메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Study of ensemble learning-based fusion prognostics

Author keywords

Ensemble learning; Health management; Machine learning; Neural network ensemble; Prognostics

Indexed keywords

DATA SETS; DYNAMIC WEIGHT; EMPIRICAL COMPARISON; ENGINEERING SYSTEMS; ENSEMBLE LEARNING; FAILURE PROGNOSIS; HEALTH MANAGEMENT; HYPERRECTANGLES; INDIVIDUAL MODELS; MACHINE-LEARNING; MLP NEURAL NETWORKS; MULTI LAYER PERCEPTRON NETWORKS; TEST SAMPLES; WEAK LEARNER; WEIGHT ALLOCATION;

EID: 77950667302     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PHM.2010.5414582     Document Type: Conference Paper
Times cited : (22)

References (27)
  • 6
    • 35648933994 scopus 로고    scopus 로고
    • Prognostic fusion for uncertainty reduction
    • Reston, VA: American Institute for Aeronautics and Astronautics, Inc
    • K. Goebel and N. Eklund, Prognostic Fusion for Uncertainty Reduction, Proceedings of AIAA@Infotech Aerospace Conference, Reston, VA: American Institute for Aeronautics and Astronautics, Inc, 2007.
    • (2007) Proceedings of AIAA@Infotech Aerospace Conference
    • Goebel, K.1    Eklund, N.2
  • 9
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • L.I. Kuncheva, C.J. Whitaker. Measures of diversity in classifier ensembles. Machine Learning, 2003, 51(2): 181-207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 11
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble method for neural networks
    • R.J. Mammone, Editor, Chapman & Hall, New York
    • M.P. Perrone, L.N. Cooper. When networks disagree: Ensemble method for neural networks. In: R.J. Mammone, Editor, Artificial Neural Networks for Speech and Vision, Chapman & Hall, New York (1993), pp. 126-142.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 12
    • 0030356238 scopus 로고    scopus 로고
    • Actively Searching for an Effective Neural Network Ensemble
    • DOI 10.1080/095400996116802
    • 12. D .Opitz, J .Shavlik. Actively searching for an effective neural network ensemble. Connection Science, 1996, 8 (3- 4): 337-353. (Pubitemid 126400569)
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 14
    • 0025448521 scopus 로고
    • The Strength of weak learnability [J]
    • R.E. Schapire. The Strength of Weak Learnability [J]. Machine Learning, 1990, 5 (2): 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 16
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • DOI 10.1016/S0893-6080(96)00098-6, PII S0893608096000986
    • 16. S. Hashem, Optimal linear combinations of neural networks, Neural Networks 10 (4) (1997) 599-614. (Pubitemid 27357174)
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 599-614
    • Hashem, S.1
  • 17
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 18
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.H. Zhou, J. Wu and W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (2000) (1-2), pp. 239-263.
    • (2000) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 19
    • 58449121109 scopus 로고    scopus 로고
    • Damage propagation modeling for aircraft engine run-to-failure simulation
    • Denver CO
    • A. Saxena, K. Goebel, D. Simon and N. Eklund. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation, IEEE PHM'08 confrence, Denver CO, 2008.
    • (2008) IEEE PHM'08 Confrence
    • Saxena, A.1    Goebel, K.2    Simon, D.3    Eklund, N.4
  • 21
    • 0034333684 scopus 로고    scopus 로고
    • Stability problems with artificial neural networks and the ensemble solution
    • P. Cunningham, J. Carney, S. Jacob, Stability problems with artificial neural networks and the ensemble solution, Artificial Intelligence in Medicine 20 (3) , pp.217-225, 2000.
    • (2000) Artificial Intelligence in Medicine , vol.20 , Issue.3 , pp. 217-225
    • Cunningham, P.1    Carney, J.2    Jacob, S.3
  • 22
    • 0029728458 scopus 로고    scopus 로고
    • Face recognition using hybrid classifier systems
    • Washington, DC IEEE Computer Society Press, Los Alamitos, CA
    • S. Gutta, H. Wechsler, Face recognition using hybrid classifier systems, in: Proc. ICNN-96, Washington, DC, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp.1017-1022.
    • (1996) Proc. ICNN-96 , pp. 1017-1022
    • Gutta, S.1    Wechsler, H.2
  • 23
    • 0030356238 scopus 로고    scopus 로고
    • Actively Searching for an Effective Neural Network Ensemble
    • DOI 10.1080/095400996116802
    • 23. D.W. Opitz, J.W. Shavlik, Actively searching for an effective neural network ensemble, Connection Science 8 (3-4), pp. 337-353, 1996. (Pubitemid 126400569)
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 24
    • 0001332651 scopus 로고    scopus 로고
    • Combining neural network regression estimates with regularized linear weights
    • M.C Mozer, M.I. Jordan, T. Petsche (Eds.), Denver, CO, MIT Press, Cambridge, MA
    • C.J. Merz, M.J. Pazzani, Combining neural network regression estimates with regularized linear weights, in: M.C Mozer, M.I. Jordan, T. Petsche (Eds.), Advances in Neural Information Processing Systems 9, Denver, CO, MIT Press, Cambridge, MA, 1997, pp.564-570.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 564-570
    • Merz, C.J.1    Pazzani, M.J.2
  • 25
    • 0031619036 scopus 로고    scopus 로고
    • Dynamically weighted ensemble neural networks for classification
    • Anchorage, AK, IEEE Computer Society Press, Los Alamitos, CA
    • D. Jimenez, Dynamically weighted ensemble neural networks for classification, in: Proc. IJCNN-98, vol.1, Anchorage, AK, IEEE Computer Society Press, Los Alamitos, CA, 1998, pp.753-756.
    • (1998) Proc. IJCNN-98 , vol.1 , pp. 753-756
    • Jimenez, D.1
  • 26
    • 58149321460 scopus 로고
    • Boosting a weak algorithm by majority
    • Y. Freund, Boosting a weak algorithm by majority, Information and Computation 121 (2), 256-285, 1995.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 27
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Barcelona, Spain, Springer-Verlag, Berlin
    • Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, in: Proc. EuroCOLT-94, Barcelona, Spain, Springer-Verlag, Berlin, 1995, pp.23-37.
    • (1995) Proc. EuroCOLT-94 , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.