메뉴 건너뛰기




Volumn 5, Issue 2, 2014, Pages

Performance benchmarking and analysis of prognostic methods for CMAPSS datasets

Author keywords

Benchmarking; C MAPSS datasets; Prognostics; Review

Indexed keywords


EID: 84923327494     PISSN: None     EISSN: 21532648     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (139)

References (65)
  • 2
    • 84861489034 scopus 로고    scopus 로고
    • Decision fusion software system for turbine engine fault diagnostics
    • 2012 proceedings of ieee
    • Al-Salah, T., Zein-Sabatto, S., & Bodruzzaman, M. (2012). Decision fusion software system for turbine engine fault diagnostics. In Southeastcon, 2012 proceedings of ieee (p. 1-6).
    • (2012) Southeastcon , pp. 1-6
    • Al-Salah, T.1    Zein-Sabatto, S.2    Bodruzzaman, M.3
  • 4
    • 84871651156 scopus 로고    scopus 로고
    • Reservoir computing and extreme learning machines for non-linear time-series data analysis
    • Butcher, J. B., Verstraeten, D., Schrauwen, B., Day, C. R., & Haycock, P. W. (2013). Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Network, 38, 76-89.
    • (2013) Neural Network , vol.38 , pp. 76-89
    • Butcher, J.B.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.R.4    Haycock, P.W.5
  • 8
    • 79551492286 scopus 로고    scopus 로고
    • Reducing arbitrary choices in model building for prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system
    • El-Koujok, M., Gouriveau, R., & Zerhouni, N. (2011). Reducing arbitrary choices in model building for prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system. Microelectronics Reliability, 51(2), 310-320.
    • (2011) Microelectronics Reliability , vol.51 , Issue.2 , pp. 310-320
    • El-Koujok, M.1    Gouriveau, R.2    Zerhouni, N.3
  • 9
    • 0032203999 scopus 로고    scopus 로고
    • A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification
    • Nov
    • Feldkamp, L., & Puskorius, G. (1998, Nov). A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification. Proceedings of the IEEE, 86(11), 2259-2277.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2259-2277
    • Feldkamp, L.1    Puskorius, G.2
  • 10
    • 0038476304 scopus 로고    scopus 로고
    • Resample and combine: An approach to improving uncertainty representation in evidential pattern classification
    • Francois, J., Grandvalet, Y., Denoeux, T., & Roger, J.-M. (2003). Resample and combine: An approach to improving uncertainty representation in evidential pattern classification. Information Fusion, 4(2), 75-85.
    • (2003) Information Fusion , vol.4 , Issue.2 , pp. 75-85
    • Francois, J.1    Grandvalet, Y.2    Denoeux, T.3    Roger, J.-M.4
  • 12
    • 84883753458 scopus 로고    scopus 로고
    • Strategies to face imbalanced and unlabelled data in PHM applications
    • Gouriveau, R., Ramasso, E., & Zerhouni, N. (2013). Strategies to face imbalanced and unlabelled data in PHM applications. Chemical Engineering Transactions, 33, 115-120.
    • (2013) Chemical Engineering Transactions , vol.33 , pp. 115-120
    • Gouriveau, R.1    Ramasso, E.2    Zerhouni, N.3
  • 13
    • 84870563115 scopus 로고    scopus 로고
    • Connexionistsystems-based long term prediction approaches for prognostics
    • Gouriveau, R., & Zerhouni, N. (2012). Connexionistsystems-based long term prediction approaches for prognostics. IEEE Trans. on Reliability, 61, 909-920.
    • (2012) IEEE Trans. on Reliability , vol.61 , pp. 909-920
    • Gouriveau, R.1    Zerhouni, N.2
  • 15
    • 84860375483 scopus 로고    scopus 로고
    • Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
    • Hu, C., Youn, B., Wang, P., & Yoon, J. (2012). Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering and System Safety, 103, 120-135.
    • (2012) Reliability Engineering and System Safety , vol.103 , pp. 120-135
    • Hu, C.1    Youn, B.2    Wang, P.3    Yoon, J.4
  • 18
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304(5667), 78-80.
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 22
    • 84904008483 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, School of engineering systems, Faculty of built environmental engineering, Queensland university of technology
    • Kim, H.-E. (2010). Machine prognostics using health state probability estimation. Unpublished doctoral dissertation, School of engineering systems, Faculty of built environmental engineering, Queensland university of technology.
    • (2010) Machine prognostics using health state probability estimation
    • Kim, H.-E.1
  • 23
    • 0003756842 scopus 로고    scopus 로고
    • elements of generalized information theory. In (chap. Studies in fuzzyness and soft computing). Physica-Verlag
    • Klir, G., & Wierman, M. (1999). Uncertainty-based information. elements of generalized information theory. In (chap. Studies in fuzzyness and soft computing). Physica-Verlag.
    • (1999) Uncertainty-based information
    • Klir, G.1    Wierman, M.2
  • 25
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion
    • Kuncheva, L., Bezdek, J., & Duin, R. (2001). Decision templates for multiple classifier fusion. Pattern Recognition, 34, 299-314.
    • (2001) Pattern Recognition , vol.34 , pp. 299-314
    • Kuncheva, L.1    Bezdek, J.2    Duin, R.3
  • 26
    • 84890027379 scopus 로고    scopus 로고
    • Fault prognostic based on hybrid method of state judgment and regression
    • Li, X., Qian, J., & Wang, G. (2013). Fault prognostic based on hybrid method of state judgment and regression. Advances in Mechanical Engineering, 2013(149562), 1-10.
    • (2013) Advances in Mechanical Engineering , pp. 1-10
    • Li, X.1    Qian, J.2    Wang, G.3
  • 27
    • 80053637158 scopus 로고    scopus 로고
    • Nonparametric and semiparametric sensor recovery in multichannel condition monitoring systems
    • Liao, H., & Sun, J. (2011). Nonparametric and semiparametric sensor recovery in multichannel condition monitoring systems. IEEE Transactions on Automation Science and Engineering, 8(4), 744-753.
    • (2011) IEEE Transactions on Automation Science and Engineering , vol.8 , Issue.4 , pp. 744-753
    • Liao, H.1    Sun, J.2
  • 28
    • 84879388847 scopus 로고    scopus 로고
    • Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods
    • Lin, Y., Chen, M., & Zhou, D. (2013). Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods. Reliability Engineering & System Safety, 119(0), 150-157.
    • (2013) Reliability Engineering & System Safety , vol.119 , Issue.0 , pp. 150-157
    • Lin, Y.1    Chen, M.2    Zhou, D.3
  • 29
    • 84892606646 scopus 로고    scopus 로고
    • A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis
    • Liu, K., Gebraeel, N. Z., & Shi, J. (2013). A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis. IEEE Trans. on Automation Science and Engineering.
    • (2013) IEEE Trans. on Automation Science and Engineering
    • Liu, K.1    Gebraeel, N.Z.2    Shi, J.3
  • 30
    • 84890946777 scopus 로고    scopus 로고
    • An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process
    • Moghaddass, R., &Zuo, M. (2014). An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process. Reliability Engineering and System Safety, 124, 92-104.
    • (2014) Reliability Engineering and System Safety , vol.124 , pp. 92-104
    • Moghaddass, R.1    Zuo, M.2
  • 32
    • 58449129770 scopus 로고    scopus 로고
    • Data driven prognostics using a Kalman filter ensemble of neural network models
    • Peel, L. (2008). Data driven prognostics using a Kalman filter ensemble of neural network models. In Int. conf. on prognostics and health management.
    • (2008) Int. conf. on prognostics and health management
    • Peel, L.1
  • 33
    • 84868258326 scopus 로고    scopus 로고
    • A modified echo state network based remaining useful life estimation approach
    • Peng, Y., Wang, H., Wang, J., Liu, D., & Peng, X. (2012). A modified echo state network based remaining useful life estimation approach. In Ieee phm conference.
    • (2012) Ieee phm conference
    • Peng, Y.1    Wang, H.2    Wang, J.3    Liu, D.4    Peng, X.5
  • 39
    • 84897565302 scopus 로고    scopus 로고
    • Making use of partial knowledge about hidden states in hidden Markov models: An approach based on belief functions
    • Ramasso, E., & Denoeux, T. (2013). Making use of partial knowledge about hidden states in hidden Markov models: an approach based on belief functions. IEEE Transactions on Fuzzy Systems, 10. 1109/TFUZZ. 2013. 2259496.
    • (2013) IEEE Transactions on Fuzzy Systems
    • Ramasso, E.1    Denoeux, T.2
  • 40
    • 77950641714 scopus 로고    scopus 로고
    • Prognostics in switching systems: Evidential Markovian classification of real-time neuro-fuzzy predictions
    • Ramasso, E., & Gouriveau, R. (2010). Prognostics in switching systems: Evidential Markovian classification of real-time neuro-fuzzy predictions. In Ieee prognostics and health management conference.
    • (2010) Ieee prognostics and health management conference
    • Ramasso, E.1    Gouriveau, R.2
  • 43
    • 84920547889 scopus 로고    scopus 로고
    • Evaluation of neural networks in the subject of prognostics as compared to linear regression model
    • Riad, A., Elminir, H., & Elattar, H. (2010). Evaluation of neural networks in the subject of prognostics as compared to linear regression model. International Journal of Engineering & Technology, 10, 52-58.
    • (2010) International Journal of Engineering & Technology , vol.10 , pp. 52-58
    • Riad, A.1    Elminir, H.2    Elattar, H.3
  • 44
    • 84920524318 scopus 로고    scopus 로고
    • Advanced control of turbofan engines. Springer New York
    • Richter, H. (2012). Engine models and simulation tools. In Advanced control of turbofan engines (p. 19-33). Springer New York.
    • (2012) Engine models and simulation tools , pp. 19-33
    • Richter, H.1
  • 45
  • 48
    • 84864218356 scopus 로고    scopus 로고
    • NASA Ames Prognostics Data Repository
    • Saxena, A., & Goebel, K. (2008). C-mapss data set. NASA Ames Prognostics Data Repository.
    • (2008) C-mapss data set
    • Saxena, A.1    Goebel, K.2
  • 49
    • 58449121109 scopus 로고    scopus 로고
    • Damage propagation modeling for aircraft engine runto-failure simulation
    • 2008. phm 2008. international conference on
    • Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008a). Damage propagation modeling for aircraft engine runto-failure simulation. In Prognostics and health management, 2008. phm 2008. international conference on (pp. 1-9).
    • (2008) Prognostics and health management , pp. 1-9
    • Saxena, A.1    Goebel, K.2    Simon, D.3    Eklund, N.4
  • 52
    • 84862795135 scopus 로고    scopus 로고
    • Unpublished master's thesis, Division of Research and Advanced Studies of the University of Cincinnati
    • Siegel, D. (2009). Evaluation of health assessment techniques for rotating machinery. Unpublished master's thesis, Division of Research and Advanced Studies of the University of Cincinnati.
    • (2009) Evaluation of health assessment techniques for rotating machinery
    • Siegel, D.1
  • 53
    • 84869008963 scopus 로고    scopus 로고
    • Echo state networks and extreme learning machines: A comparative study on seasonal streamflow series prediction
    • Springer Berlin Heidelberg
    • Siqueira, H., Boccato, L., Attux, R., & Lyra, C. (2012). Echo state networks and extreme learning machines: A comparative study on seasonal streamflow series prediction. In Neural information processing (Vol. 7664, p. 491-500). Springer Berlin Heidelberg.
    • (2012) In Neural information processing , vol.7664 , pp. 491-500
    • Siqueira, H.1    Boccato, L.2    Attux, R.3    Lyra, C.4
  • 55
  • 56
    • 84857361309 scopus 로고    scopus 로고
    • Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
    • Sun, J., Zuo, H., Wang, W., & Pecht, M. (2012). Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance. Mechanical Systems and Signal Processing, 28, 585-596.
    • (2012) Mechanical Systems and Signal Processing , vol.28 , pp. 585-596
    • Sun, J.1    Zuo, H.2    Wang, W.3    Pecht, M.4
  • 57
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan, P., & Wang, P. (2013). Failure diagnosis using deep belief learning based health state classification. Reliability Engineering and System Safety, 115(0), 124-135.
    • (2013) Reliability Engineering and System Safety , vol.115 , Issue.0 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 58
    • 84857355189 scopus 로고    scopus 로고
    • A generic probabilistic framework for structural health prognostics and uncertainty management
    • Wang, P., Youn, B., & Hu, C. (2012). A generic probabilistic framework for structural health prognostics and uncertainty management. Mechanical Systems and Signal Processing, 28, 622-637.
    • (2012) Mechanical Systems and Signal Processing , vol.28 , pp. 622-637
    • Wang, P.1    Youn, B.2    Hu, C.3
  • 60
    • 58449112801 scopus 로고    scopus 로고
    • A similaritybased prognostics approach for remaining useful life estimation of engineered systems
    • Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similaritybased prognostics approach for remaining useful life estimation of engineered systems. In Int. conf. on prognostics and health management (p. 1-6).
    • (2008) Int. conf. on prognostics and health management , pp. 1-6
    • Wang, T.1    Yu, J.2    Siegel, D.3    Lee, J.4
  • 63
    • 84876902144 scopus 로고    scopus 로고
    • A nonlinear probabilistic method and contribution analysis for machine condition monitoring
    • Yu, J. (2013). A nonlinear probabilistic method and contribution analysis for machine condition monitoring. Mechanical Systems and Signal Processing, 37, 293-314.
    • (2013) Mechanical Systems and Signal Processing , vol.37 , pp. 293-314
    • Yu, J.1
  • 64
    • 84883223985 scopus 로고    scopus 로고
    • Statistical approach to online prognostics of turbine engine components
    • 2013 proceedings of ieee
    • Zein-Sabatto, S., Bodruzzaman, J., & Mikhail, M. (2013). Statistical approach to online prognostics of turbine engine components. In Southeastcon, 2013 proceedings of ieee (p. 1-6).
    • (2013) Southeastcon , pp. 1-6
    • Zein-Sabatto, S.1    Bodruzzaman, J.2    Mikhail, M.3
  • 65
    • 80055028179 scopus 로고    scopus 로고
    • Comparison of data reduction techniques based on SVM classifier and SVR performance
    • Zhao, D., P., R. G., & Willett. (2011). Comparison of data reduction techniques based on SVM classifier and SVR performance. In Proc. spie, signal and data processing of small targets (Vol. 8137, p. 1-15).
    • (2011) In Proc. spie, signal and data processing of small targets , vol.8137 , pp. 1-15
    • Zhao, D.P.1    Willett, R.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.