231 scopus 로고    scopus 로고
    • Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400
    • COI: 1:CAS:528:DC%2BC3sXhs1Cntbs%3D, PID: 23262129
    • Erdei B, Franko B, Galbe M, Zacchi G (2013a) Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. J Biotechnol 164:50–58
    • (2013) J Biotechnol , vol.164 , pp. 50-58
    • Erdei, B.1    Franko, B.2    Galbe, M.3    Zacchi, G.4
  • 19
    • 84888239853 scopus 로고    scopus 로고
    • SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production
    • Erdei B, Hancz D, Galbe M, Zacchi G (2013b) SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production. Biotechnol Biofuel 6:169
    • (2013) Biotechnol Biofuel , vol.6 , pp. 169
    • Erdei, B.1    Hancz, D.2    Galbe, M.3    Zacchi, G.4
  • 20
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose
    • COI: 1:CAS:528:DC%2BC2cXkslCqs78%3D, PID: 24706835
    • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc Natl Acad Sci USA 111:5159–5164
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 21
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • COI: 1:CAS:528:DC%2BC38XksFWlsr8%3D, PID: 22357292
    • Fujitomi K, Sanda T, Hasunuma T, Kondo A (2012) Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 111:161–166
    • (2012) Bioresour Technol , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4
  • 22
    • 84868482873 scopus 로고    scopus 로고
    • Pretreatment: the key to efficient utilization of lignocellulosic materials
    • COI: 1:CAS:528:DC%2BC38Xhs1OlurvL
    • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78
    • (2012) Biomass Bioenergy , vol.46 , pp. 70-78
    • Galbe, M.1    Zacchi, G.2
  • 23
    • 34548775763 scopus 로고    scopus 로고
    • Process engineering economics of bioethanol production
    • COI: 1:CAS:528:DC%2BD1cXhtVKqtbc%3D, PID: 17541520
    • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327
    • (2007) Adv Biochem Eng Biotechnol , vol.108 , pp. 303-327
    • Galbe, M.1    Sassner, P.2    Wingren, A.3    Zacchi, G.4
  • 24
    • 84867899766 scopus 로고    scopus 로고
    • Sm-like protein enhanced tolerance of recombinant Saccharomyces cerevisiae to inhibitors in hemicellulosic hydrolysate
    • COI: 1:CAS:528:DC%2BC38XhsValtLzO, PID: 23021959
    • Gao L, Xia LM (2012) Sm-like protein enhanced tolerance of recombinant Saccharomyces cerevisiae to inhibitors in hemicellulosic hydrolysate. Bioresour Technol 124:504–507
    • (2012) Bioresour Technol , vol.124 , pp. 504-507
    • Gao, L.1    Xia, L.M.2
  • 27
    • 85067704454 scopus 로고    scopus 로고
    • GranBio. Press release 24 Sept 2014. “GranBio begins producing second-generation ethanol”. Accessed Oct 2014
    • GranBio. Press release 24 Sept 2014. “GranBio begins producing second-generation ethanol”. www.granbio.com.br. Accessed Oct 2014
  • 28
    • 33646438534 scopus 로고    scopus 로고
    • Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash
    • COI: 1:CAS:528:DC%2BD28XjvFSmsr0%3D, PID: 16491359
    • Graves T, Narendranath NV, Dawson K, Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33:469–474
    • (2006) J Ind Microbiol Biotechnol , vol.33 , pp. 469-474
    • Graves, T.1    Narendranath, N.V.2    Dawson, K.3    Power, R.4
  • 29
    • 84878770453 scopus 로고    scopus 로고
    • Sulfite-formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification
    • COI: 1:CAS:528:DC%2BC3sXhtV2ls7rO, PID: 23743425
    • Gu F, Wang W, Jing L, Jin Y (2013) Sulfite-formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification. Bioresour Technol 142:218–224
    • (2013) Bioresour Technol , vol.142 , pp. 218-224
    • Gu, F.1    Wang, W.2    Jing, L.3    Jin, Y.4
  • 31
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • COI: 1:CAS:528:DC%2BD38Xnt1elurk%3D, PID: 12213924
    • Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hägerdal, B.4    Boles, E.5
  • 32
    • 84885960193 scopus 로고    scopus 로고
    • Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone-butanol-ethanol fermentation
    • COI: 1:CAS:528:DC%2BC3sXhtVKms7%2FJ
    • Han SH, Cho DH, Kim YH, Shin SJ (2013) Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone-butanol-ethanol fermentation. Energy 61:13–17
    • (2013) Energy , vol.61 , pp. 13-17
    • Han, S.H.1    Cho, D.H.2    Kim, Y.H.3    Shin, S.J.4
  • 33
    • 79954706261 scopus 로고    scopus 로고
    • Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXks1WnsLs%3D, PID: 21246355
    • Hasunuma T, Sung K, Sanda T, Yoshimura K, Matsuda F, Kondo A (2011) Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90:997–1004
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 997-1004
    • Hasunuma, T.1    Sung, K.2    Sanda, T.3    Yoshimura, K.4    Matsuda, F.5    Kondo, A.6
  • 34
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • COI: 1:CAS:528:DC%2BC3sXht1WqsrjE, PID: 23916856
    • Hasunuma T, Ismail KSK, Nambu Y, Kondo A (2014) Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng 117:165–169
    • (2014) J Biosci Bioeng , vol.117 , pp. 165-169
    • Hasunuma, T.1    Ismail, K.S.K.2    Nambu, Y.3    Kondo, A.4
  • 35
    • 64849104184 scopus 로고    scopus 로고
    • Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
    • COI: 1:CAS:528:DC%2BD1MXotlCitLY%3D, PID: 21261870
    • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497–506
    • (2008) Microb Biotechnol , vol.1 , pp. 497-506
    • Heer, D.1    Sauer, U.2
  • 36
    • 85067720485 scopus 로고    scopus 로고
    • Inbicon. Press release 4 December 2013. “DONG Energy and DSM prove cellulosic bio-ethanol fermentation on industrial scale with 40 % higher yield”. Accessed Oct 2014
    • Inbicon. Press release 4 December 2013. “DONG Energy and DSM prove cellulosic bio-ethanol fermentation on industrial scale with 40 % higher yield”. www.inbicon.com. Accessed Oct 2014
  • 37
    • 84858289640 scopus 로고    scopus 로고
    • Simultaneous saccharification and co-fermentation (SSCF) of AFEX pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST)
    • COI: 1:CAS:528:DC%2BC38XktFOlurY%3D, PID: 22361075
    • Jin MJ, Gunawan C, Balan V, Lau MW, Dale BE (2012) Simultaneous saccharification and co-fermentation (SSCF) of AFEX pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 110:587–594
    • (2012) Bioresour Technol , vol.110 , pp. 587-594
    • Jin, M.J.1    Gunawan, C.2    Balan, V.3    Lau, M.W.4    Dale, B.E.5
  • 38
  • 39
    • 85067714238 scopus 로고    scopus 로고
    • Xylose isomerase and xylitol dehydrogenase combination for xylose fermentation to ethanol and B. fragilis xylose isomerase
    • Jordan S, Fatland-Bloom B, Li L (2012) Xylose isomerase and xylitol dehydrogenase combination for xylose fermentation to ethanol and B. fragilis xylose isomerase. Patent application WO/2012/087601
    • (2012) Patent application WO/2012/087601
    • Jordan, S.1    Fatland-Bloom, B.2    Li, L.3
  • 40
    • 85067706339 scopus 로고    scopus 로고
    • Karhumaa K, Sànchez i Nogué V Biorenewables at C5LT. In: Dominguez P (ed) Industrial biorenewables. Wiley (in press)
    • Karhumaa K, Sànchez i Nogué V Biorenewables at C5LT. In: Dominguez P (ed) Industrial biorenewables. Wiley (in press)
  • 41
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • COI: 1:CAS:528:DC%2BD2MXjslGqsr0%3D, PID: 15806613
    • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 42
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • PID: 17280608
    • Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5
    • (2007) Microb Cell Fact , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 43
    • 84877357931 scopus 로고    scopus 로고
    • Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase
    • COI: 1:CAS:528:DC%2BC3sXotlCrt70%3D, PID: 23578809
    • Khattab SMR, Saimura M, Kodaki T (2013) Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol 165:153–156
    • (2013) J Biotechnol , vol.165 , pp. 153-156
    • Khattab, S.M.R.1    Saimura, M.2    Kodaki, T.3
  • 44
    • 84862812426 scopus 로고    scopus 로고
    • Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
    • PID: 22356718
    • Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS (2012) Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 30:274–282
    • (2012) Trends Biotechnol , vol.30 , pp. 274-282
    • Kim, S.R.1    Ha, S.J.2    Wei, N.3    Oh, E.J.4    Jin, Y.S.5
  • 45
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • COI: 1:CAS:528:DC%2BC3sXlsVKjtrk%3D, PID: 23524005
    • Kim SR, Park YC, Jin YS, Seo JH (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31:851–861
    • (2013) Biotechnol Adv , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 47
    • 84897513442 scopus 로고    scopus 로고
    • Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae
    • PID: 24606998
    • Klimacek M, Kirl E, Krahulec S, Longus K, Novy V, Nidetzky B (2014) Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microb Cell Fact 13:37
    • (2014) Microb Cell Fact , vol.13 , pp. 37
    • Klimacek, M.1    Kirl, E.2    Krahulec, S.3    Longus, K.4    Novy, V.5    Nidetzky, B.6
  • 48
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • COI: 1:CAS:528:DC%2BD2cXpsFKrtr0%3D, PID: 15300416
    • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 49
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • COI: 1:CAS:528:DC%2BC38Xhtlyqtb3P
    • Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuel 5:32
    • (2012) Biotechnol Biofuel , vol.5 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 50
    • 84872135386 scopus 로고    scopus 로고
    • Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales
    • COI: 1:CAS:528:DC%2BC3sXktlyjtro%3D
    • Koppram R, Nielsen F, Albers E, Lambert A, Wannstrom S, Welin L, Zacchi G, Olsson L (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuel 6:2
    • (2013) Biotechnol Biofuel , vol.6 , pp. 2
    • Koppram, R.1    Nielsen, F.2    Albers, E.3    Lambert, A.4    Wannstrom, S.5    Welin, L.6    Zacchi, G.7    Olsson, L.8
  • 51
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kötter, P.1    Ciriacy, M.2
  • 53
    • 41549139616 scopus 로고    scopus 로고
    • Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1cXkt1ajur4%3D, PID: 18302314
    • Laadan B, Almeida JRM, Rådström P, Hahn-Hägerdal B, Gorwa-Grauslund M (2008) Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 25:191–198
    • (2008) Yeast , vol.25 , pp. 191-198
    • Laadan, B.1    Almeida, J.R.M.2    Rådström, P.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.5
  • 54
    • 84860834629 scopus 로고    scopus 로고
    • Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol—a review
    • COI: 1:CAS:528:DC%2BC38XltlGks70%3D
    • Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR (2012) Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol—a review. Appl Biochem Biotech 166:1908–1926
    • (2012) Appl Biochem Biotech , vol.166 , pp. 1908-1926
    • Laluce, C.1    Schenberg, A.C.G.2    Gallardo, J.C.M.3    Coradello, L.F.C.4    Pombeiro-Sponchiado, S.R.5
  • 55
    • 84866172183 scopus 로고    scopus 로고
    • Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XhtFOnsrrI
    • Lee SM, Jellison T, Alper HS (2012) Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microb 78:5708–5716
    • (2012) Appl Environ Microb , vol.78 , pp. 5708-5716
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 56
    • 71149086772 scopus 로고    scopus 로고
    • Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment
    • COI: 1:CAS:528:DC%2BD1MXhtlyqt7fM, PID: 19811909
    • Li BZ, Balan V, Yuan YJ, Dale BE (2010a) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292
    • (2010) Bioresour Technol , vol.101 , pp. 1285-1292
    • Li, B.Z.1    Balan, V.2    Yuan, Y.J.3    Dale, B.E.4
  • 57
    • 77949873592 scopus 로고    scopus 로고
    • Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification
    • COI: 1:CAS:528:DC%2BC3cXjvFyntrw%3D, PID: 19945861
    • Li CL, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010b) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906
    • (2010) Bioresour Technol , vol.101 , pp. 4900-4906
    • Li, C.L.1    Knierim, B.2    Manisseri, C.3    Arora, R.4    Scheller, H.V.5    Auer, M.6    Vogel, K.P.7    Simmons, B.A.8    Singh, S.9
  • 58
    • 84906947676 scopus 로고    scopus 로고
    • Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain
    • COI: 1:CAS:528:DC%2BC2cXhtVGqtbrO, PID: 24966040
    • Li YC, Gou ZX, Liu ZS, Tang YQ, Akamatsu T, Kida K (2014) Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol Lett 36:2011–2021
    • (2014) Biotechnol Lett , vol.36 , pp. 2011-2021
    • Li, Y.C.1    Gou, Z.X.2    Liu, Z.S.3    Tang, Y.Q.4    Akamatsu, T.5    Kida, K.6
  • 59
    • 84866146350 scopus 로고    scopus 로고
    • Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum
    • COI: 1:CAS:528:DC%2BC38XhtFOnsr%2FE, PID: 22636012
    • Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol 78:5492–5500
    • (2012) Appl Environ Microbiol , vol.78 , pp. 5492-5500
    • Long, T.M.1    Su, Y.K.2    Headman, J.3    Higbee, A.4    Willis, L.B.5    Jeffries, T.W.6
  • 60
    • 66149164727 scopus 로고    scopus 로고
    • Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies
    • COI: 1:CAS:528:DC%2BD1MXmtF2mt7g%3D, PID: 19319980
    • Lu Y, Warner R, Sedlak M, Ho N, Mosier NS (2009) Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol Prog 25:349–356
    • (2009) Biotechnol Prog , vol.25 , pp. 349-356
    • Lu, Y.1    Warner, R.2    Sedlak, M.3    Ho, N.4    Mosier, N.S.5
  • 61
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • COI: 1:CAS:528:DC%2BD1MXjvFeis78%3D, PID: 19050860
    • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6    Fukuda, H.7    Bisaria, V.S.8    Kondo, A.9
  • 62
    • 84856703096 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38Xhslyku78%3D, PID: 21204601
    • Madhavan A, Srivastava A, Kondo A, Bisaria VS (2012) Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 32:22–48
    • (2012) Crit Rev Biotechnol , vol.32 , pp. 22-48
    • Madhavan, A.1    Srivastava, A.2    Kondo, A.3    Bisaria, V.S.4
  • 63
    • 84903488413 scopus 로고    scopus 로고
    • Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment
    • COI: 1:CAS:528:DC%2BC2cXht1Slt7fL, PID: 24980031
    • Martin-Sampedro R, Revilla E, Villar JC, Eugenio ME (2014) Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment. Bioresour Technol 167:186–191
    • (2014) Bioresour Technol , vol.167 , pp. 186-191
    • Martin-Sampedro, R.1    Revilla, E.2    Villar, J.C.3    Eugenio, M.E.4
  • 64
    • 84883776478 scopus 로고    scopus 로고
    • Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product
    • COI: 1:CAS:528:DC%2BC3sXhtVOjtrjP
    • Nghiem NP, Kim TH, Yoo CG, Hicks KB (2013) Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product. Appl Biochem Biotech 171:341–351
    • (2013) Appl Biochem Biotech , vol.171 , pp. 341-351
    • Nghiem, N.P.1    Kim, T.H.2    Yoo, C.G.3    Hicks, K.B.4
  • 65
    • 72949096777 scopus 로고    scopus 로고
    • Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production
    • COI: 1:CAS:528:DC%2BC3cXpt12m, PID: 19900494
    • Olofsson K, Wiman M, Liden G (2010) Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 145:168–175
    • (2010) J Biotechnol , vol.145 , pp. 168-175
    • Olofsson, K.1    Wiman, M.2    Liden, G.3
  • 66
    • 84855362753 scopus 로고    scopus 로고
    • A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw
    • PID: 21906329
    • Olofsson K, Runquist D, Hahn-Hägerdal B, Liden G (2011) A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express 1:4
    • (2011) AMB Express , vol.1 , pp. 4
    • Olofsson, K.1    Runquist, D.2    Hahn-Hägerdal, B.3    Liden, G.4
  • 67
    • 0033982072 scopus 로고    scopus 로고
    • Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD3cXht1OjurY%3D, PID: 10689168
    • Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184:69–72
    • (2000) FEMS Microbiol Lett , vol.184 , pp. 69-72
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 68
    • 84891813970 scopus 로고    scopus 로고
    • On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine
    • COI: 1:CAS:528:DC%2BC2cXht1yntb8%3D, PID: 24412480
    • Rana V, Eckard AD, Teller P, Ahring BK (2014) On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour Technol 154:282–289
    • (2014) Bioresour Technol , vol.154 , pp. 282-289
    • Rana, V.1    Eckard, A.D.2    Teller, P.3    Ahring, B.K.4
  • 69
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • COI: 1:CAS:528:DC%2BC3MXktFKntg%3D%3D, PID: 20889775
    • Runquist D, Hahn-Hägerdal B, Bettiga M (2010) Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 76:7796–7802
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 70
    • 84922783974 scopus 로고    scopus 로고
    • Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae
    • Sakihama Y, Hasunuma T, Kondo A (2014) Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. J Biosci Bioeng. doi:10.1016/j.jbiosc.2014.09.004
    • (2014) J Biosci Bioeng
    • Sakihama, Y.1    Hasunuma, T.2    Kondo, A.3
  • 72
    • 33748945157 scopus 로고    scopus 로고
    • Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose
    • PID: 15054267
    • Sedlak M, Ho NW (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 113–116:403–416
    • (2004) Appl Biochem Biotechnol , vol.113-116 , pp. 403-416
    • Sedlak, M.1    Ho, N.W.2
  • 73
    • 77953190715 scopus 로고    scopus 로고
    • Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant
    • Shao Q, Chundawat SPS, Krishnan C, Bals B, Sousa LD, Thelen KD, Dale BE, Balan V (2010) Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant. Biotechnol Biofuel 3:12
    • (2010) Biotechnol Biofuel , vol.3 , pp. 12
    • Shao, Q.1    Chundawat, S.P.S.2    Krishnan, C.3    Bals, B.4    Sousa, L.D.5    Thelen, K.D.6    Dale, B.E.7    Balan, V.8
  • 74
    • 84900839963 scopus 로고    scopus 로고
    • Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    • PID: 24884721
    • Smith J, van Rensburg E, Görgens JF (2014) Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol 14:41
    • (2014) BMC Biotechnol , vol.14 , pp. 41
    • Smith, J.1    van Rensburg, E.2    Görgens, J.F.3
  • 75
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • COI: 1:CAS:528:DC%2BD3sXivFKru7g%3D, PID: 12676674
    • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998
    • (2003) Appl Environ Microbiol , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 76
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38Xpt1ajsbg%3D
    • Subtil T, Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuel 5:14
    • (2012) Biotechnol Biofuel , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 77
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • COI: 1:CAS:528:DC%2BC38Xhs1eisr3P, PID: 22961896
    • Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78:8161–8163
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 78
    • 0027415073 scopus 로고
    • Construction of xylose-assimilating Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaK3sXhs1OmsbY%3D
    • Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88
    • (1993) J Ferment Bioeng , vol.75 , pp. 83-88
    • Tantirungkij, M.1    Nakashima, N.2    Seki, T.3    Yoshida, T.4
  • 79
    • 84866021000 scopus 로고    scopus 로고
    • Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations
    • COI: 1:CAS:528:DC%2BC38Xit1WhtLc%3D, PID: 22331581
    • Taylor MP, Mulako I, Tuffin M, Cowan D (2012) Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnol J 7:1169–1181
    • (2012) Biotechnol J , vol.7 , pp. 1169-1181
    • Taylor, M.P.1    Mulako, I.2    Tuffin, M.3    Cowan, D.4
  • 81
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
    • PID: 18249574
    • Van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab Eng 10:360–369
    • (2008) Metab Eng , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 82
    • 84881533472 scopus 로고    scopus 로고
    • An efficient process for the saccharification of wood chips by combined ionic liquid pretreatment and enzymatic hydrolysis
    • COI: 1:CAS:528:DC%2BC3sXhsVejtLrO, PID: 23933021
    • Viell J, Wulfhorst H, Schmidt T, Commandeur U, Fischer R, Spiess A, Marquardt W (2013) An efficient process for the saccharification of wood chips by combined ionic liquid pretreatment and enzymatic hydrolysis. Bioresour Technol 146:144–151
    • (2013) Bioresour Technol , vol.146 , pp. 144-151
    • Viell, J.1    Wulfhorst, H.2    Schmidt, T.3    Commandeur, U.4    Fischer, R.5    Spiess, A.6    Marquardt, W.7
  • 83
    • 84868516451 scopus 로고    scopus 로고
    • Lignocellulosic ethanol: from science to industry
    • COI: 1:CAS:528:DC%2BC38Xhs1Olur%2FI
    • Viikari L, Vehmaanpera J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenerg 46:13–24
    • (2012) Biomass Bioenerg , vol.46 , pp. 13-24
    • Viikari, L.1    Vehmaanpera, J.2    Koivula, A.3
  • 84
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • COI: 1:CAS:528:DyaK28Xnt1ars7k%3D, PID: 8953736
    • Walfridsson M, Bao XM, Anderlund M, Lilius G, Bulow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651
    • (1996) Appl Environ Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.M.2    Anderlund, M.3    Lilius, G.4    Bulow, L.5    Hahn-Hägerdal, B.6
  • 85
    • 84885551317 scopus 로고    scopus 로고
    • Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature
    • COI: 1:CAS:528:DC%2BC3sXhvVChs7zE
    • Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuel 6:151
    • (2013) Biotechnol Biofuel , vol.6 , pp. 151
    • Wallace-Salinas, V.1    Gorwa-Grauslund, M.F.2
  • 86
    • 84857056043 scopus 로고    scopus 로고
    • Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments
    • COI: 1:CAS:528:DC%2BC38XitFSks7o%3D
    • Wang ZJ, Zhu JY, Zalesny RS, Chen KF (2012) Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel 95:606–614
    • (2012) Fuel , vol.95 , pp. 606-614
    • Wang, Z.J.1    Zhu, J.Y.2    Zalesny, R.S.3    Chen, K.F.4
  • 88
    • 84877114454 scopus 로고    scopus 로고
    • Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3sXnt1ajtr8%3D, PID: 23475614
    • Wei N, Xu H, Kim SR, Jin YS (2013) Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 79:3193–3201
    • (2013) Appl Environ Microbiol , vol.79 , pp. 3193-3201
    • Wei, N.1    Xu, H.2    Kim, S.R.3    Jin, Y.S.4
  • 89
    • 84867294955 scopus 로고    scopus 로고
    • Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce
    • COI: 1:CAS:528:DC%2BC38XhslKmsLbN, PID: 23073110
    • Wiman M, Dienes D, Hansen MA, van der Meulen T, Zacchi G, Liden G (2012) Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresour Technol 126:208–215
    • (2012) Bioresour Technol , vol.126 , pp. 208-215
    • Wiman, M.1    Dienes, D.2    Hansen, M.A.3    van der Meulen, T.4    Zacchi, G.5    Liden, G.6
  • 90
    • 79954422577 scopus 로고    scopus 로고
    • Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXls1Oku7k%3D, PID: 21251209
    • Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ (2011) Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 11:299–306
    • (2011) FEMS Yeast Res , vol.11 , pp. 299-306
    • Wright, J.1    Bellissimi, E.2    de Hulster, E.3    Wagner, A.4    Pronk, J.T.5    van Maris, A.J.6
  • 91
    • 85067711976 scopus 로고    scopus 로고
    • Method for acetate consumption during ethanolic fermentation of cellulosic feedstocks
    • Zelle R, Shaw A, Van Dijken J (2014) Method for acetate consumption during ethanolic fermentation of cellulosic feedstocks. Patent application WO2014074895 A2
    • (2014) Patent application WO2014074895 , pp. A2
    • Zelle, R.1    Shaw, A.2    Van Dijken, J.3
  • 92
    • 84901234457 scopus 로고    scopus 로고
    • Dilute ammonia pretreatment of sugarcane bagasse followed by enzymatic hydrolysis to sugars
    • COI: 1:CAS:528:DC%2BC2cXosVeku7w%3D
    • Zhang HD, Wu SB (2014) Dilute ammonia pretreatment of sugarcane bagasse followed by enzymatic hydrolysis to sugars. Cellulose 21:1341–1349
    • (2014) Cellulose , vol.21 , pp. 1341-1349
    • Zhang, H.D.1    Wu, S.B.2
  • 93
    • 77957304964 scopus 로고    scopus 로고
    • Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain
    • COI: 1:CAS:528:DC%2BC3cXht1ehtLrN
    • Zhao J, Xia LM (2010) Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Process Technol 91:1807–1811
    • (2010) Fuel Process Technol , vol.91 , pp. 1807-1811
    • Zhao, J.1    Xia, L.M.2
  • 94
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38Xhs1Cjs77E, PID: 22921355
    • Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.S.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.