메뉴 건너뛰기




Volumn 27, Issue 8, 2013, Pages 1322-1332

Activation of basal gluconeogenesis by coactivator p300 maintains hepatic glycogen storage

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN BINDING PROTEIN; E1A ASSOCIATED P300 PROTEIN; GLYCOGEN; INSULIN;

EID: 84880842199     PISSN: 08888809     EISSN: None     Source Type: Journal    
DOI: 10.1210/me.2012-1413     Document Type: Article
Times cited : (23)

References (46)
  • 1
    • 0032520870 scopus 로고    scopus 로고
    • Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans
    • Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest. 1998;101:1203-1209.
    • (1998) J Clin Invest , vol.101 , pp. 1203-1209
    • Petersen, K.F.1    Laurent, D.2    Rothman, D.L.3    Cline, G.W.4    Shulman, G.I.5
  • 2
    • 73249136971 scopus 로고    scopus 로고
    • Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo
    • Edgerton DS, Ramnanan CJ, Grueter CA, et al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes. 2009;58:2766-2775.
    • (2009) Diabetes , vol.58 , pp. 2766-2775
    • Edgerton, D.S.1    Ramnanan, C.J.2    Grueter, C.A.3
  • 3
    • 0030815255 scopus 로고    scopus 로고
    • Assessment of hepatic sensitivity to glucagon in NIDDM: Use as a tool to estimate the contribution of the indirect pathway to nocturnal glycogen synthesis
    • Nielsen MF, Wise S, Dinneen SF, Schwenk WF, Basu A, Rizza RA. Assessment of hepatic sensitivity to glucagon in NIDDM: Use as a tool to estimate the contribution of the indirect pathway to nocturnal glycogen synthesis. Diabetes. 1997;46:2007-2016.
    • (1997) Diabetes , vol.46 , pp. 2007-2016
    • Nielsen, M.F.1    Wise, S.2    Dinneen, S.F.3    Schwenk, W.F.4    Basu, A.5    Rizza, R.A.6
  • 4
    • 0000159921 scopus 로고
    • Structure of the site phosphorylated in the phosphorylase b to a reaction
    • Fischer EH, Graves DJ, Crittenden ER, Krebs EG. Structure of the site phosphorylated in the phosphorylase b to a reaction. J Biol Chem. 1959;234:1698-1704.
    • (1959) J Biol Chem , vol.234 , pp. 1698-1704
    • Fischer, E.H.1    Graves, D.J.2    Crittenden, E.R.3    Krebs, E.G.4
  • 5
    • 0027515127 scopus 로고
    • Inactivation of glycogen synthase kinase-3 by phosphorylation: New kinase connections in insulin and growth-factor signalling
    • Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993;296:15-19.
    • (1993) Biochem J , vol.296 , pp. 15-19
    • Sutherland, C.1    Leighton, I.A.2    Cohen, P.3
  • 7
    • 0036789185 scopus 로고    scopus 로고
    • Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats
    • Cline GW, Johnson K, Regittnig W, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51:2903-2910.
    • (2002) Diabetes , vol.51 , pp. 2903-2910
    • Cline, G.W.1    Johnson, K.2    Regittnig, W.3
  • 8
    • 1842640108 scopus 로고    scopus 로고
    • Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae
    • Pederson BA, Wilson WA, Roach PJ. Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem. 2004;279:13764-13768.
    • (2004) J Biol Chem , vol.279 , pp. 13764-13768
    • Pederson, B.A.1    Wilson, W.A.2    Roach, P.J.3
  • 9
    • 0028286462 scopus 로고
    • Investigation of the mechanism of glycogen rebound in the liver of 72-hour fasted rats
    • Minassian C, Ajzannay A, Riou JP, Mithieux G. Investigation of the mechanism of glycogen rebound in the liver of 72-hour fasted rats. J Biol Chem. 1994;269:16585-16588.
    • (1994) J Biol Chem , vol.269 , pp. 16585-16588
    • Minassian, C.1    Ajzannay, A.2    Riou, J.P.3    Mithieux, G.4
  • 10
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437: 1109-1111.
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1    Flechner, L.2    Qi, L.3
  • 11
    • 0033546192 scopus 로고    scopus 로고
    • Phosphordoi ylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factorbinding protein-1 promoter activity through a conserved insulin response sequence
    • Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphordoi ylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factorbinding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999;274:17184-17192.
    • (1999) J Biol Chem , vol.274 , pp. 17184-17192
    • Guo, S.1    Rena, G.2    Cichy, S.3    He, X.4    Cohen, P.5    Unterman, T.6
  • 12
    • 65549136655 scopus 로고    scopus 로고
    • Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
    • He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell. 2009;137:635-646.
    • (2009) Cell , vol.137 , pp. 635-646
    • He, L.1    Sabet, A.2    Djedjos, S.3
  • 13
    • 48749094086 scopus 로고    scopus 로고
    • Contribution of defects in glucose production and uptake to carbohydrate intolerance in insulin-resistant subjects
    • Nielsen MF. Contribution of defects in glucose production and uptake to carbohydrate intolerance in insulin-resistant subjects. Danish MedBull. 2008;55:89-102.
    • (2008) Danish MedBull , vol.55 , pp. 89-102
    • Nielsen, M.F.1
  • 14
    • 0021713260 scopus 로고
    • The glucose paradox. Is glucose a substrate for liver metabolism?
    • Katz J, McGarry JD. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984;74:1901-1909.
    • (1984) J Clin Invest , vol.74 , pp. 1901-1909
    • Katz, J.1    McGarry, J.D.2
  • 15
    • 0015394277 scopus 로고
    • Glycogen synthesis in the perfused liver of the starved rat
    • Hems DA, Whitton PD, Taylor EA. Glycogen synthesis in the perfused liver of the starved rat. Biochem J. 1972;129:529-538.
    • (1972) Biochem J , vol.129 , pp. 529-538
    • Hems, D.A.1    Whitton, P.D.2    Taylor, E.A.3
  • 16
    • 49349140397 scopus 로고
    • Autoregulation of glycolysis, respiration, gluconeogenesis and glycogen synthesis in isolated parenchymal rat liver cells under aerobic and anaerobic conditions
    • Seglen PO. Autoregulation of glycolysis, respiration, gluconeogenesis and glycogen synthesis in isolated parenchymal rat liver cells under aerobic and anaerobic conditions. Biochim Biophys Acta. 1974;338:317-336.
    • (1974) Biochim Biophys Acta , vol.338 , pp. 317-336
    • Seglen, P.O.1
  • 17
    • 0021179644 scopus 로고
    • Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway
    • Newgard CB, Moore SV, Foster DW, McGarry JD. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway. J Biol Chem. 1984;259: 6958-6963.
    • (1984) J Biol Chem , vol.259 , pp. 6958-6963
    • Newgard, C.B.1    Moore, S.V.2    Foster, D.W.3    McGarry, J.D.4
  • 18
    • 0021056610 scopus 로고
    • Direction of carbon flux in starvation and after refeeding: In vitro and in vivo effects of 3-mercaptopicolinate
    • Sugden MC, Watts DI, Palmer TN, Myles DD. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochem Int. 1983;7:329-337.
    • (1983) Biochem Int , vol.7 , pp. 329-337
    • Sugden, M.C.1    Watts, D.I.2    Palmer, T.N.3    Myles, D.D.4
  • 19
    • 0022395856 scopus 로고
    • Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy
    • Shulman GI, Rothman DL, Smith D, et al. Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy. J Clin Invest. 1985;76:1229-1236.
    • (1985) J Clin Invest , vol.76 , pp. 1229-1236
    • Shulman, G.I.1    Rothman, D.L.2    Smith, D.3
  • 20
    • 0027420469 scopus 로고
    • Enhancement of the gluconeogenic flux of hepatic glycogen repletion by a phenacyl imidazolium compound in vivo
    • Cline GW, Greenawalt K, Shulman GI. Enhancement of the gluconeogenic flux of hepatic glycogen repletion by a phenacyl imidazolium compound in vivo. Acta Diabetol. 1993;30:70-72.
    • (1993) Acta Diabetol , vol.30 , pp. 70-72
    • Cline, G.W.1    Greenawalt, K.2    Shulman, G.I.3
  • 21
    • 0023025385 scopus 로고
    • Plasma glucose concentration determines direct versus indirect liver glycogen synthesis
    • Lang CH, Bagby GJ, Blakesley HL, Johnson JL, Spitzer JJ. Plasma glucose concentration determines direct versus indirect liver glycogen synthesis. Am J Physiol. 1986;251:E584-E590.
    • (1986) Am J Physiol , vol.251
    • Lang, C.H.1    Bagby, G.J.2    Blakesley, H.L.3    Johnson, J.L.4    Spitzer, J.J.5
  • 22
    • 0025771284 scopus 로고
    • Sources of carbon for hepatic glycogen synthesis in the conscious dog
    • Moore MC, Cherrington AD, Cline G, et al. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J Clin Invest. 1991; 88:578-587.
    • (1991) J Clin Invest , vol.88 , pp. 578-587
    • Moore, M.C.1    Cherrington, A.D.2    Cline, G.3
  • 23
    • 0020027815 scopus 로고
    • Sources of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans
    • Radziuk J. Sources of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans. Fed Proc. 1982;41: 110-116.
    • (1982) Fed Proc , vol.41 , pp. 110-116
    • Radziuk, J.1
  • 24
    • 0028172989 scopus 로고
    • 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulindependent diabetes mellitus
    • Cline GW, Rothman DL, Magnusson I, Katz LD, Shulman GI. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulindependent diabetes mellitus. J Clin Invest. 1994;94:2369-2376.
    • (1994) J Clin Invest , vol.94 , pp. 2369-2376
    • Cline, G.W.1    Rothman, D.L.2    Magnusson, I.3    Katz, L.D.4    Shulman, G.I.5
  • 25
    • 0024451943 scopus 로고
    • Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast
    • Radziuk J. Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast. Am J Physiol. 1989;257:E147-E157.
    • (1989) Am J Physiol , vol.257
    • Radziuk, J.1
  • 26
    • 0034839569 scopus 로고    scopus 로고
    • Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis
    • Radziuk J, Pye S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev. 2001; 17:250-272.
    • (2001) Diabetes Metab Res Rev , vol.17 , pp. 250-272
    • Radziuk, J.1    Pye, S.2
  • 27
    • 77953216482 scopus 로고    scopus 로고
    • Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo
    • Ramnanan CJ, Edgerton DS, Rivera N, et al. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes. 2010;59:1302-1311.
    • (2010) Diabetes , vol.59 , pp. 1302-1311
    • Ramnanan, C.J.1    Edgerton, D.S.2    Rivera, N.3
  • 28
    • 0023924957 scopus 로고
    • Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load
    • Kelley D, Mitrakou A, Marsh H, et al. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988; 81:1563-1571.
    • (1988) J Clin Invest , vol.81 , pp. 1563-1571
    • Kelley, D.1    Mitrakou, A.2    Marsh, H.3
  • 29
    • 84866415671 scopus 로고    scopus 로고
    • Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis
    • He L, Naik K, Meng S, et al. Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis. J Biol Chem. 2012;287: 32069-32077.
    • (2012) J Biol Chem , vol.287 , pp. 32069-32077
    • He, L.1    Naik, K.2    Meng, S.3
  • 30
    • 84859510690 scopus 로고    scopus 로고
    • Rac1 protein regulates glycogen phosphorylase activation and controls interleukin (IL)-2-dependent T cell proliferation
    • Arrizabalaga O, Lacerda HM, Zubiaga AM, Zugaza JL. Rac1 protein regulates glycogen phosphorylase activation and controls interleukin (IL)-2-dependent T cell proliferation. J Biol Chem. 2012; 287:11878-11890.
    • (2012) J Biol Chem , vol.287 , pp. 11878-11890
    • Arrizabalaga, O.1    Lacerda, H.M.2    Zubiaga, A.M.3    Zugaza, J.L.4
  • 31
    • 0037108732 scopus 로고    scopus 로고
    • The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors
    • Andersen B, Westergaard N. The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors. Biochem J. 2002; 367(Pt 2):443-450.
    • (2002) Biochem J , vol.367 , Issue.PART 2 , pp. 443-450
    • Andersen, B.1    Westergaard, N.2
  • 32
    • 0014428937 scopus 로고
    • A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose
    • Thomas JA, Schlender KK, Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968;25:486-499.
    • (1968) Anal Biochem , vol.25 , pp. 486-499
    • Thomas, J.A.1    Schlender, K.K.2    Larner, J.3
  • 33
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008; 456:269-273.
    • (2008) Nature , vol.456 , pp. 269-273
    • Liu, Y.1    Dentin, R.2    Chen, D.3
  • 34
    • 0021489489 scopus 로고
    • Effect of a mixed meal on hepatic lactate and gluconeogenic precursor metabolism in dogs
    • Davis MA, Williams PE, Cherrington AD. Effect of a mixed meal on hepatic lactate and gluconeogenic precursor metabolism in dogs. Am J Physiol. 1984;247:E362-E369.
    • (1984) Am J Physiol , vol.247
    • Davis, M.A.1    Williams, P.E.2    Cherrington, A.D.3
  • 35
    • 84863614868 scopus 로고    scopus 로고
    • Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation
    • Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell. 2012;11:23-35.
    • (2012) Cell Stem Cell , vol.11 , pp. 23-35
    • Wang, J.1    Gallagher, D.2    Devito, L.M.3
  • 36
    • 2942729543 scopus 로고    scopus 로고
    • Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
    • Zhou XY, Shibusawa N, Naik K, et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med. 2004;10:633-637.
    • (2004) Nat Med , vol.10 , pp. 633-637
    • Zhou, X.Y.1    Shibusawa, N.2    Naik, K.3
  • 37
    • 0019443073 scopus 로고
    • In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose
    • Boyd ME, Albright EB, Foster DW, McGarry JD. In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose. J Clin Invest. 1981;68:142-152.
    • (1981) J Clin Invest , vol.68 , pp. 142-152
    • Boyd, M.E.1    Albright, E.B.2    Foster, D.W.3    McGarry, J.D.4
  • 38
    • 0017144797 scopus 로고
    • Stimulation of hepatic glycogen synthesis by amino acids
    • Katz J, Golden S, Wals PA. Stimulation of hepatic glycogen synthesis by amino acids. Proc Natl Acad Sci USA. 1976;73:3433-3437.
    • (1976) Proc Natl Acad Sci USA , vol.73 , pp. 3433-3437
    • Katz, J.1    Golden, S.2    Wals, P.A.3
  • 40
    • 0042320958 scopus 로고    scopus 로고
    • Higher insulin concentrations are required to suppress gluconeogenesis than glycogenolysis in nondiabetic humans
    • Adkins A, Basu R, Persson M, et al. Higher insulin concentrations are required to suppress gluconeogenesis than glycogenolysis in nondiabetic humans. Diabetes. 2003;52:2213-2220.
    • (2003) Diabetes , vol.52 , pp. 2213-2220
    • Adkins, A.1    Basu, R.2    Persson, M.3
  • 41
    • 53349142351 scopus 로고    scopus 로고
    • Regulation of hepatic glucose production and the role of gluconeogenesis in humans: Is the rate of gluconeogenesis constant?
    • Nuttall FQ, Ngo A, Gannon MC. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev. 2008;24:438-458.
    • (2008) Diabetes Metab Res Rev , vol.24 , pp. 438-458
    • Nuttall, F.Q.1    Ngo, A.2    Gannon, M.C.3
  • 42
    • 78049259220 scopus 로고    scopus 로고
    • Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy
    • Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes. 2010;59: 2697-2707.
    • (2010) Diabetes , vol.59 , pp. 2697-2707
    • Rizza, R.A.1
  • 43
    • 9444262473 scopus 로고    scopus 로고
    • Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes
    • Krssak M, Brehm A, Bernroider E, et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 2004;53: 3048-3056.
    • (2004) Diabetes , vol.53 , pp. 3048-3056
    • Krssak, M.1    Brehm, A.2    Bernroider, E.3
  • 44
    • 0026488079 scopus 로고
    • Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study
    • Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992;90:1323-1327.
    • (1992) J Clin Invest , vol.90 , pp. 1323-1327
    • Magnusson, I.1    Rothman, D.L.2    Katz, L.D.3    Shulman, R.G.4    Shulman, G.I.5
  • 45
    • 0000904847 scopus 로고
    • Hepatic enzyme activities of glycolysisand gluconeogenesis in diabetes of man and laboratory animals
    • Willms B, Ben-Ami P, Soling HD. Hepatic enzyme activities of glycolysisand gluconeogenesis in diabetes of man and laboratory animals. Horm Metab Res. 1970;2:135-141.
    • (1970) Horm Metab Res , vol.2 , pp. 135-141
    • Willms, B.1    Ben-Ami, P.2    Soling, H.D.3
  • 46
    • 0034034229 scopus 로고    scopus 로고
    • Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes
    • CBP, CREB-binding protein; CRE, cAMP response element; CREB, CRE-binding protein; GS, glycogen synthase; shRNA, short hairpin RNA; WT, wild type
    • Clore JN, Stillman J, Sugerman H. Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes. 2000;49:969-974. CBP, CREB-binding protein; CRE, cAMP response element; CREB, CRE-binding protein; GS, glycogen synthase; shRNA, short hairpin RNA; WT, wild type.
    • (2000) Diabetes , vol.49 , pp. 969-974
    • Clore, J.N.1    Stillman, J.2    Sugerman, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.