메뉴 건너뛰기




Volumn 53, Issue , 2015, Pages 277-290

Stable feature selection for clinical prediction: Exploiting ICD tree structure using Tree-Lasso

Author keywords

Classification; Feature selection; Feature stability; Lasso; Tree Lasso

Indexed keywords

CLASSIFICATION (OF INFORMATION); CODES (SYMBOLS); DECISION MAKING; DECISION TREES; DIAGNOSIS; FORECASTING; FORESTRY; LOGISTIC REGRESSION; MEDICAL COMPUTING; MEDICAL PROBLEMS; PATIENT TREATMENT; PREDICTIVE ANALYTICS; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 84924499646     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2014.11.013     Document Type: Article
Times cited : (87)

References (60)
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 84885461724 scopus 로고    scopus 로고
    • Predicting readmission or death after acute st-elevation myocardial infarction
    • Brown J.R., Conley S.M., Niles N.W. Predicting readmission or death after acute st-elevation myocardial infarction. Clin Cardiol 2013, 36:570-575.
    • (2013) Clin Cardiol , vol.36 , pp. 570-575
    • Brown, J.R.1    Conley, S.M.2    Niles, N.W.3
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998, 2:121-167.
    • (1998) Data Min Knowl Discov , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 9
    • 77949528026 scopus 로고    scopus 로고
    • Statistical models and patient predictors of readmission for acute myocardial infarction a systematic review
    • Desai M.M., Stauffer B.D., Feringa H.H., Schreiner G.C. Statistical models and patient predictors of readmission for acute myocardial infarction a systematic review. Circ Cardiovasc Qual Out 2009, 2:500-507.
    • (2009) Circ Cardiovasc Qual Out , vol.2 , pp. 500-507
    • Desai, M.M.1    Stauffer, B.D.2    Feringa, H.H.3    Schreiner, G.C.4
  • 16
    • 84897484693 scopus 로고    scopus 로고
    • Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
    • Gupta S., Tran T., Luo W., Phung D., Kennedy R.L., Broad A., et al. Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry. BMJ Open 2014, 4:e004007.
    • (2014) BMJ Open , vol.4 , pp. e004007
    • Gupta, S.1    Tran, T.2    Luo, W.3    Phung, D.4    Kennedy, R.L.5    Broad, A.6
  • 17
    • 84880225245 scopus 로고    scopus 로고
    • A bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources
    • SIAM
    • Gupta S.K., Phung D.Q., Venkatesh S. A bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources. SDM 2012, 200-211. SIAM.
    • (2012) SDM , pp. 200-211
    • Gupta, S.K.1    Phung, D.Q.2    Venkatesh, S.3
  • 18
    • 0021135218 scopus 로고
    • Regression modelling strategies for improved prognostic prediction
    • Harrell F.E., Lee K.L., Califf R.M., Pryor D.B., Rosati R.A. Regression modelling strategies for improved prognostic prediction. Stat Med 1984, 3:143-152.
    • (1984) Stat Med , vol.3 , pp. 143-152
    • Harrell, F.E.1    Lee, K.L.2    Califf, R.M.3    Pryor, D.B.4    Rosati, R.A.5
  • 19
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference and prediction
    • Hastie T., Tibshirani R., Friedman J., Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005, 27:83-85.
    • (2005) Math Intell , vol.27 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 21
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: towards better research applications and clinical care
    • Jensen P.B., Jensen L.J., Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012, 13:395-405.
    • (2012) Nat Rev Genet , vol.13 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 22
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: a study on high-dimensional spaces
    • Kalousis A., Prados J., Hilario M. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inform Syst 2007, 12:95-116.
    • (2007) Knowl Inform Syst , vol.12 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 26
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the myopia of inductive learning algorithms with relieff
    • Kononenko I., Šimec E., Robnik-Šikonja M. Overcoming the myopia of inductive learning algorithms with relieff. Appl Intell 1997, 7:39-55.
    • (1997) Appl Intell , vol.7 , pp. 39-55
    • Kononenko, I.1    Šimec, E.2    Robnik-Šikonja, M.3
  • 28
    • 0034883964 scopus 로고    scopus 로고
    • Predicting one-year mortality among elderly survivors of hospitalization for an acute myocardial infarction: results from the cooperative cardiovascular project
    • Krumholz H.M., Chen J., Chen Y.T., Wang Y., Radford M.J. Predicting one-year mortality among elderly survivors of hospitalization for an acute myocardial infarction: results from the cooperative cardiovascular project. J Am College Cardiol 2001, 38:453-459.
    • (2001) J Am College Cardiol , vol.38 , pp. 453-459
    • Krumholz, H.M.1    Chen, J.2    Chen, Y.T.3    Wang, Y.4    Radford, M.J.5
  • 30
    • 84886390071 scopus 로고    scopus 로고
    • Prognostic factors in patients with advanced cancer: a comparison of clinicopathological factors and the development of an inflammation-based prognostic system
    • Laird B.J., Kaasa S., McMillan D.C., Fallon M.T., Hjermstad M.J., Fayers P., et al. Prognostic factors in patients with advanced cancer: a comparison of clinicopathological factors and the development of an inflammation-based prognostic system. Clin Cancer Res 2013, 19:5456-5464.
    • (2013) Clin Cancer Res , vol.19 , pp. 5456-5464
    • Laird, B.J.1    Kaasa, S.2    McMillan, D.C.3    Fallon, M.T.4    Hjermstad, M.J.5    Fayers, P.6
  • 32
    • 85161968806 scopus 로고    scopus 로고
    • Moreau-yosida regularization for grouped tree structure learning
    • Liu J, Ye J. Moreau-yosida regularization for grouped tree structure learning. In: Advances in neural information processing systems; 2010. p. 1459-67.
    • (2010) Advances in neural information processing systems , pp. 1459-1467
    • Liu, J.1    Ye, J.2
  • 34
    • 84859375391 scopus 로고    scopus 로고
    • Prospective comparison of prognostic scores in palliative care cancer populations
    • Maltoni M., Scarpi E., Pittureri C., Martini F., Montanari L., Amaducci E., et al. Prospective comparison of prognostic scores in palliative care cancer populations. Oncologist 2012, 17:446-454.
    • (2012) Oncologist , vol.17 , pp. 446-454
    • Maltoni, M.1    Scarpi, E.2    Pittureri, C.3    Martini, F.4    Montanari, L.5    Amaducci, E.6
  • 36
    • 84881232017 scopus 로고    scopus 로고
    • Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies
    • Pfeiffer R.M., Park Y., Kreimer A.R., Lacey Jr J.V., Pee D., Greenlee R.T., et al. Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies. PLoS Med 2013, 10:e1001492.
    • (2013) PLoS Med , vol.10 , pp. e1001492
    • Pfeiffer, R.M.1    Park, Y.2    Kreimer, A.R.3    Lacey Jr, J.V.4    Pee, D.5    Greenlee, R.T.6
  • 37
    • 59349088021 scopus 로고    scopus 로고
    • Perspectives for medical informatics
    • Prokosch H.U., Ganslandt T. Perspectives for medical informatics. Methods Inf Med 2009, 48:38-44.
    • (2009) Methods Inf Med , vol.48 , pp. 38-44
    • Prokosch, H.U.1    Ganslandt, T.2
  • 38
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach Learn 1986, 1:81-106.
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 40
    • 84878017967 scopus 로고    scopus 로고
    • A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record
    • Ramchandran K.J., Shega J.W., Von Roenn J., Schumacher M., Szmuilowicz E., Rademaker A., et al. A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record. Cancer 2013, 119:2074-2080.
    • (2013) Cancer , vol.119 , pp. 2074-2080
    • Ramchandran, K.J.1    Shega, J.W.2    Von Roenn, J.3    Schumacher, M.4    Szmuilowicz, E.5    Rademaker, A.6
  • 41
    • 84906839061 scopus 로고    scopus 로고
    • Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data
    • Rana S., Tran T., Luo W., Phung D., Kennedy R., Venkatesh S. Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data. Aust Health Rev 2014.
    • (2014) Aust Health Rev
    • Rana, S.1    Tran, T.2    Luo, W.3    Phung, D.4    Kennedy, R.5    Venkatesh, S.6
  • 43
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole-brain classification of FMRI data
    • Ryali S., Supekar K., Abrams D.A., Menon V. Sparse logistic regression for whole-brain classification of FMRI data. NeuroImage 2010, 51:752-764.
    • (2010) NeuroImage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menon, V.4
  • 44
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 45
    • 84860899269 scopus 로고    scopus 로고
    • The partitioned lasso-patternsearch algorithm with application to gene expression data
    • Shi W., Wahba G., Irizarry R., Bravo H., Wright S. The partitioned lasso-patternsearch algorithm with application to gene expression data. BMC Bioinformatics 2012, 13:98.
    • (2012) BMC Bioinformatics , vol.13 , pp. 98
    • Shi, W.1    Wahba, G.2    Irizarry, R.3    Bravo, H.4    Wright, S.5
  • 47
    • 0022786756 scopus 로고
    • Probabilistic prediction in patient management and clinical trials
    • Spiegelhalter D.J. Probabilistic prediction in patient management and clinical trials. Stat Med 1986, 5:421-433.
    • (1986) Stat Med , vol.5 , pp. 421-433
    • Spiegelhalter, D.J.1
  • 48
    • 77954116981 scopus 로고    scopus 로고
    • Artificial intelligence: a modern approach
    • Prentice Hall, [1995]
    • Stuart Russell P.N. Artificial intelligence: a modern approach. 2nd ed 2003, Prentice Hall, [1995].
    • (2003) 2nd ed
    • Stuart Russell, P.N.1
  • 49
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B (Methodol) 1996, 267-288.
    • (1996) J Roy Stat Soc Ser B (Methodol) , pp. 267-288
    • Tibshirani, R.1
  • 53
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
    • Wu J., Roy J., Stewart W.F. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care 2010, 48:S106-S113.
    • (2010) Med Care , vol.48 , pp. S106-S113
    • Wu, J.1    Roy, J.2    Stewart, W.F.3
  • 54
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • Wu T.T., Chen Y.F., Hastie T., Sobel E., Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 2009, 25:714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.4    Lange, K.5
  • 55
    • 77955106017 scopus 로고    scopus 로고
    • A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network
    • You Z.H., Yin Z., Han K., Huang D.S., Zhou X. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinformatics 2010, 11:343.
    • (2010) BMC Bioinformatics , vol.11 , pp. 343
    • You, Z.H.1    Yin, Z.2    Han, K.3    Huang, D.S.4    Zhou, X.5
  • 56
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J Roy Stat Soc Ser B (Stat Methodol) 2006, 68:49-67.
    • (2006) J Roy Stat Soc Ser B (Stat Methodol) , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 57
    • 80655127682 scopus 로고    scopus 로고
    • Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer&quest
    • Yuhara H., Steinmaus C., Cohen S.E., Corley D.A., Tei Y., Buffler P.A. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer&quest. Am J Gastroenterol 2011, 106:1911-1921.
    • (2011) Am J Gastroenterol , vol.106 , pp. 1911-1921
    • Yuhara, H.1    Steinmaus, C.2    Cohen, S.E.3    Corley, D.A.4    Tei, Y.5    Buffler, P.A.6
  • 58
    • 80052891202 scopus 로고    scopus 로고
    • Combining pubmed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction
    • Zhao D., Weng C. Combining pubmed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction. J Biomed Inform 2011, 44:859-868.
    • (2011) J Biomed Inform , vol.44 , pp. 859-868
    • Zhao, D.1    Weng, C.2
  • 59
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao P., Yu B. On model selection consistency of lasso. J Mach Learn Res 2006, 7:2541-2563.
    • (2006) J Mach Learn Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 60
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J Roy Stat Soc Ser B (Stat Methodol) 2005, 67:301-320.
    • (2005) J Roy Stat Soc Ser B (Stat Methodol) , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.