-
3
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001, 45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
84885461724
-
Predicting readmission or death after acute st-elevation myocardial infarction
-
Brown J.R., Conley S.M., Niles N.W. Predicting readmission or death after acute st-elevation myocardial infarction. Clin Cardiol 2013, 36:570-575.
-
(2013)
Clin Cardiol
, vol.36
, pp. 570-575
-
-
Brown, J.R.1
Conley, S.M.2
Niles, N.W.3
-
6
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998, 2:121-167.
-
(1998)
Data Min Knowl Discov
, vol.2
, pp. 121-167
-
-
Burges, C.J.1
-
9
-
-
77949528026
-
Statistical models and patient predictors of readmission for acute myocardial infarction a systematic review
-
Desai M.M., Stauffer B.D., Feringa H.H., Schreiner G.C. Statistical models and patient predictors of readmission for acute myocardial infarction a systematic review. Circ Cardiovasc Qual Out 2009, 2:500-507.
-
(2009)
Circ Cardiovasc Qual Out
, vol.2
, pp. 500-507
-
-
Desai, M.M.1
Stauffer, B.D.2
Feringa, H.H.3
Schreiner, G.C.4
-
10
-
-
0003922190
-
-
John Wiley, New York, Section 10, l
-
Duda R.O., Hart P.E., Stork D.G. Pattern Classification 2001, John Wiley, New York, Section 10, l.
-
(2001)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
11
-
-
84863661882
-
Thirty-day rehospitalizations after acute myocardial infraction: a cohort study
-
Dunlay S.M., Weston S.A., Killian J.M., Bell M.R., Jaffe A.S., Roger V.L. Thirty-day rehospitalizations after acute myocardial infraction: a cohort study. Ann Internal Med 2012, 157:11-18.
-
(2012)
Ann Internal Med
, vol.157
, pp. 11-18
-
-
Dunlay, S.M.1
Weston, S.A.2
Killian, J.M.3
Bell, M.R.4
Jaffe, A.S.5
Roger, V.L.6
-
13
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman J., Hastie T., Höfling H., Tibshirani R. Pathwise coordinate optimization. Ann Appl Stat 2007, 1:302-332.
-
(2007)
Ann Appl Stat
, vol.1
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
14
-
-
84857379892
-
-
Grady JN, Bhat KR, Desai MM, Grosso L, Lin Z, Parzynski C, Strait K, Wang Y. 2012 measures maintenance technical report: acute myocardial infarction, heart failure, and pneumonia 30-day risk-standardized readmission measure; 2012.
-
(2012)
2012 measures maintenance technical report: acute myocardial infarction, heart failure, and pneumonia 30-day risk-standardized readmission measure
-
-
Grady, J.N.1
Bhat, K.R.2
Desai, M.M.3
Grosso, L.4
Lin, Z.5
Parzynski, C.6
Strait, K.7
Wang, Y.8
-
16
-
-
84897484693
-
Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
-
Gupta S., Tran T., Luo W., Phung D., Kennedy R.L., Broad A., et al. Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry. BMJ Open 2014, 4:e004007.
-
(2014)
BMJ Open
, vol.4
, pp. e004007
-
-
Gupta, S.1
Tran, T.2
Luo, W.3
Phung, D.4
Kennedy, R.L.5
Broad, A.6
-
17
-
-
84880225245
-
A bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources
-
SIAM
-
Gupta S.K., Phung D.Q., Venkatesh S. A bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources. SDM 2012, 200-211. SIAM.
-
(2012)
SDM
, pp. 200-211
-
-
Gupta, S.K.1
Phung, D.Q.2
Venkatesh, S.3
-
18
-
-
0021135218
-
Regression modelling strategies for improved prognostic prediction
-
Harrell F.E., Lee K.L., Califf R.M., Pryor D.B., Rosati R.A. Regression modelling strategies for improved prognostic prediction. Stat Med 1984, 3:143-152.
-
(1984)
Stat Med
, vol.3
, pp. 143-152
-
-
Harrell, F.E.1
Lee, K.L.2
Califf, R.M.3
Pryor, D.B.4
Rosati, R.A.5
-
19
-
-
85161148381
-
The elements of statistical learning: data mining, inference and prediction
-
Hastie T., Tibshirani R., Friedman J., Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005, 27:83-85.
-
(2005)
Math Intell
, vol.27
, pp. 83-85
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Franklin, J.4
-
21
-
-
84861235431
-
Mining electronic health records: towards better research applications and clinical care
-
Jensen P.B., Jensen L.J., Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012, 13:395-405.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
22
-
-
34248647608
-
Stability of feature selection algorithms: a study on high-dimensional spaces
-
Kalousis A., Prados J., Hilario M. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inform Syst 2007, 12:95-116.
-
(2007)
Knowl Inform Syst
, vol.12
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
26
-
-
0030735972
-
Overcoming the myopia of inductive learning algorithms with relieff
-
Kononenko I., Šimec E., Robnik-Šikonja M. Overcoming the myopia of inductive learning algorithms with relieff. Appl Intell 1997, 7:39-55.
-
(1997)
Appl Intell
, vol.7
, pp. 39-55
-
-
Kononenko, I.1
Šimec, E.2
Robnik-Šikonja, M.3
-
28
-
-
0034883964
-
Predicting one-year mortality among elderly survivors of hospitalization for an acute myocardial infarction: results from the cooperative cardiovascular project
-
Krumholz H.M., Chen J., Chen Y.T., Wang Y., Radford M.J. Predicting one-year mortality among elderly survivors of hospitalization for an acute myocardial infarction: results from the cooperative cardiovascular project. J Am College Cardiol 2001, 38:453-459.
-
(2001)
J Am College Cardiol
, vol.38
, pp. 453-459
-
-
Krumholz, H.M.1
Chen, J.2
Chen, Y.T.3
Wang, Y.4
Radford, M.J.5
-
30
-
-
84886390071
-
Prognostic factors in patients with advanced cancer: a comparison of clinicopathological factors and the development of an inflammation-based prognostic system
-
Laird B.J., Kaasa S., McMillan D.C., Fallon M.T., Hjermstad M.J., Fayers P., et al. Prognostic factors in patients with advanced cancer: a comparison of clinicopathological factors and the development of an inflammation-based prognostic system. Clin Cancer Res 2013, 19:5456-5464.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 5456-5464
-
-
Laird, B.J.1
Kaasa, S.2
McMillan, D.C.3
Fallon, M.T.4
Hjermstad, M.J.5
Fayers, P.6
-
34
-
-
84859375391
-
Prospective comparison of prognostic scores in palliative care cancer populations
-
Maltoni M., Scarpi E., Pittureri C., Martini F., Montanari L., Amaducci E., et al. Prospective comparison of prognostic scores in palliative care cancer populations. Oncologist 2012, 17:446-454.
-
(2012)
Oncologist
, vol.17
, pp. 446-454
-
-
Maltoni, M.1
Scarpi, E.2
Pittureri, C.3
Martini, F.4
Montanari, L.5
Amaducci, E.6
-
36
-
-
84881232017
-
Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies
-
Pfeiffer R.M., Park Y., Kreimer A.R., Lacey Jr J.V., Pee D., Greenlee R.T., et al. Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies. PLoS Med 2013, 10:e1001492.
-
(2013)
PLoS Med
, vol.10
, pp. e1001492
-
-
Pfeiffer, R.M.1
Park, Y.2
Kreimer, A.R.3
Lacey Jr, J.V.4
Pee, D.5
Greenlee, R.T.6
-
37
-
-
59349088021
-
Perspectives for medical informatics
-
Prokosch H.U., Ganslandt T. Perspectives for medical informatics. Methods Inf Med 2009, 48:38-44.
-
(2009)
Methods Inf Med
, vol.48
, pp. 38-44
-
-
Prokosch, H.U.1
Ganslandt, T.2
-
38
-
-
33744584654
-
Induction of decision trees
-
Quinlan J.R. Induction of decision trees. Mach Learn 1986, 1:81-106.
-
(1986)
Mach Learn
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
40
-
-
84878017967
-
A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record
-
Ramchandran K.J., Shega J.W., Von Roenn J., Schumacher M., Szmuilowicz E., Rademaker A., et al. A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record. Cancer 2013, 119:2074-2080.
-
(2013)
Cancer
, vol.119
, pp. 2074-2080
-
-
Ramchandran, K.J.1
Shega, J.W.2
Von Roenn, J.3
Schumacher, M.4
Szmuilowicz, E.5
Rademaker, A.6
-
41
-
-
84906839061
-
Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data
-
Rana S., Tran T., Luo W., Phung D., Kennedy R., Venkatesh S. Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data. Aust Health Rev 2014.
-
(2014)
Aust Health Rev
-
-
Rana, S.1
Tran, T.2
Luo, W.3
Phung, D.4
Kennedy, R.5
Venkatesh, S.6
-
43
-
-
77951976541
-
Sparse logistic regression for whole-brain classification of FMRI data
-
Ryali S., Supekar K., Abrams D.A., Menon V. Sparse logistic regression for whole-brain classification of FMRI data. NeuroImage 2010, 51:752-764.
-
(2010)
NeuroImage
, vol.51
, pp. 752-764
-
-
Ryali, S.1
Supekar, K.2
Abrams, D.A.3
Menon, V.4
-
44
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y., Inza I., Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
45
-
-
84860899269
-
The partitioned lasso-patternsearch algorithm with application to gene expression data
-
Shi W., Wahba G., Irizarry R., Bravo H., Wright S. The partitioned lasso-patternsearch algorithm with application to gene expression data. BMC Bioinformatics 2012, 13:98.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 98
-
-
Shi, W.1
Wahba, G.2
Irizarry, R.3
Bravo, H.4
Wright, S.5
-
47
-
-
0022786756
-
Probabilistic prediction in patient management and clinical trials
-
Spiegelhalter D.J. Probabilistic prediction in patient management and clinical trials. Stat Med 1986, 5:421-433.
-
(1986)
Stat Med
, vol.5
, pp. 421-433
-
-
Spiegelhalter, D.J.1
-
48
-
-
77954116981
-
Artificial intelligence: a modern approach
-
Prentice Hall, [1995]
-
Stuart Russell P.N. Artificial intelligence: a modern approach. 2nd ed 2003, Prentice Hall, [1995].
-
(2003)
2nd ed
-
-
Stuart Russell, P.N.1
-
49
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B (Methodol) 1996, 267-288.
-
(1996)
J Roy Stat Soc Ser B (Methodol)
, pp. 267-288
-
-
Tibshirani, R.1
-
53
-
-
77953635924
-
Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
-
Wu J., Roy J., Stewart W.F. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care 2010, 48:S106-S113.
-
(2010)
Med Care
, vol.48
, pp. S106-S113
-
-
Wu, J.1
Roy, J.2
Stewart, W.F.3
-
54
-
-
62549115747
-
Genome-wide association analysis by lasso penalized logistic regression
-
Wu T.T., Chen Y.F., Hastie T., Sobel E., Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 2009, 25:714-721.
-
(2009)
Bioinformatics
, vol.25
, pp. 714-721
-
-
Wu, T.T.1
Chen, Y.F.2
Hastie, T.3
Sobel, E.4
Lange, K.5
-
55
-
-
77955106017
-
A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network
-
You Z.H., Yin Z., Han K., Huang D.S., Zhou X. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinformatics 2010, 11:343.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 343
-
-
You, Z.H.1
Yin, Z.2
Han, K.3
Huang, D.S.4
Zhou, X.5
-
56
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J Roy Stat Soc Ser B (Stat Methodol) 2006, 68:49-67.
-
(2006)
J Roy Stat Soc Ser B (Stat Methodol)
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
57
-
-
80655127682
-
Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer&quest
-
Yuhara H., Steinmaus C., Cohen S.E., Corley D.A., Tei Y., Buffler P.A. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer&quest. Am J Gastroenterol 2011, 106:1911-1921.
-
(2011)
Am J Gastroenterol
, vol.106
, pp. 1911-1921
-
-
Yuhara, H.1
Steinmaus, C.2
Cohen, S.E.3
Corley, D.A.4
Tei, Y.5
Buffler, P.A.6
-
58
-
-
80052891202
-
Combining pubmed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction
-
Zhao D., Weng C. Combining pubmed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction. J Biomed Inform 2011, 44:859-868.
-
(2011)
J Biomed Inform
, vol.44
, pp. 859-868
-
-
Zhao, D.1
Weng, C.2
-
59
-
-
33845263263
-
On model selection consistency of lasso
-
Zhao P., Yu B. On model selection consistency of lasso. J Mach Learn Res 2006, 7:2541-2563.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
60
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H., Hastie T. Regularization and variable selection via the elastic net. J Roy Stat Soc Ser B (Stat Methodol) 2005, 67:301-320.
-
(2005)
J Roy Stat Soc Ser B (Stat Methodol)
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|