메뉴 건너뛰기




Volumn 86, Issue 11, 1998, Pages 2259-2277

A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification

Author keywords

Automotive diagnostics; Backpropagation through time; Kalman filtering; Lime series prediction; Multistream training; Recurrent multilayer perceptrons; Recurrent networks; Stability; System identification

Indexed keywords

ADAPTIVE FILTERING; BACKPROPAGATION; ERROR ANALYSIS; KALMAN FILTERING; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; NONLINEAR FILTERING; RECURRENT NEURAL NETWORKS; SYSTEM STABILITY; TIME SERIES ANALYSIS;

EID: 0032203999     PISSN: 00189219     EISSN: None     Source Type: Journal    
DOI: 10.1109/5.726790     Document Type: Article
Times cited : (120)

References (28)
  • 1
    • 0031272071 scopus 로고    scopus 로고
    • q theory: Checking and imposing stability of recurrent neural networks for nonlinear modeling
    • Nov.
    • q theory: Checking and imposing stability of recurrent neural networks for nonlinear modeling," IEEE Trans. Signal Processing, vol. 45, pp. 2682-2691, Nov. 1997.
    • (1997) IEEE Trans. Signal Processing , vol.45 , pp. 2682-2691
    • Suykens, J.A.K.1    Vandewalle, J.2    De Moor, B.L.R.3
  • 4
    • 0004503125 scopus 로고
    • Adaptive state representation and estimation using recurrent connectionist networks
    • W. T. Miller III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT
    • R. J. Williams, "Adaptive state representation and estimation using recurrent connectionist networks," in Neural Networks for Control, W. T. Miller III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT, 1990, pp. 97-114.
    • (1990) Neural Networks for Control , pp. 97-114
    • Williams, R.J.1
  • 5
    • 33645993446 scopus 로고
    • System identification by recurrent multilayer perceptrons
    • Portland, OR
    • J. T.-H. Lo, "System identification by recurrent multilayer perceptrons," in Proc. World Congr. Neural Networks, Portland, OR, 1993, pp. IV-589-IV-600.
    • (1993) Proc. World Congr. Neural Networks
    • Lo, J.T.-H.1
  • 6
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 0026373591 scopus 로고
    • Learning algorithms and fixed dynamics
    • Seattle, WA
    • _, "Learning algorithms and fixed dynamics," in Proc. Int. Joint Conf. Neural Networks, Seattle, WA, vol. I, 1991, pp. 799-804.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 799-804
  • 10
    • 0029749341 scopus 로고    scopus 로고
    • Adaptation from fixed weight dynamic networks
    • Washington DC
    • _, "Adaptation from fixed weight dynamic networks," in Proc. IEEE Int. Conf. Neural Networks, Washington DC, 1996, pp. 155-160.
    • (1996) Proc. IEEE Int. Conf. Neural Networks , pp. 155-160
  • 11
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Oct.
    • P. J. Werbos, "Backpropagation through time: What it does and how to do it," Proc. IEEE, vol. 78, pp. 1550-1560, Oct. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 12
    • 0030270705 scopus 로고    scopus 로고
    • Dynamic neural network methods applied to on-vehicle idle speed control
    • Oct.
    • G. V. Puskorius, L. A. Feldkamp, and L. I. Davis, Jr., "Dynamic neural network methods applied to on-vehicle idle speed control," Proc. IEEE, vol. 84, pp. 1407-1420, Oct. 1996.
    • (1996) Proc. IEEE , vol.84 , pp. 1407-1420
    • Puskorius, G.V.1    Feldkamp, L.A.2    Davis Jr., L.I.3
  • 13
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems containing neural networks
    • Jan.
    • K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems containing neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Jan. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 14
    • 0028401031 scopus 로고
    • Neurocontrol of non-linear dynamical systems with Kalman filter trained recurrent networks
    • Mar.
    • G. V. Puskorius and L. A. Feldkamp, "Neurocontrol of non-linear dynamical systems with Kalman filter trained recurrent networks," IEEE Trans. Neural Networks, vol. 5, pp. 279-297, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 15
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R. J. Williams and J. Peng, "An efficient gradient-based algorithm for on-line training of recurrent network trajectories," Neural Computation, vol. 2, pp. 490-501, 1990.
    • (1990) Neural Computation , vol.2 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 16
    • 0000221272 scopus 로고
    • Training multilayer perceptrons with the extended Kalman algorithm
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. Singhal and L. Wu, "Training multilayer perceptrons with the extended Kalman algorithm," in Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 133-140.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 18
  • 19
    • 0026408191 scopus 로고
    • Decoupled extended Kalman filter training of feedforward layered networks
    • Seattle, WA
    • G. V. Puskorius and L. A. Feldkamp, "Decoupled extended Kalman filter training of feedforward layered networks," in Proc. Int. Joint Conf. Neural Networks, Seattle, WA, 1991, vol. I, pp. 771-777.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 771-777
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 20
    • 0000838510 scopus 로고
    • Neural network nonlinear adaptive filtering using the extended Kalman filter algorithm
    • Paris
    • M. B. Matthews, "Neural network nonlinear adaptive filtering using the extended Kalman filter algorithm," in Proc. Int. Neural Networks Conf., Paris, 1990, vol. I, pp. 115-119.
    • (1990) Proc. Int. Neural Networks Conf. , vol.1 , pp. 115-119
    • Matthews, M.B.1
  • 21
    • 85132302281 scopus 로고
    • Training recurrent networks using the extended Kalman filter
    • Baltimore
    • R. J. Williams, "Training recurrent networks using the extended Kalman filter," in Proc. Int. Joint Conf. Neural Networks, Baltimore, 1992, vol. IV, pp. 241-246.
    • (1992) Proc. Int. Joint Conf. Neural Networks , vol.4 , pp. 241-246
    • Williams, R.J.1
  • 23
    • 0030682701 scopus 로고    scopus 로고
    • Extensions and enhancements of decoupled extended Kalman filter training
    • Houston TX
    • G. V. Puskorius and L. A. Feldkamp, "Extensions and enhancements of decoupled extended Kalman filter training," in Proc. 1997 Int. Conf. Neural Networks, Houston TX, vol. 3, pp. 1879-1883.
    • Proc. 1997 Int. Conf. Neural Networks , vol.3 , pp. 1879-1883
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 24
    • 0028467001 scopus 로고
    • A state-space approach to adaptive RLS filtering
    • Mar.
    • A. H. Sayed and T. Kailath, "A state-space approach to adaptive RLS filtering," IEEE Signal Processing Mag., vol. 11, pp. 18-60, Mar. 1994.
    • (1994) IEEE Signal Processing Mag. , vol.11 , pp. 18-60
    • Sayed, A.H.1    Kailath, T.2
  • 25
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar.
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks, vol. 5, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 26
    • 10944258791 scopus 로고    scopus 로고
    • Signal processing by dynamic neural networks with application to automotive misfire detection
    • San Diego
    • G. V. Puskorius and L. A. Feldkamp, "Signal processing by dynamic neural networks with application to automotive misfire detection," in Proc. World Cong. Neural Networks, San Diego, 1996, pp. 585-590.
    • (1996) Proc. World Cong. Neural Networks , pp. 585-590
    • Puskorius, G.V.1    Feldkamp, L.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.