-
1
-
-
0032520870
-
Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans
-
Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest. 1998;101:1203-1209.
-
(1998)
J Clin Invest
, vol.101
, pp. 1203-1209
-
-
Petersen, K.F.1
Laurent, D.2
Rothman, D.L.3
Cline, G.W.4
Shulman, G.I.5
-
2
-
-
73249136971
-
Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo
-
Edgerton DS, Ramnanan CJ, Grueter CA, et al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes. 2009;58:2766-2775.
-
(2009)
Diabetes
, vol.58
, pp. 2766-2775
-
-
Edgerton, D.S.1
Ramnanan, C.J.2
Grueter, C.A.3
-
3
-
-
0030815255
-
Assessment of hepatic sensitivity to glucagon in NIDDM: Use as a tool to estimate the contribution of the indirect pathway to nocturnal glycogen synthesis
-
Nielsen MF, Wise S, Dinneen SF, Schwenk WF, Basu A, Rizza RA. Assessment of hepatic sensitivity to glucagon in NIDDM: Use as a tool to estimate the contribution of the indirect pathway to nocturnal glycogen synthesis. Diabetes. 1997;46:2007-2016.
-
(1997)
Diabetes
, vol.46
, pp. 2007-2016
-
-
Nielsen, M.F.1
Wise, S.2
Dinneen, S.F.3
Schwenk, W.F.4
Basu, A.5
Rizza, R.A.6
-
4
-
-
0000159921
-
Structure of the site phosphorylated in the phosphorylase b to a reaction
-
Fischer EH, Graves DJ, Crittenden ER, Krebs EG. Structure of the site phosphorylated in the phosphorylase b to a reaction. J Biol Chem. 1959;234:1698-1704.
-
(1959)
J Biol Chem
, vol.234
, pp. 1698-1704
-
-
Fischer, E.H.1
Graves, D.J.2
Crittenden, E.R.3
Krebs, E.G.4
-
5
-
-
0027515127
-
Inactivation of glycogen synthase kinase-3 by phosphorylation: New kinase connections in insulin and growth-factor signalling
-
Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993;296:15-19.
-
(1993)
Biochem J
, vol.296
, pp. 15-19
-
-
Sutherland, C.1
Leighton, I.A.2
Cohen, P.3
-
7
-
-
0036789185
-
Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats
-
Cline GW, Johnson K, Regittnig W, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51:2903-2910.
-
(2002)
Diabetes
, vol.51
, pp. 2903-2910
-
-
Cline, G.W.1
Johnson, K.2
Regittnig, W.3
-
8
-
-
1842640108
-
Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae
-
Pederson BA, Wilson WA, Roach PJ. Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem. 2004;279:13764-13768.
-
(2004)
J Biol Chem
, vol.279
, pp. 13764-13768
-
-
Pederson, B.A.1
Wilson, W.A.2
Roach, P.J.3
-
9
-
-
0028286462
-
Investigation of the mechanism of glycogen rebound in the liver of 72-hour fasted rats
-
Minassian C, Ajzannay A, Riou JP, Mithieux G. Investigation of the mechanism of glycogen rebound in the liver of 72-hour fasted rats. J Biol Chem. 1994;269:16585-16588.
-
(1994)
J Biol Chem
, vol.269
, pp. 16585-16588
-
-
Minassian, C.1
Ajzannay, A.2
Riou, J.P.3
Mithieux, G.4
-
10
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437: 1109-1111.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
-
11
-
-
0033546192
-
Phosphordoi ylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factorbinding protein-1 promoter activity through a conserved insulin response sequence
-
Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphordoi ylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factorbinding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999;274:17184-17192.
-
(1999)
J Biol Chem
, vol.274
, pp. 17184-17192
-
-
Guo, S.1
Rena, G.2
Cichy, S.3
He, X.4
Cohen, P.5
Unterman, T.6
-
12
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell. 2009;137:635-646.
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
Sabet, A.2
Djedjos, S.3
-
13
-
-
48749094086
-
Contribution of defects in glucose production and uptake to carbohydrate intolerance in insulin-resistant subjects
-
Nielsen MF. Contribution of defects in glucose production and uptake to carbohydrate intolerance in insulin-resistant subjects. Danish MedBull. 2008;55:89-102.
-
(2008)
Danish MedBull
, vol.55
, pp. 89-102
-
-
Nielsen, M.F.1
-
14
-
-
0021713260
-
The glucose paradox. Is glucose a substrate for liver metabolism?
-
Katz J, McGarry JD. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984;74:1901-1909.
-
(1984)
J Clin Invest
, vol.74
, pp. 1901-1909
-
-
Katz, J.1
McGarry, J.D.2
-
15
-
-
0015394277
-
Glycogen synthesis in the perfused liver of the starved rat
-
Hems DA, Whitton PD, Taylor EA. Glycogen synthesis in the perfused liver of the starved rat. Biochem J. 1972;129:529-538.
-
(1972)
Biochem J
, vol.129
, pp. 529-538
-
-
Hems, D.A.1
Whitton, P.D.2
Taylor, E.A.3
-
16
-
-
49349140397
-
Autoregulation of glycolysis, respiration, gluconeogenesis and glycogen synthesis in isolated parenchymal rat liver cells under aerobic and anaerobic conditions
-
Seglen PO. Autoregulation of glycolysis, respiration, gluconeogenesis and glycogen synthesis in isolated parenchymal rat liver cells under aerobic and anaerobic conditions. Biochim Biophys Acta. 1974;338:317-336.
-
(1974)
Biochim Biophys Acta
, vol.338
, pp. 317-336
-
-
Seglen, P.O.1
-
17
-
-
0021179644
-
Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway
-
Newgard CB, Moore SV, Foster DW, McGarry JD. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway. J Biol Chem. 1984;259: 6958-6963.
-
(1984)
J Biol Chem
, vol.259
, pp. 6958-6963
-
-
Newgard, C.B.1
Moore, S.V.2
Foster, D.W.3
McGarry, J.D.4
-
18
-
-
0021056610
-
Direction of carbon flux in starvation and after refeeding: In vitro and in vivo effects of 3-mercaptopicolinate
-
Sugden MC, Watts DI, Palmer TN, Myles DD. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochem Int. 1983;7:329-337.
-
(1983)
Biochem Int
, vol.7
, pp. 329-337
-
-
Sugden, M.C.1
Watts, D.I.2
Palmer, T.N.3
Myles, D.D.4
-
19
-
-
0022395856
-
Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy
-
Shulman GI, Rothman DL, Smith D, et al. Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy. J Clin Invest. 1985;76:1229-1236.
-
(1985)
J Clin Invest
, vol.76
, pp. 1229-1236
-
-
Shulman, G.I.1
Rothman, D.L.2
Smith, D.3
-
20
-
-
0027420469
-
Enhancement of the gluconeogenic flux of hepatic glycogen repletion by a phenacyl imidazolium compound in vivo
-
Cline GW, Greenawalt K, Shulman GI. Enhancement of the gluconeogenic flux of hepatic glycogen repletion by a phenacyl imidazolium compound in vivo. Acta Diabetol. 1993;30:70-72.
-
(1993)
Acta Diabetol
, vol.30
, pp. 70-72
-
-
Cline, G.W.1
Greenawalt, K.2
Shulman, G.I.3
-
21
-
-
0023025385
-
Plasma glucose concentration determines direct versus indirect liver glycogen synthesis
-
Lang CH, Bagby GJ, Blakesley HL, Johnson JL, Spitzer JJ. Plasma glucose concentration determines direct versus indirect liver glycogen synthesis. Am J Physiol. 1986;251:E584-E590.
-
(1986)
Am J Physiol
, vol.251
-
-
Lang, C.H.1
Bagby, G.J.2
Blakesley, H.L.3
Johnson, J.L.4
Spitzer, J.J.5
-
22
-
-
0025771284
-
Sources of carbon for hepatic glycogen synthesis in the conscious dog
-
Moore MC, Cherrington AD, Cline G, et al. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J Clin Invest. 1991; 88:578-587.
-
(1991)
J Clin Invest
, vol.88
, pp. 578-587
-
-
Moore, M.C.1
Cherrington, A.D.2
Cline, G.3
-
23
-
-
0020027815
-
Sources of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans
-
Radziuk J. Sources of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans. Fed Proc. 1982;41: 110-116.
-
(1982)
Fed Proc
, vol.41
, pp. 110-116
-
-
Radziuk, J.1
-
24
-
-
0028172989
-
13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulindependent diabetes mellitus
-
Cline GW, Rothman DL, Magnusson I, Katz LD, Shulman GI. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulindependent diabetes mellitus. J Clin Invest. 1994;94:2369-2376.
-
(1994)
J Clin Invest
, vol.94
, pp. 2369-2376
-
-
Cline, G.W.1
Rothman, D.L.2
Magnusson, I.3
Katz, L.D.4
Shulman, G.I.5
-
25
-
-
0024451943
-
Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast
-
Radziuk J. Hepatic glycogen in humans. I. Direct formation after oral and intravenous glucose or after a 24-h fast. Am J Physiol. 1989;257:E147-E157.
-
(1989)
Am J Physiol
, vol.257
-
-
Radziuk, J.1
-
26
-
-
0034839569
-
Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis
-
Radziuk J, Pye S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev. 2001; 17:250-272.
-
(2001)
Diabetes Metab Res Rev
, vol.17
, pp. 250-272
-
-
Radziuk, J.1
Pye, S.2
-
27
-
-
77953216482
-
Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo
-
Ramnanan CJ, Edgerton DS, Rivera N, et al. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes. 2010;59:1302-1311.
-
(2010)
Diabetes
, vol.59
, pp. 1302-1311
-
-
Ramnanan, C.J.1
Edgerton, D.S.2
Rivera, N.3
-
28
-
-
0023924957
-
Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load
-
Kelley D, Mitrakou A, Marsh H, et al. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988; 81:1563-1571.
-
(1988)
J Clin Invest
, vol.81
, pp. 1563-1571
-
-
Kelley, D.1
Mitrakou, A.2
Marsh, H.3
-
29
-
-
84866415671
-
Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis
-
He L, Naik K, Meng S, et al. Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis. J Biol Chem. 2012;287: 32069-32077.
-
(2012)
J Biol Chem
, vol.287
, pp. 32069-32077
-
-
He, L.1
Naik, K.2
Meng, S.3
-
30
-
-
84859510690
-
Rac1 protein regulates glycogen phosphorylase activation and controls interleukin (IL)-2-dependent T cell proliferation
-
Arrizabalaga O, Lacerda HM, Zubiaga AM, Zugaza JL. Rac1 protein regulates glycogen phosphorylase activation and controls interleukin (IL)-2-dependent T cell proliferation. J Biol Chem. 2012; 287:11878-11890.
-
(2012)
J Biol Chem
, vol.287
, pp. 11878-11890
-
-
Arrizabalaga, O.1
Lacerda, H.M.2
Zubiaga, A.M.3
Zugaza, J.L.4
-
31
-
-
0037108732
-
The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors
-
Andersen B, Westergaard N. The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors. Biochem J. 2002; 367(Pt 2):443-450.
-
(2002)
Biochem J
, vol.367
, Issue.PART 2
, pp. 443-450
-
-
Andersen, B.1
Westergaard, N.2
-
32
-
-
0014428937
-
A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose
-
Thomas JA, Schlender KK, Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968;25:486-499.
-
(1968)
Anal Biochem
, vol.25
, pp. 486-499
-
-
Thomas, J.A.1
Schlender, K.K.2
Larner, J.3
-
33
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008; 456:269-273.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
-
34
-
-
0021489489
-
Effect of a mixed meal on hepatic lactate and gluconeogenic precursor metabolism in dogs
-
Davis MA, Williams PE, Cherrington AD. Effect of a mixed meal on hepatic lactate and gluconeogenic precursor metabolism in dogs. Am J Physiol. 1984;247:E362-E369.
-
(1984)
Am J Physiol
, vol.247
-
-
Davis, M.A.1
Williams, P.E.2
Cherrington, A.D.3
-
35
-
-
84863614868
-
Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation
-
Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell. 2012;11:23-35.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 23-35
-
-
Wang, J.1
Gallagher, D.2
Devito, L.M.3
-
36
-
-
2942729543
-
Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
-
Zhou XY, Shibusawa N, Naik K, et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med. 2004;10:633-637.
-
(2004)
Nat Med
, vol.10
, pp. 633-637
-
-
Zhou, X.Y.1
Shibusawa, N.2
Naik, K.3
-
37
-
-
0019443073
-
In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose
-
Boyd ME, Albright EB, Foster DW, McGarry JD. In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose. J Clin Invest. 1981;68:142-152.
-
(1981)
J Clin Invest
, vol.68
, pp. 142-152
-
-
Boyd, M.E.1
Albright, E.B.2
Foster, D.W.3
McGarry, J.D.4
-
38
-
-
0017144797
-
Stimulation of hepatic glycogen synthesis by amino acids
-
Katz J, Golden S, Wals PA. Stimulation of hepatic glycogen synthesis by amino acids. Proc Natl Acad Sci USA. 1976;73:3433-3437.
-
(1976)
Proc Natl Acad Sci USA
, vol.73
, pp. 3433-3437
-
-
Katz, J.1
Golden, S.2
Wals, P.A.3
-
39
-
-
0036293648
-
FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis
-
Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab. 2002;283:E12-E19.
-
(2002)
Am J Physiol Endocrinol Metab
, vol.283
-
-
Boden, G.1
Cheung, P.2
Stein, T.P.3
Kresge, K.4
Mozzoli, M.5
-
40
-
-
0042320958
-
Higher insulin concentrations are required to suppress gluconeogenesis than glycogenolysis in nondiabetic humans
-
Adkins A, Basu R, Persson M, et al. Higher insulin concentrations are required to suppress gluconeogenesis than glycogenolysis in nondiabetic humans. Diabetes. 2003;52:2213-2220.
-
(2003)
Diabetes
, vol.52
, pp. 2213-2220
-
-
Adkins, A.1
Basu, R.2
Persson, M.3
-
41
-
-
53349142351
-
Regulation of hepatic glucose production and the role of gluconeogenesis in humans: Is the rate of gluconeogenesis constant?
-
Nuttall FQ, Ngo A, Gannon MC. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev. 2008;24:438-458.
-
(2008)
Diabetes Metab Res Rev
, vol.24
, pp. 438-458
-
-
Nuttall, F.Q.1
Ngo, A.2
Gannon, M.C.3
-
42
-
-
78049259220
-
Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy
-
Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes. 2010;59: 2697-2707.
-
(2010)
Diabetes
, vol.59
, pp. 2697-2707
-
-
Rizza, R.A.1
-
43
-
-
9444262473
-
Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes
-
Krssak M, Brehm A, Bernroider E, et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 2004;53: 3048-3056.
-
(2004)
Diabetes
, vol.53
, pp. 3048-3056
-
-
Krssak, M.1
Brehm, A.2
Bernroider, E.3
-
44
-
-
0026488079
-
Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study
-
Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992;90:1323-1327.
-
(1992)
J Clin Invest
, vol.90
, pp. 1323-1327
-
-
Magnusson, I.1
Rothman, D.L.2
Katz, L.D.3
Shulman, R.G.4
Shulman, G.I.5
-
45
-
-
0000904847
-
Hepatic enzyme activities of glycolysisand gluconeogenesis in diabetes of man and laboratory animals
-
Willms B, Ben-Ami P, Soling HD. Hepatic enzyme activities of glycolysisand gluconeogenesis in diabetes of man and laboratory animals. Horm Metab Res. 1970;2:135-141.
-
(1970)
Horm Metab Res
, vol.2
, pp. 135-141
-
-
Willms, B.1
Ben-Ami, P.2
Soling, H.D.3
-
46
-
-
0034034229
-
Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes
-
CBP, CREB-binding protein; CRE, cAMP response element; CREB, CRE-binding protein; GS, glycogen synthase; shRNA, short hairpin RNA; WT, wild type
-
Clore JN, Stillman J, Sugerman H. Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes. 2000;49:969-974. CBP, CREB-binding protein; CRE, cAMP response element; CREB, CRE-binding protein; GS, glycogen synthase; shRNA, short hairpin RNA; WT, wild type.
-
(2000)
Diabetes
, vol.49
, pp. 969-974
-
-
Clore, J.N.1
Stillman, J.2
Sugerman, H.3
|