-
1
-
-
79952929840
-
Gene-environment interactions in chronic inflammatory disease
-
Renz H., et al. Gene-environment interactions in chronic inflammatory disease. Nat. Immunol. 2011, 12:273-277.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 273-277
-
-
Renz, H.1
-
2
-
-
84857437426
-
Minireview: epigenetics of obesity and diabetes in humans
-
Slomko H., et al. Minireview: epigenetics of obesity and diabetes in humans. Endocrinology 2012, 153:1025-1030.
-
(2012)
Endocrinology
, vol.153
, pp. 1025-1030
-
-
Slomko, H.1
-
3
-
-
80053030747
-
Allergic asthma: influence of genetic and environmental factors
-
Mukherjee A.B., Zhang Z. Allergic asthma: influence of genetic and environmental factors. J. Biol. Chem. 2011, 286:32883-32889.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 32883-32889
-
-
Mukherjee, A.B.1
Zhang, Z.2
-
4
-
-
33847381116
-
The fundamental basis of inflammatory bowel disease
-
Strober W., et al. The fundamental basis of inflammatory bowel disease. J. Clin. Invest. 2007, 117:514-521.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 514-521
-
-
Strober, W.1
-
5
-
-
79959201412
-
Human nutrition, the gut microbiome and the immune system
-
Kau A.L., et al. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474:327-336.
-
(2011)
Nature
, vol.474
, pp. 327-336
-
-
Kau, A.L.1
-
6
-
-
77952316009
-
Inflammatory bowel disease
-
Kaser A., et al. Inflammatory bowel disease. Annu. Rev. Immunol. 2010, 28:573-621.
-
(2010)
Annu. Rev. Immunol.
, vol.28
, pp. 573-621
-
-
Kaser, A.1
-
7
-
-
84867658789
-
Intestinal commensal microbes as immune modulators
-
Ivanov I.I., Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012, 12:496-508.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 496-508
-
-
Ivanov, I.I.1
Honda, K.2
-
8
-
-
77953904042
-
Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine
-
Cadwell K., et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 2010, 141:1135-1145.
-
(2010)
Cell
, vol.141
, pp. 1135-1145
-
-
Cadwell, K.1
-
9
-
-
84876913132
-
Role of the gut microbiota in immunity and inflammatory disease
-
Kamada N., et al. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13:321-335.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 321-335
-
-
Kamada, N.1
-
10
-
-
84905716750
-
Blowing on embers: commensal microbiota and our immune system
-
Spasova D.S., Surh C.D. Blowing on embers: commensal microbiota and our immune system. Front. Immunol. 2014, 5:318.
-
(2014)
Front. Immunol.
, vol.5
, pp. 318
-
-
Spasova, D.S.1
Surh, C.D.2
-
11
-
-
77952318832
-
Intestinal bacteria and the regulation of immune cell homeostasis
-
Hill D.A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 2010, 28:623-667.
-
(2010)
Annu. Rev. Immunol.
, vol.28
, pp. 623-667
-
-
Hill, D.A.1
Artis, D.2
-
12
-
-
70049099845
-
Immune responses to the microbiota at the intestinal mucosal surface
-
Duerkop B.A., et al. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009, 31:368-376.
-
(2009)
Immunity
, vol.31
, pp. 368-376
-
-
Duerkop, B.A.1
-
13
-
-
84921367265
-
Modulation of immune development and function by intestinal microbiota
-
Kabat A.M., et al. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 2014, 10.1016/j.it.2014.07.010.
-
(2014)
Trends Immunol.
-
-
Kabat, A.M.1
-
14
-
-
84866168894
-
Functional interactions between the gut microbiota and host metabolism
-
Tremaroli V., Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489:242-249.
-
(2012)
Nature
, vol.489
, pp. 242-249
-
-
Tremaroli, V.1
Backhed, F.2
-
15
-
-
84879369738
-
Commensal bacteria at the interface of host metabolism and the immune system
-
Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14:676-684.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 676-684
-
-
Brestoff, J.R.1
Artis, D.2
-
16
-
-
79551577263
-
Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes
-
Musso G., et al. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 2011, 62:361-380.
-
(2011)
Annu. Rev. Med.
, vol.62
, pp. 361-380
-
-
Musso, G.1
-
17
-
-
79955606197
-
Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma
-
quiz 1108-1099
-
McLoughlin R.M., Mills K.H. Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. J. Allergy Clin. Immunol. 2011, 127:1097-1107. quiz 1108-1099.
-
(2011)
J. Allergy Clin. Immunol.
, vol.127
, pp. 1097-1107
-
-
McLoughlin, R.M.1
Mills, K.H.2
-
18
-
-
84867192879
-
Intestinal inflammation targets cancer-inducing activity of the microbiota
-
Arthur J.C., et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338:120-123.
-
(2012)
Science
, vol.338
, pp. 120-123
-
-
Arthur, J.C.1
-
19
-
-
58149289691
-
Histone H1 and its isoforms: contribution to chromatin structure and function
-
Happel N., Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2009, 431:1-12.
-
(2009)
Gene
, vol.431
, pp. 1-12
-
-
Happel, N.1
Doenecke, D.2
-
20
-
-
0030798245
-
Histone acetylation in chromatin structure and transcription
-
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997, 389:349-352.
-
(1997)
Nature
, vol.389
, pp. 349-352
-
-
Grunstein, M.1
-
21
-
-
84860371953
-
Epigenetic protein families: a new frontier for drug discovery
-
Arrowsmith C.H., et al. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 2012, 11:384-400.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 384-400
-
-
Arrowsmith, C.H.1
-
22
-
-
0035839136
-
Translating the histone code
-
Jenuwein T., Allis C.D. Translating the histone code. Science 2001, 293:1074-1080.
-
(2001)
Science
, vol.293
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
23
-
-
0034610814
-
The language of covalent histone modifications
-
Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature 2000, 403:41-45.
-
(2000)
Nature
, vol.403
, pp. 41-45
-
-
Strahl, B.D.1
Allis, C.D.2
-
24
-
-
84902544789
-
Epigenetic regulation of asthma and allergic disease
-
Begin P., Nadeau K.C. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin. Immunol. 2014, 10:27.
-
(2014)
Allergy Asthma Clin. Immunol.
, vol.10
, pp. 27
-
-
Begin, P.1
Nadeau, K.C.2
-
25
-
-
84855956247
-
Epigenetics and the environment: emerging patterns and implications
-
Feil R., Fraga M.F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 2011, 13:97-109.
-
(2011)
Nat. Rev. Genet.
, vol.13
, pp. 97-109
-
-
Feil, R.1
Fraga, M.F.2
-
26
-
-
73649107635
-
Epigenetics: molecular mechanisms and implications for disease
-
Handel A.E., et al. Epigenetics: molecular mechanisms and implications for disease. Trends Mol. Med. 2010, 16:7-16.
-
(2010)
Trends Mol. Med.
, vol.16
, pp. 7-16
-
-
Handel, A.E.1
-
27
-
-
84861980130
-
Interactions between the microbiota and the immune system
-
Hooper L.V., et al. Interactions between the microbiota and the immune system. Science 2012, 336:1268-1273.
-
(2012)
Science
, vol.336
, pp. 1268-1273
-
-
Hooper, L.V.1
-
28
-
-
44349132270
-
Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut
-
Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 2008, 8:411-420.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 411-420
-
-
Artis, D.1
-
29
-
-
84862862332
-
Epithelial antimicrobial defence of the skin and intestine
-
Gallo R.L., Hooper L.V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 2012, 12:503-516.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 503-516
-
-
Gallo, R.L.1
Hooper, L.V.2
-
30
-
-
77957586284
-
Intestinal epithelial cells in inflammatory bowel diseases
-
Roda G., et al. Intestinal epithelial cells in inflammatory bowel diseases. World J. Gastroenterol. 2010, 16:4264-4271.
-
(2010)
World J. Gastroenterol.
, vol.16
, pp. 4264-4271
-
-
Roda, G.1
-
31
-
-
33846794688
-
Epithelia: lymphocyte interactions in the gut
-
Dahan S., et al. Epithelia: lymphocyte interactions in the gut. Immunol. Rev. 2007, 215:243-253.
-
(2007)
Immunol. Rev.
, vol.215
, pp. 243-253
-
-
Dahan, S.1
-
32
-
-
80054944901
-
Role of the commensal microbiota in normal and pathogenic host immune responses
-
Littman D.R., Pamer E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 2011, 10:311-323.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 311-323
-
-
Littman, D.R.1
Pamer, E.G.2
-
33
-
-
84896064402
-
Gut microbiota promote hematopoiesis to control bacterial infection
-
Khosravi A., et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014, 15:374-381.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 374-381
-
-
Khosravi, A.1
-
34
-
-
84874691463
-
Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity
-
Dimitriu P.A., et al. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Env. Microbiol. Rep. 2013, 5:200-210.
-
(2013)
Env. Microbiol. Rep.
, vol.5
, pp. 200-210
-
-
Dimitriu, P.A.1
-
35
-
-
84874500082
-
Epigenetics and bacterial infections
-
Bierne H., et al. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2012, 2:a010272.
-
(2012)
Cold Spring Harb. Perspect. Med.
, vol.2
, pp. a010272
-
-
Bierne, H.1
-
36
-
-
3242664636
-
Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
-
Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
-
(2004)
Cell
, vol.118
, pp. 229-241
-
-
Rakoff-Nahoum, S.1
-
37
-
-
80053922802
-
Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells
-
Takahashi K., et al. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J. Biol. Chem. 2011, 286:35755-35762.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 35755-35762
-
-
Takahashi, K.1
-
38
-
-
84860216630
-
Microbial exposure during early life has persistent effects on natural killer T cell function
-
Olszak T., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012, 336:489-493.
-
(2012)
Science
, vol.336
, pp. 489-493
-
-
Olszak, T.1
-
39
-
-
84901065053
-
The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells
-
Obata Y., et al. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat. Immunol. 2014, 15:571-579.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 571-579
-
-
Obata, Y.1
-
40
-
-
84864322646
-
Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
-
Ganal S.C., et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012, 37:171-186.
-
(2012)
Immunity
, vol.37
, pp. 171-186
-
-
Ganal, S.C.1
-
41
-
-
0035313698
-
HATs on and beyond chromatin
-
Chen H., et al. HATs on and beyond chromatin. Curr. Opin. Cell Biol. 2001, 13:218-224.
-
(2001)
Curr. Opin. Cell Biol.
, vol.13
, pp. 218-224
-
-
Chen, H.1
-
42
-
-
0033519641
-
Structure and ligand of a histone acetyltransferase bromodomain
-
Dhalluin C., et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999, 399:491-496.
-
(1999)
Nature
, vol.399
, pp. 491-496
-
-
Dhalluin, C.1
-
43
-
-
0034669210
-
The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p
-
Owen D.J., et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 2000, 19:6141-6149.
-
(2000)
EMBO J.
, vol.19
, pp. 6141-6149
-
-
Owen, D.J.1
-
44
-
-
0036211013
-
Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics
-
Eberharter A., Becker P.B. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 2002, 3:224-229.
-
(2002)
EMBO Rep.
, vol.3
, pp. 224-229
-
-
Eberharter, A.1
Becker, P.B.2
-
45
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: implications for disease and therapy
-
Haberland M., et al. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009, 10:32-42.
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 32-42
-
-
Haberland, M.1
-
46
-
-
33745203038
-
The biochemistry of sirtuins
-
Sauve A.A., et al. The biochemistry of sirtuins. Annu. Rev. Biochem. 2006, 75:435-465.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 435-465
-
-
Sauve, A.A.1
-
47
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
-
48
-
-
77954832705
-
The interaction between nuclear receptor corepressor and histone deacetylase 3 regulates both positive and negative thyroid hormone action in vivo
-
You S.H., et al. The interaction between nuclear receptor corepressor and histone deacetylase 3 regulates both positive and negative thyroid hormone action in vivo. Mol. Endocrinol. 2010, 24:1359-1367.
-
(2010)
Mol. Endocrinol.
, vol.24
, pp. 1359-1367
-
-
You, S.H.1
-
49
-
-
84891073800
-
Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor
-
Sun Z., et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol. Cell 2013, 52:769-782.
-
(2013)
Mol. Cell
, vol.52
, pp. 769-782
-
-
Sun, Z.1
-
50
-
-
84862060628
-
Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression
-
Donohoe D.R., Bultman S.J. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J. Cell. Physiol. 2012, 227:3169-3177.
-
(2012)
J. Cell. Physiol.
, vol.227
, pp. 3169-3177
-
-
Donohoe, D.R.1
Bultman, S.J.2
-
51
-
-
21744435965
-
Controlling nuclear receptors: the circular logic of cofactor cycles
-
Perissi V., Rosenfeld M.G. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat. Rev. Mol. Cell Biol. 2005, 6:542-554.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 542-554
-
-
Perissi, V.1
Rosenfeld, M.G.2
-
52
-
-
78349260122
-
Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery
-
Kim G.W., et al. Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int. J. Cell Biol. 2010, 2010. 10.1155/2010/632739.
-
(2010)
Int. J. Cell Biol.
, vol.2010
-
-
Kim, G.W.1
-
53
-
-
34548456881
-
Dietary histone deacetylase inhibitors: from cells to mice to man
-
Dashwood R.H., Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin. Cancer Biol. 2007, 17:363-369.
-
(2007)
Semin. Cancer Biol.
, vol.17
, pp. 363-369
-
-
Dashwood, R.H.1
Ho, E.2
-
54
-
-
84867652835
-
Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages
-
Chen X., et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2865-E2874.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E2865-E2874
-
-
Chen, X.1
-
55
-
-
33744956666
-
Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer
-
Wilson A.J., et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 2006, 281:13548-13558.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 13548-13558
-
-
Wilson, A.J.1
-
56
-
-
1842557733
-
Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases
-
Tou L., et al. Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol. Cell. Biol. 2004, 24:3132-3139.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3132-3139
-
-
Tou, L.1
-
57
-
-
84889565117
-
Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis
-
Alenghat T., et al. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature 2013, 504:153-157.
-
(2013)
Nature
, vol.504
, pp. 153-157
-
-
Alenghat, T.1
-
58
-
-
84864799993
-
IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis
-
Kobayashi T., et al. IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis. J. Immunol. 2012, 189:1792-1799.
-
(2012)
J. Immunol.
, vol.189
, pp. 1792-1799
-
-
Kobayashi, T.1
-
59
-
-
84883493995
-
HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation
-
Turgeon N., et al. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS ONE 2013, 8:e73785.
-
(2013)
PLoS ONE
, vol.8
-
-
Turgeon, N.1
-
60
-
-
84900564655
-
The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis
-
Turgeon N., et al. The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306:G594-G605.
-
(2014)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.306
, pp. G594-G605
-
-
Turgeon, N.1
-
61
-
-
0023276469
-
Short chain fatty acids in human large intestine, portal, hepatic and venous blood
-
Cummings J.H., et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28:1221-1227.
-
(1987)
Gut
, vol.28
, pp. 1221-1227
-
-
Cummings, J.H.1
-
62
-
-
80054980812
-
Regulation of inflammation by short chain fatty acids
-
Vinolo M.A., et al. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3:858-876.
-
(2011)
Nutrients
, vol.3
, pp. 858-876
-
-
Vinolo, M.A.1
-
63
-
-
0037509909
-
Regulation of short-chain fatty acid production
-
Macfarlane S., Macfarlane G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62:67-72.
-
(2003)
Proc. Nutr. Soc.
, vol.62
, pp. 67-72
-
-
Macfarlane, S.1
Macfarlane, G.T.2
-
64
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
Maslowski K.M., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461:1282-1286.
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
-
65
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
-
66
-
-
84880620577
-
Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice
-
Kim M.H., et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013, 145:396-406.
-
(2013)
Gastroenterology
, vol.145
, pp. 396-406
-
-
Kim, M.H.1
-
67
-
-
84893704050
-
Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
-
Trompette A., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20:159-166.
-
(2014)
Nat. Med.
, vol.20
, pp. 159-166
-
-
Trompette, A.1
-
68
-
-
84893859801
-
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
-
Chang P.V., et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:2247-2252.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 2247-2252
-
-
Chang, P.V.1
-
69
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
-
70
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
-
71
-
-
0022977676
-
Short-chain fatty acids in germfree mice and rats
-
Hoverstad T., Midtvedt T. Short-chain fatty acids in germfree mice and rats. J. Nutr. 1986, 116:1772-1776.
-
(1986)
J. Nutr.
, vol.116
, pp. 1772-1776
-
-
Hoverstad, T.1
Midtvedt, T.2
-
72
-
-
79251584066
-
Bifidobacteria can protect from enteropathogenic infection through production of acetate
-
Fukuda S., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469:543-547.
-
(2011)
Nature
, vol.469
, pp. 543-547
-
-
Fukuda, S.1
-
73
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
-
74
-
-
0017886958
-
Sodium butyrate inhibits histone deacetylation in cultured cells
-
Candido E.P., et al. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978, 14:105-113.
-
(1978)
Cell
, vol.14
, pp. 105-113
-
-
Candido, E.P.1
-
75
-
-
48649087037
-
Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon
-
Waldecker M., et al. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 2008, 19:587-593.
-
(2008)
J. Nutr. Biochem.
, vol.19
, pp. 587-593
-
-
Waldecker, M.1
-
76
-
-
75449114277
-
Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice
-
de Zoeten E.F., et al. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 2010, 138:583-594.
-
(2010)
Gastroenterology
, vol.138
, pp. 583-594
-
-
de Zoeten, E.F.1
-
77
-
-
35948980739
-
Deacetylase inhibition promotes the generation and function of regulatory T cells
-
Tao R., et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 2007, 13:1299-1307.
-
(2007)
Nat. Med.
, vol.13
, pp. 1299-1307
-
-
Tao, R.1
-
78
-
-
42549114401
-
Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice
-
Glauben R., et al. Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice. Gut 2008, 57:613-622.
-
(2008)
Gut
, vol.57
, pp. 613-622
-
-
Glauben, R.1
-
79
-
-
84862881397
-
Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms
-
Beier U.H., et al. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci. Signal. 2012, 5:ra45.
-
(2012)
Sci. Signal.
, vol.5
, pp. ra45
-
-
Beier, U.H.1
-
80
-
-
79251554670
-
Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection
-
Roger T., et al. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 2011, 117:1205-1217.
-
(2011)
Blood
, vol.117
, pp. 1205-1217
-
-
Roger, T.1
-
81
-
-
84899856633
-
Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1
-
Jeong Y., et al. Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1. J. Leukoc. Biol. 2014, 95:651-659.
-
(2014)
J. Leukoc. Biol.
, vol.95
, pp. 651-659
-
-
Jeong, Y.1
-
82
-
-
77951602823
-
Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells
-
Glass C.K., Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 2010, 10:365-376.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 365-376
-
-
Glass, C.K.1
Saijo, K.2
-
83
-
-
84871261032
-
Butyrate increases IL-23 production by stimulated dendritic cells
-
Berndt B.E., et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303:G1384-G1392.
-
(2012)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.303
, pp. G1384-G1392
-
-
Berndt, B.E.1
-
84
-
-
77955472405
-
Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission
-
Hamer H.M., et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin. Nutr. 2010, 29:738-744.
-
(2010)
Clin. Nutr.
, vol.29
, pp. 738-744
-
-
Hamer, H.M.1
-
85
-
-
84874688283
-
Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells
-
Diehl G.E., et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 2013, 494:116-120.
-
(2013)
Nature
, vol.494
, pp. 116-120
-
-
Diehl, G.E.1
-
86
-
-
0036843980
-
Short-chain fatty acid enemas fail to decrease colonic hypersensitivity and inflammation in TNBS-induced colonic inflammation in rats
-
Tarrerias A.L., et al. Short-chain fatty acid enemas fail to decrease colonic hypersensitivity and inflammation in TNBS-induced colonic inflammation in rats. Pain 2002, 100:91-97.
-
(2002)
Pain
, vol.100
, pp. 91-97
-
-
Tarrerias, A.L.1
-
87
-
-
78649391422
-
Cellular metabolic stress: considering how cells respond to nutrient excess
-
Wellen K.E., Thompson C.B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 2010, 40:323-332.
-
(2010)
Mol. Cell
, vol.40
, pp. 323-332
-
-
Wellen, K.E.1
Thompson, C.B.2
-
88
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
-
89
-
-
84863898161
-
Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice
-
Simon G.M., et al. Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11133-11138.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11133-11138
-
-
Simon, G.M.1
-
90
-
-
33750496904
-
Targeting histone deacetylases for the treatment of cancer and inflammatory diseases
-
Huang L. Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J. Cell. Physiol. 2006, 209:611-616.
-
(2006)
J. Cell. Physiol.
, vol.209
, pp. 611-616
-
-
Huang, L.1
-
91
-
-
84908265816
-
Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders
-
Falkenberg K.J., Johnstone R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13:673-691.
-
(2014)
Nat. Rev. Drug Discov.
, vol.13
, pp. 673-691
-
-
Falkenberg, K.J.1
Johnstone, R.W.2
-
92
-
-
84874410182
-
Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents
-
Ververis K., et al. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013, 7:47-60.
-
(2013)
Biologics
, vol.7
, pp. 47-60
-
-
Ververis, K.1
-
93
-
-
79251588726
-
HDAC inhibitors block innate immunity
-
Bode K.A., Dalpke A.H. HDAC inhibitors block innate immunity. Blood 2011, 117:1102-1103.
-
(2011)
Blood
, vol.117
, pp. 1102-1103
-
-
Bode, K.A.1
Dalpke, A.H.2
|