-
1
-
-
14344265818
-
-
A. Appice, M. Ceci, S. Rawles, and P. Flach. Redundant feature elimination for multi-class problems. In Proceedings of the 21st International Conference on Machine learning, pages 33{40, 2004.
-
A. Appice, M. Ceci, S. Rawles, and P. Flach. Redundant feature elimination for multi-class problems. In Proceedings of the 21st International Conference on Machine learning, pages 33{40, 2004.
-
-
-
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-142, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
7
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:1289-1305, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
8
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, P. Tamayo, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
9
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
10
-
-
35048840898
-
Ensemble feature ranking
-
K. Jong, J. Mary, A. Cornuejols, E. Marchiori, and M. Sebag. Ensemble feature ranking. In Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, pages 267-278, 2004.
-
(2004)
Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases
, pp. 267-278
-
-
Jong, K.1
Mary, J.2
Cornuejols, A.3
Marchiori, E.4
Sebag, M.5
-
11
-
-
34248647608
-
Stability of feature selection algorithms: A study on high-dimensional spaces
-
A. Kalousis, J. Prados, and M. Hilario. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowledge and Information Systems, 12:95-116, 2007.
-
(2007)
Knowledge and Information Systems
, vol.12
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
13
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
14
-
-
7244248755
-
A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
-
T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20:2429-2437, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2429-2437
-
-
Li, T.1
Zhang, C.2
Ogihara, M.3
-
15
-
-
0038021028
-
A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
-
H. Liu, J. Li, and L. Wong. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics, 13:51-60, 2002.
-
(2002)
Genome Informatics
, vol.13
, pp. 51-60
-
-
Liu, H.1
Li, J.2
Wong, L.3
-
16
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491-502, 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
18
-
-
0013161560
-
On feature selection: Learning with exponentially many irrelevant features as training examples
-
A. Y. Ng. On feature selection: learning with exponentially many irrelevant features as training examples. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 404-412, 1998.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 404-412
-
-
Ng, A.Y.1
-
19
-
-
0035908491
-
Phases of biomarker development for early detection of cancer
-
M. S. Pepe, R. Etzioni, Z. Feng, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst, 93:1054-1060, 2001.
-
(2001)
J Natl Cancer Inst
, vol.93
, pp. 1054-1060
-
-
Pepe, M.S.1
Etzioni, R.2
Feng, Z.3
-
20
-
-
0037116832
-
Use of proteomic patterns in serum to identify ovarian cancer
-
E. F. Petricoin, A. M. Ardekani, B. A. Hitt, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359:572-577, 2002.
-
(2002)
Lancet
, vol.359
, pp. 572-577
-
-
Petricoin, E.F.1
Ardekani, A.M.2
Hitt, B.A.3
-
21
-
-
56049119676
-
Robust feature selection using ensemble feature selection techniques
-
Y. Saeys, T. Abeel, and Y. V. Peer. Robust feature selection using ensemble feature selection techniques. In Proceedings of the ECML Confernce, pages 313-325, 2008.
-
(2008)
Proceedings of the ECML Confernce
, pp. 313-325
-
-
Saeys, Y.1
Abeel, T.2
Peer, Y.V.3
-
22
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. In Proceedings of the 24th International Conference on Machine Learning, pages 823-830, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 823-830
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
Bedo, J.5
-
23
-
-
0041965980
-
Cluster ensembles - a knowledge reuse framework for combining multiple partitions
-
A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
27
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5:1205-1224, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
|