-
1
-
-
85162037342
-
Learning multiple tasks using manifold regularization
-
Agarwal, A., Daumé III, H., and Gerber, S. Learning multiple tasks using manifold regularization. Advances in neural information processing systems, 23:46-54, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 46-54
-
-
Agarwal, A.1
Daumé III, H.2
Gerber, S.3
-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
Ando, R.K. and Zhang, T. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6: 1817-1853, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
3
-
-
55149088329
-
Convex multi-task feature learning
-
Argyriou, A., Evgeniou, T., and Pontil, M. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
5
-
-
56049124852
-
An improved multi-task learning approach with applications in medical diagnosis
-
Bi, J., Xiong, T., Yu, S., Dundar, M., and Rao, R. An improved multi-task learning approach with applications in medical diagnosis. Machine Learning and Knowledge Discovery in Databases, pp. 117-132, 2008.
-
(2008)
Machine Learning and Knowledge Discovery in Databases
, pp. 117-132
-
-
Bi, J.1
Xiong, T.2
Yu, S.3
Dundar, M.4
Rao, R.5
-
7
-
-
0031189914
-
Multitask Learning
-
Caruana, R. Multitask learning. Machine Learning, 28(1): 41-75, 1997. (Pubitemid 127507169)
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
8
-
-
4043061882
-
Variational bayesian model selection for mixture distributions
-
Morgan Kaufmann Waltham, MA
-
Corduneanu, A. and Bishop, C.M. Variational bayesian model selection for mixture distributions. In Artificial intelligence and Statistics, volume 2001, pp. 27-34. Morgan Kaufmann Waltham, MA, 2001.
-
(2001)
Artificial Intelligence and Statistics
, vol.2001
, pp. 27-34
-
-
Corduneanu, A.1
Bishop, C.M.2
-
10
-
-
0001120413
-
A Bayesian analysis of some nonparametric problems
-
Ferguson, T.S. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):209-230, 1973.
-
(1973)
The Annals of Statistics
, vol.1
, Issue.2
, pp. 209-230
-
-
Ferguson, T.S.1
-
11
-
-
0000324169
-
Adaptive rejection sampling for gibbs sampling
-
Gilks, Walter R and Wild, Pascal. Adaptive rejection sampling for gibbs sampling. Applied Statistics, pp. 337-348, 1992.
-
(1992)
Applied Statistics
, pp. 337-348
-
-
Gilks, W.R.1
Wild, P.2
-
12
-
-
0003860037
-
-
Chapman & Hall/CRC
-
Gilks, W.R., Richardson, S., and Spiegelhalter, D. Markov Chain Monte Carlo in practice: interdisciplinary statistics, volume 2. Chapman & Hall/CRC, 1995.
-
(1995)
Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics
, vol.2
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.3
-
13
-
-
79957932816
-
A Bayesian framework for learning shared and individual subspaces from multiple data sources
-
Gupta, S.K., Phung, D., Adams, B., and Venkatesh, S. A Bayesian framework for learning shared and individual subspaces from multiple data sources. In Advances in Knowledge Discovery and Data Mining, 15th Pacific-Asia Conference, pp. 136-147, 2011.
-
(2011)
Advances in Knowledge Discovery and Data Mining, 15th Pacific-Asia Conference
, pp. 136-147
-
-
Gupta, S.K.1
Phung, D.2
Adams, B.3
Venkatesh, S.4
-
14
-
-
84880225245
-
A Bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources
-
Gupta, S.K., Phung, D., and Venkatesh, S. A Bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources. In Proceedings of 12th SIAM International Conference on Data Mining, pp. 200-211, 2012a.
-
(2012)
Proceedings of 12th SIAM International Conference on Data Mining
, pp. 200-211
-
-
Gupta, S.K.1
Phung, D.2
Venkatesh, S.3
-
15
-
-
84885614833
-
A slice sampler for restricted hierarchical beta process with applications to shared subspace learning
-
Gupta, S.K., Phung, D., and Venkatesh, S. A slice sampler for restricted hierarchical beta process with applications to shared subspace learning. In Proc. of 28th Uncertainty in Artificial Intelligence (UAI), pp. 316-325, 2012b.
-
(2012)
Proc. of 28th Uncertainty in Artificial Intelligence (UAI)
, pp. 316-325
-
-
Gupta, S.K.1
Phung, D.2
Venkatesh, S.3
-
16
-
-
84872397219
-
Regularized nonnegative shared subspace learning
-
Gupta, S.K., Phung, D., Adams, B., and Venkatesh, S. Regularized nonnegative shared subspace learning. Data Mining and Knowledge Discovery, 26(1):57-97, 2013.
-
(2013)
Data Mining and Knowledge Discovery
, vol.26
, Issue.1
, pp. 57-97
-
-
Gupta, S.K.1
Phung, D.2
Adams, B.3
Venkatesh, S.4
-
17
-
-
80053435765
-
Learning with whom to share in multi-task feature learning
-
Kang, Z., Grauman, K., and Sha, F. Learning with whom to share in multi-task feature learning. In Proceedings of the 28th International Conference on Machine Learning, pp. 521-528, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning
, pp. 521-528
-
-
Kang, Z.1
Grauman, K.2
Sha, F.3
-
20
-
-
84867135619
-
Flexible modeling of latent task structures in multitask learning
-
Passos, A., Rai, P., Wainer, J., and Daume III, H. Flexible modeling of latent task structures in multitask learning. In International Conference on Machine Learning (ICML), 2012.
-
International Conference on Machine Learning (ICML), 2012
-
-
Passos, A.1
Rai, P.2
Wainer, J.3
Daume III, H.4
-
22
-
-
34547973978
-
To transfer or not to transfer
-
Rosenstein, M.T., Marx, Z., Kaelbling, L.P., and Dietterich, T.G. To transfer or not to transfer. In NIPS Workshop on Inductive Transfer, volume 10, 2005.
-
(2005)
NIPS Workshop on Inductive Transfer
, vol.10
-
-
Rosenstein, M.T.1
Marx, Z.2
Kaelbling, L.P.3
Dietterich, T.G.4
-
23
-
-
0000720609
-
A constructive definition of Dirichlet priors
-
Sethuraman, J. A constructive definition of Dirichlet priors. Statistics Sinica, 4(2):639-650, 1994.
-
(1994)
Statistics Sinica
, vol.4
, Issue.2
, pp. 639-650
-
-
Sethuraman, J.1
-
24
-
-
33749249312
-
Hierarchical Dirichlet processes
-
Teh, Y.W., Jordan, M.I., Beal, M.J., and Blei, D.M. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566-1581, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.476
, pp. 1566-1581
-
-
Teh, Y.W.1
Jordan, M.I.2
Beal, M.J.3
Blei, D.M.4
-
25
-
-
84857251974
-
Stick-breaking construction for the Indian buffet process
-
Teh, Y.W., Görür, D., and Ghahramani, Z. Stick-breaking construction for the Indian buffet process. Journal of Machine Learning Research - Proceedings Track, 2:556-563, 2007.
-
(2007)
Journal of Machine Learning Research - Proceedings Track
, vol.2
, pp. 556-563
-
-
Teh, Y.W.1
Görür, D.2
Ghahramani, Z.3
-
27
-
-
70450188142
-
Boosted multi-task learning for face verification with applications to web image and video search
-
IEEE
-
Wang, X., Zhang, C., and Zhang, Z. Boosted multi-task learning for face verification with applications to web image and video search. In CVPR 2009. IEEE Conference on, pp. 142-149. IEEE, 2009.
-
(2009)
CVPR 2009. IEEE Conference on
, pp. 142-149
-
-
Wang, X.1
Zhang, C.2
Zhang, Z.3
-
28
-
-
33846487387
-
Multi-task learning for classification with Dirichlet process priors
-
Xue, Y., Liao, X., Carin, L., and Krishnapuram, B. Multi-task learning for classification with Dirichlet process priors. The Journal of Machine Learning Research, 8:35-63, 2007. (Pubitemid 46155123)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 35-63
-
-
Ya, X.1
Xuejun, L.2
Carin, L.3
Krishnapuram, B.4
|