메뉴 건너뛰기




Volumn , Issue , 2012, Pages 200-211

A bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS;

EID: 84880225245     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972825.18     Document Type: Conference Paper
Times cited : (20)

References (24)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R.K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817-1853, 2005.
    • (2005) The Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 12
    • 79957932816 scopus 로고    scopus 로고
    • A Bayesian framework for learning shared and individual subspaces from multiple data sources
    • 15th Pacific-Asia Conference
    • S.K. Gupta, D. Phung, B. Adams, and S. Venkatesh. A Bayesian framework for learning shared and individual subspaces from multiple data sources. In Advances in Knowledge Discovery and Data Mining, 15th Pacific-Asia Conference, 2011.
    • (2011) Advances in Knowledge Discovery and Data Mining
    • Gupta, S.K.1    Phung, D.2    Adams, B.3    Venkatesh, S.4
  • 13
    • 0001241617 scopus 로고
    • Nonparametric Bayes estimators based on beta processes in models for life history data
    • N.L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. The Annals of Statistics, 18(3):1259-1294, 1990.
    • (1990) The Annals of Statistics , vol.18 , Issue.3 , pp. 1259-1294
    • Hjort, N.L.1
  • 14
    • 84880192670 scopus 로고    scopus 로고
    • Factorized latent spaces with structured sparsity
    • University of California, Berkeley, Tech. Rep. UCB/EECS-2010-99
    • Y. Jia, M. Salzmann, and T. Darrell. Factorized latent spaces with structured sparsity. Technical Report, EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2010-99, 2010.
    • (2010) Technical Report, EECS Department
    • Jia, Y.1    Salzmann, M.2    Darrell, T.3
  • 15
    • 0033471036 scopus 로고    scopus 로고
    • Nonparametric Bayesian estimators for counting processes
    • Y. Kim. Nonparametric Bayesian estimators for counting processes. The Annals of Statistics, 27(2):562-588, 1999.
    • (1999) The Annals of Statistics , vol.27 , Issue.2 , pp. 562-588
    • Kim, Y.1
  • 24
    • 40849149090 scopus 로고    scopus 로고
    • Harmonium models for semantic video representation and classification
    • J. Yang, Y. Liu, E.X. Ping, and A.G. Hauptmann. Harmonium models for semantic video representation and classification. SIAM Conf. on Data Mining, pages 1-12, 2007.
    • (2007) SIAM Conf. on Data Mining , pp. 1-12
    • Yang, J.1    Liu, Y.2    Ping, E.X.3    Hauptmann, A.G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.