메뉴 건너뛰기




Volumn 35, Issue 11, 2014, Pages 518-525

Epigenomic regulation of host-microbiota interactions

Author keywords

[No Author keywords available]

Indexed keywords

HISTONE DEACETYLASE;

EID: 84925293456     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.09.007     Document Type: Review
Times cited : (58)

References (93)
  • 1
    • 79952929840 scopus 로고    scopus 로고
    • Gene-environment interactions in chronic inflammatory disease
    • Renz H., et al. Gene-environment interactions in chronic inflammatory disease. Nat. Immunol. 2011, 12:273-277.
    • (2011) Nat. Immunol. , vol.12 , pp. 273-277
    • Renz, H.1
  • 2
    • 84857437426 scopus 로고    scopus 로고
    • Minireview: epigenetics of obesity and diabetes in humans
    • Slomko H., et al. Minireview: epigenetics of obesity and diabetes in humans. Endocrinology 2012, 153:1025-1030.
    • (2012) Endocrinology , vol.153 , pp. 1025-1030
    • Slomko, H.1
  • 3
    • 80053030747 scopus 로고    scopus 로고
    • Allergic asthma: influence of genetic and environmental factors
    • Mukherjee A.B., Zhang Z. Allergic asthma: influence of genetic and environmental factors. J. Biol. Chem. 2011, 286:32883-32889.
    • (2011) J. Biol. Chem. , vol.286 , pp. 32883-32889
    • Mukherjee, A.B.1    Zhang, Z.2
  • 4
    • 33847381116 scopus 로고    scopus 로고
    • The fundamental basis of inflammatory bowel disease
    • Strober W., et al. The fundamental basis of inflammatory bowel disease. J. Clin. Invest. 2007, 117:514-521.
    • (2007) J. Clin. Invest. , vol.117 , pp. 514-521
    • Strober, W.1
  • 5
    • 79959201412 scopus 로고    scopus 로고
    • Human nutrition, the gut microbiome and the immune system
    • Kau A.L., et al. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474:327-336.
    • (2011) Nature , vol.474 , pp. 327-336
    • Kau, A.L.1
  • 6
    • 77952316009 scopus 로고    scopus 로고
    • Inflammatory bowel disease
    • Kaser A., et al. Inflammatory bowel disease. Annu. Rev. Immunol. 2010, 28:573-621.
    • (2010) Annu. Rev. Immunol. , vol.28 , pp. 573-621
    • Kaser, A.1
  • 7
    • 84867658789 scopus 로고    scopus 로고
    • Intestinal commensal microbes as immune modulators
    • Ivanov I.I., Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012, 12:496-508.
    • (2012) Cell Host Microbe , vol.12 , pp. 496-508
    • Ivanov, I.I.1    Honda, K.2
  • 8
    • 77953904042 scopus 로고    scopus 로고
    • Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine
    • Cadwell K., et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 2010, 141:1135-1145.
    • (2010) Cell , vol.141 , pp. 1135-1145
    • Cadwell, K.1
  • 9
    • 84876913132 scopus 로고    scopus 로고
    • Role of the gut microbiota in immunity and inflammatory disease
    • Kamada N., et al. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13:321-335.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 321-335
    • Kamada, N.1
  • 10
    • 84905716750 scopus 로고    scopus 로고
    • Blowing on embers: commensal microbiota and our immune system
    • Spasova D.S., Surh C.D. Blowing on embers: commensal microbiota and our immune system. Front. Immunol. 2014, 5:318.
    • (2014) Front. Immunol. , vol.5 , pp. 318
    • Spasova, D.S.1    Surh, C.D.2
  • 11
    • 77952318832 scopus 로고    scopus 로고
    • Intestinal bacteria and the regulation of immune cell homeostasis
    • Hill D.A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 2010, 28:623-667.
    • (2010) Annu. Rev. Immunol. , vol.28 , pp. 623-667
    • Hill, D.A.1    Artis, D.2
  • 12
    • 70049099845 scopus 로고    scopus 로고
    • Immune responses to the microbiota at the intestinal mucosal surface
    • Duerkop B.A., et al. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009, 31:368-376.
    • (2009) Immunity , vol.31 , pp. 368-376
    • Duerkop, B.A.1
  • 13
    • 84921367265 scopus 로고    scopus 로고
    • Modulation of immune development and function by intestinal microbiota
    • Kabat A.M., et al. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 2014, 10.1016/j.it.2014.07.010.
    • (2014) Trends Immunol.
    • Kabat, A.M.1
  • 14
    • 84866168894 scopus 로고    scopus 로고
    • Functional interactions between the gut microbiota and host metabolism
    • Tremaroli V., Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489:242-249.
    • (2012) Nature , vol.489 , pp. 242-249
    • Tremaroli, V.1    Backhed, F.2
  • 15
    • 84879369738 scopus 로고    scopus 로고
    • Commensal bacteria at the interface of host metabolism and the immune system
    • Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14:676-684.
    • (2013) Nat. Immunol. , vol.14 , pp. 676-684
    • Brestoff, J.R.1    Artis, D.2
  • 16
    • 79551577263 scopus 로고    scopus 로고
    • Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes
    • Musso G., et al. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 2011, 62:361-380.
    • (2011) Annu. Rev. Med. , vol.62 , pp. 361-380
    • Musso, G.1
  • 17
    • 79955606197 scopus 로고    scopus 로고
    • Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma
    • quiz 1108-1099
    • McLoughlin R.M., Mills K.H. Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. J. Allergy Clin. Immunol. 2011, 127:1097-1107. quiz 1108-1099.
    • (2011) J. Allergy Clin. Immunol. , vol.127 , pp. 1097-1107
    • McLoughlin, R.M.1    Mills, K.H.2
  • 18
    • 84867192879 scopus 로고    scopus 로고
    • Intestinal inflammation targets cancer-inducing activity of the microbiota
    • Arthur J.C., et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338:120-123.
    • (2012) Science , vol.338 , pp. 120-123
    • Arthur, J.C.1
  • 19
    • 58149289691 scopus 로고    scopus 로고
    • Histone H1 and its isoforms: contribution to chromatin structure and function
    • Happel N., Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2009, 431:1-12.
    • (2009) Gene , vol.431 , pp. 1-12
    • Happel, N.1    Doenecke, D.2
  • 20
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997, 389:349-352.
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 21
    • 84860371953 scopus 로고    scopus 로고
    • Epigenetic protein families: a new frontier for drug discovery
    • Arrowsmith C.H., et al. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 2012, 11:384-400.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 384-400
    • Arrowsmith, C.H.1
  • 22
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein T., Allis C.D. Translating the histone code. Science 2001, 293:1074-1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 23
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature 2000, 403:41-45.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 24
    • 84902544789 scopus 로고    scopus 로고
    • Epigenetic regulation of asthma and allergic disease
    • Begin P., Nadeau K.C. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin. Immunol. 2014, 10:27.
    • (2014) Allergy Asthma Clin. Immunol. , vol.10 , pp. 27
    • Begin, P.1    Nadeau, K.C.2
  • 25
    • 84855956247 scopus 로고    scopus 로고
    • Epigenetics and the environment: emerging patterns and implications
    • Feil R., Fraga M.F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 2011, 13:97-109.
    • (2011) Nat. Rev. Genet. , vol.13 , pp. 97-109
    • Feil, R.1    Fraga, M.F.2
  • 26
    • 73649107635 scopus 로고    scopus 로고
    • Epigenetics: molecular mechanisms and implications for disease
    • Handel A.E., et al. Epigenetics: molecular mechanisms and implications for disease. Trends Mol. Med. 2010, 16:7-16.
    • (2010) Trends Mol. Med. , vol.16 , pp. 7-16
    • Handel, A.E.1
  • 27
    • 84861980130 scopus 로고    scopus 로고
    • Interactions between the microbiota and the immune system
    • Hooper L.V., et al. Interactions between the microbiota and the immune system. Science 2012, 336:1268-1273.
    • (2012) Science , vol.336 , pp. 1268-1273
    • Hooper, L.V.1
  • 28
    • 44349132270 scopus 로고    scopus 로고
    • Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut
    • Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 2008, 8:411-420.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 411-420
    • Artis, D.1
  • 29
    • 84862862332 scopus 로고    scopus 로고
    • Epithelial antimicrobial defence of the skin and intestine
    • Gallo R.L., Hooper L.V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 2012, 12:503-516.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 503-516
    • Gallo, R.L.1    Hooper, L.V.2
  • 30
    • 77957586284 scopus 로고    scopus 로고
    • Intestinal epithelial cells in inflammatory bowel diseases
    • Roda G., et al. Intestinal epithelial cells in inflammatory bowel diseases. World J. Gastroenterol. 2010, 16:4264-4271.
    • (2010) World J. Gastroenterol. , vol.16 , pp. 4264-4271
    • Roda, G.1
  • 31
    • 33846794688 scopus 로고    scopus 로고
    • Epithelia: lymphocyte interactions in the gut
    • Dahan S., et al. Epithelia: lymphocyte interactions in the gut. Immunol. Rev. 2007, 215:243-253.
    • (2007) Immunol. Rev. , vol.215 , pp. 243-253
    • Dahan, S.1
  • 32
    • 80054944901 scopus 로고    scopus 로고
    • Role of the commensal microbiota in normal and pathogenic host immune responses
    • Littman D.R., Pamer E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 2011, 10:311-323.
    • (2011) Cell Host Microbe , vol.10 , pp. 311-323
    • Littman, D.R.1    Pamer, E.G.2
  • 33
    • 84896064402 scopus 로고    scopus 로고
    • Gut microbiota promote hematopoiesis to control bacterial infection
    • Khosravi A., et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014, 15:374-381.
    • (2014) Cell Host Microbe , vol.15 , pp. 374-381
    • Khosravi, A.1
  • 34
    • 84874691463 scopus 로고    scopus 로고
    • Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity
    • Dimitriu P.A., et al. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Env. Microbiol. Rep. 2013, 5:200-210.
    • (2013) Env. Microbiol. Rep. , vol.5 , pp. 200-210
    • Dimitriu, P.A.1
  • 35
    • 84874500082 scopus 로고    scopus 로고
    • Epigenetics and bacterial infections
    • Bierne H., et al. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2012, 2:a010272.
    • (2012) Cold Spring Harb. Perspect. Med. , vol.2 , pp. a010272
    • Bierne, H.1
  • 36
    • 3242664636 scopus 로고    scopus 로고
    • Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
    • Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
    • (2004) Cell , vol.118 , pp. 229-241
    • Rakoff-Nahoum, S.1
  • 37
    • 80053922802 scopus 로고    scopus 로고
    • Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells
    • Takahashi K., et al. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J. Biol. Chem. 2011, 286:35755-35762.
    • (2011) J. Biol. Chem. , vol.286 , pp. 35755-35762
    • Takahashi, K.1
  • 38
    • 84860216630 scopus 로고    scopus 로고
    • Microbial exposure during early life has persistent effects on natural killer T cell function
    • Olszak T., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012, 336:489-493.
    • (2012) Science , vol.336 , pp. 489-493
    • Olszak, T.1
  • 39
    • 84901065053 scopus 로고    scopus 로고
    • The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells
    • Obata Y., et al. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat. Immunol. 2014, 15:571-579.
    • (2014) Nat. Immunol. , vol.15 , pp. 571-579
    • Obata, Y.1
  • 40
    • 84864322646 scopus 로고    scopus 로고
    • Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
    • Ganal S.C., et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012, 37:171-186.
    • (2012) Immunity , vol.37 , pp. 171-186
    • Ganal, S.C.1
  • 41
    • 0035313698 scopus 로고    scopus 로고
    • HATs on and beyond chromatin
    • Chen H., et al. HATs on and beyond chromatin. Curr. Opin. Cell Biol. 2001, 13:218-224.
    • (2001) Curr. Opin. Cell Biol. , vol.13 , pp. 218-224
    • Chen, H.1
  • 42
    • 0033519641 scopus 로고    scopus 로고
    • Structure and ligand of a histone acetyltransferase bromodomain
    • Dhalluin C., et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999, 399:491-496.
    • (1999) Nature , vol.399 , pp. 491-496
    • Dhalluin, C.1
  • 43
    • 0034669210 scopus 로고    scopus 로고
    • The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p
    • Owen D.J., et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 2000, 19:6141-6149.
    • (2000) EMBO J. , vol.19 , pp. 6141-6149
    • Owen, D.J.1
  • 44
    • 0036211013 scopus 로고    scopus 로고
    • Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics
    • Eberharter A., Becker P.B. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 2002, 3:224-229.
    • (2002) EMBO Rep. , vol.3 , pp. 224-229
    • Eberharter, A.1    Becker, P.B.2
  • 45
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: implications for disease and therapy
    • Haberland M., et al. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009, 10:32-42.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 32-42
    • Haberland, M.1
  • 46
    • 33745203038 scopus 로고    scopus 로고
    • The biochemistry of sirtuins
    • Sauve A.A., et al. The biochemistry of sirtuins. Annu. Rev. Biochem. 2006, 75:435-465.
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 435-465
    • Sauve, A.A.1
  • 47
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1
  • 48
    • 77954832705 scopus 로고    scopus 로고
    • The interaction between nuclear receptor corepressor and histone deacetylase 3 regulates both positive and negative thyroid hormone action in vivo
    • You S.H., et al. The interaction between nuclear receptor corepressor and histone deacetylase 3 regulates both positive and negative thyroid hormone action in vivo. Mol. Endocrinol. 2010, 24:1359-1367.
    • (2010) Mol. Endocrinol. , vol.24 , pp. 1359-1367
    • You, S.H.1
  • 49
    • 84891073800 scopus 로고    scopus 로고
    • Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor
    • Sun Z., et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol. Cell 2013, 52:769-782.
    • (2013) Mol. Cell , vol.52 , pp. 769-782
    • Sun, Z.1
  • 50
    • 84862060628 scopus 로고    scopus 로고
    • Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression
    • Donohoe D.R., Bultman S.J. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J. Cell. Physiol. 2012, 227:3169-3177.
    • (2012) J. Cell. Physiol. , vol.227 , pp. 3169-3177
    • Donohoe, D.R.1    Bultman, S.J.2
  • 51
    • 21744435965 scopus 로고    scopus 로고
    • Controlling nuclear receptors: the circular logic of cofactor cycles
    • Perissi V., Rosenfeld M.G. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat. Rev. Mol. Cell Biol. 2005, 6:542-554.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 542-554
    • Perissi, V.1    Rosenfeld, M.G.2
  • 52
    • 78349260122 scopus 로고    scopus 로고
    • Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery
    • Kim G.W., et al. Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int. J. Cell Biol. 2010, 2010. 10.1155/2010/632739.
    • (2010) Int. J. Cell Biol. , vol.2010
    • Kim, G.W.1
  • 53
    • 34548456881 scopus 로고    scopus 로고
    • Dietary histone deacetylase inhibitors: from cells to mice to man
    • Dashwood R.H., Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin. Cancer Biol. 2007, 17:363-369.
    • (2007) Semin. Cancer Biol. , vol.17 , pp. 363-369
    • Dashwood, R.H.1    Ho, E.2
  • 54
    • 84867652835 scopus 로고    scopus 로고
    • Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages
    • Chen X., et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2865-E2874.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2865-E2874
    • Chen, X.1
  • 55
    • 33744956666 scopus 로고    scopus 로고
    • Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer
    • Wilson A.J., et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 2006, 281:13548-13558.
    • (2006) J. Biol. Chem. , vol.281 , pp. 13548-13558
    • Wilson, A.J.1
  • 56
    • 1842557733 scopus 로고    scopus 로고
    • Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases
    • Tou L., et al. Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol. Cell. Biol. 2004, 24:3132-3139.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3132-3139
    • Tou, L.1
  • 57
    • 84889565117 scopus 로고    scopus 로고
    • Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis
    • Alenghat T., et al. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature 2013, 504:153-157.
    • (2013) Nature , vol.504 , pp. 153-157
    • Alenghat, T.1
  • 58
    • 84864799993 scopus 로고    scopus 로고
    • IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis
    • Kobayashi T., et al. IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis. J. Immunol. 2012, 189:1792-1799.
    • (2012) J. Immunol. , vol.189 , pp. 1792-1799
    • Kobayashi, T.1
  • 59
    • 84883493995 scopus 로고    scopus 로고
    • HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation
    • Turgeon N., et al. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS ONE 2013, 8:e73785.
    • (2013) PLoS ONE , vol.8
    • Turgeon, N.1
  • 60
    • 84900564655 scopus 로고    scopus 로고
    • The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis
    • Turgeon N., et al. The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306:G594-G605.
    • (2014) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.306 , pp. G594-G605
    • Turgeon, N.1
  • 61
    • 0023276469 scopus 로고
    • Short chain fatty acids in human large intestine, portal, hepatic and venous blood
    • Cummings J.H., et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28:1221-1227.
    • (1987) Gut , vol.28 , pp. 1221-1227
    • Cummings, J.H.1
  • 62
    • 80054980812 scopus 로고    scopus 로고
    • Regulation of inflammation by short chain fatty acids
    • Vinolo M.A., et al. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3:858-876.
    • (2011) Nutrients , vol.3 , pp. 858-876
    • Vinolo, M.A.1
  • 63
    • 0037509909 scopus 로고    scopus 로고
    • Regulation of short-chain fatty acid production
    • Macfarlane S., Macfarlane G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62:67-72.
    • (2003) Proc. Nutr. Soc. , vol.62 , pp. 67-72
    • Macfarlane, S.1    Macfarlane, G.T.2
  • 64
    • 70350666634 scopus 로고    scopus 로고
    • Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
    • Maslowski K.M., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461:1282-1286.
    • (2009) Nature , vol.461 , pp. 1282-1286
    • Maslowski, K.M.1
  • 65
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
    • Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
    • (2013) Science , vol.341 , pp. 569-573
    • Smith, P.M.1
  • 66
    • 84880620577 scopus 로고    scopus 로고
    • Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice
    • Kim M.H., et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013, 145:396-406.
    • (2013) Gastroenterology , vol.145 , pp. 396-406
    • Kim, M.H.1
  • 67
    • 84893704050 scopus 로고    scopus 로고
    • Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
    • Trompette A., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20:159-166.
    • (2014) Nat. Med. , vol.20 , pp. 159-166
    • Trompette, A.1
  • 68
    • 84893859801 scopus 로고    scopus 로고
    • The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
    • Chang P.V., et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:2247-2252.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 2247-2252
    • Chang, P.V.1
  • 69
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1
  • 70
    • 84890564250 scopus 로고    scopus 로고
    • Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
    • Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
    • (2013) Nature , vol.504 , pp. 446-450
    • Furusawa, Y.1
  • 71
    • 0022977676 scopus 로고
    • Short-chain fatty acids in germfree mice and rats
    • Hoverstad T., Midtvedt T. Short-chain fatty acids in germfree mice and rats. J. Nutr. 1986, 116:1772-1776.
    • (1986) J. Nutr. , vol.116 , pp. 1772-1776
    • Hoverstad, T.1    Midtvedt, T.2
  • 72
    • 79251584066 scopus 로고    scopus 로고
    • Bifidobacteria can protect from enteropathogenic infection through production of acetate
    • Fukuda S., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469:543-547.
    • (2011) Nature , vol.469 , pp. 543-547
    • Fukuda, S.1
  • 73
    • 85027947787 scopus 로고    scopus 로고
    • Induction of colonic regulatory T cells by indigenous Clostridium species
    • Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
    • (2011) Science , vol.331 , pp. 337-341
    • Atarashi, K.1
  • 74
    • 0017886958 scopus 로고
    • Sodium butyrate inhibits histone deacetylation in cultured cells
    • Candido E.P., et al. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978, 14:105-113.
    • (1978) Cell , vol.14 , pp. 105-113
    • Candido, E.P.1
  • 75
    • 48649087037 scopus 로고    scopus 로고
    • Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon
    • Waldecker M., et al. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 2008, 19:587-593.
    • (2008) J. Nutr. Biochem. , vol.19 , pp. 587-593
    • Waldecker, M.1
  • 76
    • 75449114277 scopus 로고    scopus 로고
    • Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice
    • de Zoeten E.F., et al. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 2010, 138:583-594.
    • (2010) Gastroenterology , vol.138 , pp. 583-594
    • de Zoeten, E.F.1
  • 77
    • 35948980739 scopus 로고    scopus 로고
    • Deacetylase inhibition promotes the generation and function of regulatory T cells
    • Tao R., et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 2007, 13:1299-1307.
    • (2007) Nat. Med. , vol.13 , pp. 1299-1307
    • Tao, R.1
  • 78
    • 42549114401 scopus 로고    scopus 로고
    • Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice
    • Glauben R., et al. Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice. Gut 2008, 57:613-622.
    • (2008) Gut , vol.57 , pp. 613-622
    • Glauben, R.1
  • 79
    • 84862881397 scopus 로고    scopus 로고
    • Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms
    • Beier U.H., et al. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci. Signal. 2012, 5:ra45.
    • (2012) Sci. Signal. , vol.5 , pp. ra45
    • Beier, U.H.1
  • 80
    • 79251554670 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection
    • Roger T., et al. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 2011, 117:1205-1217.
    • (2011) Blood , vol.117 , pp. 1205-1217
    • Roger, T.1
  • 81
    • 84899856633 scopus 로고    scopus 로고
    • Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1
    • Jeong Y., et al. Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1. J. Leukoc. Biol. 2014, 95:651-659.
    • (2014) J. Leukoc. Biol. , vol.95 , pp. 651-659
    • Jeong, Y.1
  • 82
    • 77951602823 scopus 로고    scopus 로고
    • Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells
    • Glass C.K., Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 2010, 10:365-376.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 365-376
    • Glass, C.K.1    Saijo, K.2
  • 83
    • 84871261032 scopus 로고    scopus 로고
    • Butyrate increases IL-23 production by stimulated dendritic cells
    • Berndt B.E., et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303:G1384-G1392.
    • (2012) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.303 , pp. G1384-G1392
    • Berndt, B.E.1
  • 84
    • 77955472405 scopus 로고    scopus 로고
    • Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission
    • Hamer H.M., et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin. Nutr. 2010, 29:738-744.
    • (2010) Clin. Nutr. , vol.29 , pp. 738-744
    • Hamer, H.M.1
  • 85
    • 84874688283 scopus 로고    scopus 로고
    • Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells
    • Diehl G.E., et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013, 494:116-120.
    • (2013) Nature , vol.494 , pp. 116-120
    • Diehl, G.E.1
  • 86
    • 0036843980 scopus 로고    scopus 로고
    • Short-chain fatty acid enemas fail to decrease colonic hypersensitivity and inflammation in TNBS-induced colonic inflammation in rats
    • Tarrerias A.L., et al. Short-chain fatty acid enemas fail to decrease colonic hypersensitivity and inflammation in TNBS-induced colonic inflammation in rats. Pain 2002, 100:91-97.
    • (2002) Pain , vol.100 , pp. 91-97
    • Tarrerias, A.L.1
  • 87
    • 78649391422 scopus 로고    scopus 로고
    • Cellular metabolic stress: considering how cells respond to nutrient excess
    • Wellen K.E., Thompson C.B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 2010, 40:323-332.
    • (2010) Mol. Cell , vol.40 , pp. 323-332
    • Wellen, K.E.1    Thompson, C.B.2
  • 88
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 89
    • 84863898161 scopus 로고    scopus 로고
    • Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice
    • Simon G.M., et al. Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11133-11138.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11133-11138
    • Simon, G.M.1
  • 90
    • 33750496904 scopus 로고    scopus 로고
    • Targeting histone deacetylases for the treatment of cancer and inflammatory diseases
    • Huang L. Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J. Cell. Physiol. 2006, 209:611-616.
    • (2006) J. Cell. Physiol. , vol.209 , pp. 611-616
    • Huang, L.1
  • 91
    • 84908265816 scopus 로고    scopus 로고
    • Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders
    • Falkenberg K.J., Johnstone R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13:673-691.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 673-691
    • Falkenberg, K.J.1    Johnstone, R.W.2
  • 92
    • 84874410182 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents
    • Ververis K., et al. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013, 7:47-60.
    • (2013) Biologics , vol.7 , pp. 47-60
    • Ververis, K.1
  • 93
    • 79251588726 scopus 로고    scopus 로고
    • HDAC inhibitors block innate immunity
    • Bode K.A., Dalpke A.H. HDAC inhibitors block innate immunity. Blood 2011, 117:1102-1103.
    • (2011) Blood , vol.117 , pp. 1102-1103
    • Bode, K.A.1    Dalpke, A.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.