-
1
-
-
0034930079
-
Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae
-
Rambourg A, Jackson CL, Clermont Y. Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae. J Cell Sci. 2001;114(Pt 12): 2231–2239.
-
(2001)
J Cell Sci
, vol.114
, Issue.12
, pp. 2231-2239
-
-
Rambourg, A.1
Jackson, C.L.2
Clermont, Y.3
-
2
-
-
0027056183
-
Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy
-
Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell. 1992;3(7): 789–803.
-
(1992)
Mol Biol Cell
, vol.3
, Issue.7
, pp. 789-803
-
-
Preuss, D.1
Mulholland, J.2
Franzusoff, A.3
Segev, N.4
Botstein, D.5
-
3
-
-
40349094722
-
3-D ultrastructure of O. Tauri: Electron cryotomography of an entire eukaryotic cell
-
Henderson GP, Gan L, Jensen GJ. 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One. 2007; 2(1):e749.
-
(2007)
Plos One
, vol.2
, Issue.1
-
-
Henderson, G.P.1
Gan, L.2
Jensen, G.J.3
-
4
-
-
0036682223
-
Golgi biogenesis in Toxoplasma gondii
-
Pelletier L, Stern CA, Pypaert M, et al. Golgi biogenesis in Toxoplasma gondii. Nature. 2002;418(6897):548–552.
-
(2002)
Nature
, vol.418
, Issue.6897
, pp. 548-552
-
-
Pelletier, L.1
Stern, C.A.2
Pypaert, M.3
-
5
-
-
33846936825
-
Golgi biogenesis in simple eukaryotes
-
He CY. Golgi biogenesis in simple eukaryotes. Cell Microbiol. 2007; 9(3):566–572.
-
(2007)
Cell Microbiol
, vol.9
, Issue.3
, pp. 566-572
-
-
He, C.Y.1
-
6
-
-
2442451357
-
Golgi duplication in Trypanosoma brucei
-
He CY, Ho HH, Malsam J, et al. Golgi duplication in Trypanosoma brucei. J Cell Biol. 2004;165(3):313–321.
-
(2004)
J Cell Biol
, vol.165
, Issue.3
, pp. 313-321
-
-
He, C.Y.1
Ho, H.H.2
Malsam, J.3
-
8
-
-
0033526048
-
Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae
-
Rossanese OW, Soderholm J, Bevis BJ, et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol. 1999;145(1):69–81.
-
(1999)
J Cell Biol
, vol.145
, Issue.1
, pp. 69-81
-
-
Rossanese, O.W.1
Soderholm, J.2
Bevis, B.J.3
-
9
-
-
0038647481
-
Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris
-
Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA. Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell. 2003;14(6):2277–2291.
-
(2003)
Mol Biol Cell
, vol.14
, Issue.6
, pp. 2277-2291
-
-
Mogelsvang, S.1
Gomez-Ospina, N.2
Soderholm, J.3
Glick, B.S.4
Staehelin, L.A.5
-
10
-
-
20444386846
-
The plant Golgi apparatus – going with the flow
-
Hawes C, Satiat-Jeunemaitre B. The plant Golgi apparatus – going with the flow. Biochim Biophys Acta. 2005;1744(2):93–107.
-
(2005)
Biochim Biophys Acta
, vol.1744
, Issue.2
, pp. 93-107
-
-
Hawes, C.1
Satiat-Jeunemaitre, B.2
-
11
-
-
3142706602
-
Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells
-
daSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell. 2004;16(7):1753–1771.
-
(2004)
Plant Cell
, vol.16
, Issue.7
, pp. 1753-1771
-
-
Dasilva, L.L.1
Snapp, E.L.2
Denecke, J.3
Lippincott-Schwartz, J.4
Hawes, C.5
Brandizzi, F.6
-
12
-
-
0042672956
-
A novel role for dp115 in the organization of tER sites in Drosophila
-
Kondylis V, Rabouille C. A novel role for dp115 in the organization of tER sites in Drosophila. J Cell Biol. 2003;162(2):185–198.
-
(2003)
J Cell Biol
, vol.162
, Issue.2
, pp. 185-198
-
-
Kondylis, V.1
Rabouille, C.2
-
13
-
-
0037223631
-
The Golgi apparatus at the cell centre
-
Rios RM, Bornens M. The Golgi apparatus at the cell centre. Curr Opin Cell Biol. 2003;15(1):60–66.
-
(2003)
Curr Opin Cell Biol
, vol.15
, Issue.1
, pp. 60-66
-
-
Rios, R.M.1
Bornens, M.2
-
15
-
-
0033526005
-
GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein
-
Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol. 1999;145(1):83–98.
-
(1999)
J Cell Biol
, vol.145
, Issue.1
, pp. 83-98
-
-
Infante, C.1
Ramos-Morales, F.2
Fedriani, C.3
Bornens, M.4
Rios, R.M.5
-
16
-
-
0033546152
-
Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus
-
Takahashi M, Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y. Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus. J Biol Chem. 1999;274(24):17267–17274.
-
(1999)
J Biol Chem
, vol.274
, Issue.24
, pp. 17267-17274
-
-
Takahashi, M.1
Shibata, H.2
Shimakawa, M.3
Miyamoto, M.4
Mukai, H.5
Ono, Y.6
-
17
-
-
84904568128
-
The centrosome-Golgi apparatus nexus
-
Rios RM. The centrosome-Golgi apparatus nexus. Philos Trans R Soc Lond B Biol Sci. 2014;369(1650):20130462.
-
(2014)
Philos Trans R Soc Lond B Biol Sci
, vol.369
, Issue.1650
-
-
Rios, R.M.1
-
18
-
-
70349334137
-
Mitotic division of the mammalian Golgi apparatus
-
Wei JH, Seemann J. Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol. 2009;20(7):810–816.
-
(2009)
Semin Cell Dev Biol
, vol.20
, Issue.7
, pp. 810-816
-
-
Wei, J.H.1
Seemann, J.2
-
19
-
-
0742289586
-
Microtubule organization and function in epithelial cells
-
Müsch A. Microtubule organization and function in epithelial cells. Traffic. 2004;5(1):1–9.
-
(2004)
Traffic
, vol.5
, Issue.1
, pp. 1-9
-
-
Müsch, A.1
-
20
-
-
0035158716
-
Golgi complex reorganization during muscle differentiation: Visualization in living cells and mechanism
-
Lu Z, Joseph D, Bugnard E, Zaal KJ, Ralston E. Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol Biol Cell. 2001;12(4):795–808.
-
(2001)
Mol Biol Cell
, vol.12
, Issue.4
, pp. 795-808
-
-
Lu, Z.1
Joseph, D.2
Bugnard, E.3
Zaal, K.J.4
Ralston, E.5
-
21
-
-
84887519097
-
Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements
-
Oddoux S, Zaal KJ, Tate V, et al. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol. 2013;203(2):205–213.
-
(2013)
J Cell Biol
, vol.203
, Issue.2
, pp. 205-213
-
-
Oddoux, S.1
Zaal, K.J.2
Tate, V.3
-
22
-
-
84872696532
-
Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons
-
Ori-McKenney KM, Jan LY, Jan YN. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron. 2012;76(5):921–930.
-
(2012)
Neuron
, vol.76
, Issue.5
, pp. 921-930
-
-
Ori-McKenney, K.M.1
Jan, L.Y.2
Jan, Y.N.3
-
23
-
-
84855602576
-
Interplay between microtubule dynamics and intracellular organization
-
de Forges H, Bouissou A, Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol. 2012;44(2):266–274.
-
(2012)
Int J Biochem Cell Biol
, vol.44
, Issue.2
, pp. 266-274
-
-
De Forges, H.1
Bouissou, A.2
Perez, F.3
-
24
-
-
84887467245
-
Actin acting at the Golgi
-
Egea G, Serra-Peinado C, Salcedo-Sicilia L, Gutiérrez-Martínez E. Actin acting at the Golgi. Histochem Cell Biol. 2013;140(3):347–360.
-
(2013)
Histochem Cell Biol
, vol.140
, Issue.3
, pp. 347-360
-
-
Egea, G.1
Serra-Peinado, C.2
Salcedo-Sicilia, L.3
Gutiérrez-Martínez, E.4
-
26
-
-
84904886465
-
Connecting the cytoskeleton to the endoplasmic reticulum and Golgi
-
Gurel PS, Hatch AL, Higgs HN. Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr Biol. 2014;24(14): R660–R672.
-
(2014)
Curr Biol
, vol.24
, Issue.14
, pp. R660-R672
-
-
Gurel, P.S.1
Hatch, A.L.2
Higgs, H.N.3
-
27
-
-
27744556965
-
Cellular integrity plus: Organelle-related and protein-targeting functions of intermediate filaments
-
Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 2005;15(11):608–617.
-
(2005)
Trends Cell Biol
, vol.15
, Issue.11
, pp. 608-617
-
-
Toivola, D.M.1
Tao, G.Z.2
Habtezion, A.3
Liao, J.4
Omary, M.B.5
-
28
-
-
0033080404
-
Role of microtubules in the organization of the Golgi complex
-
Thyberg J, Moskalewski S. Role of microtubules in the organization of the Golgi complex. Exp Cell Res. 1999;246(2):263–279.
-
(1999)
Exp Cell Res
, vol.246
, Issue.2
, pp. 263-279
-
-
Thyberg, J.1
Moskalewski, S.2
-
29
-
-
0029972823
-
Golgi dispersal during microtubule disruption: Regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites
-
Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell. 1996;7(4):631–650.
-
(1996)
Mol Biol Cell
, vol.7
, Issue.4
, pp. 631-650
-
-
Cole, N.B.1
Sciaky, N.2
Marotta, A.3
Song, J.4
Lippincott-Schwartz, J.5
-
30
-
-
84887484404
-
Golgi as an MTOC: Making microtubules for its own good
-
Zhu X, Kaverina I. Golgi as an MTOC: making microtubules for its own good. Histochem Cell Biol. 2013;140(3):361–367.
-
(2013)
Histochem Cell Biol
, vol.140
, Issue.3
, pp. 361-367
-
-
Zhu, X.1
Kaverina, I.2
-
31
-
-
0035956989
-
Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography
-
Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci U S A. 2001;98(5):2399–2406.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.5
, pp. 2399-2406
-
-
Marsh, B.J.1
Mastronarde, D.N.2
Buttle, K.F.3
Howell, K.E.4
McIntosh, J.R.5
-
32
-
-
0030955328
-
ER-to-Golgi transport visualized in living cells
-
Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J. ER-to-Golgi transport visualized in living cells. Nature. 1997;389(6646):81–85.
-
(1997)
Nature
, vol.389
, Issue.6646
, pp. 81-85
-
-
Presley, J.F.1
Cole, N.B.2
Schroer, T.A.3
Hirschberg, K.4
Zaal, K.J.5
Lippincott-Schwartz, J.6
-
33
-
-
0030782188
-
Golgi tubule traffic and the effects of brefeldin A visualized in living cells
-
Sciaky N, Presley J, Smith C, et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol. 1997;139(5): 1137–1155.
-
(1997)
J Cell Biol
, vol.139
, Issue.5
, pp. 1137-1155
-
-
Sciaky, N.1
Presley, J.2
Smith, C.3
-
34
-
-
0030928782
-
Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI
-
Scales SJ, Pepperkok R, Kreis TE. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell. 1997;90(6):1137–1148.
-
(1997)
Cell
, vol.90
, Issue.6
, pp. 1137-1148
-
-
Scales, S.J.1
Pepperkok, R.2
Kreis, T.E.3
-
35
-
-
30044439559
-
Cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules
-
Mardones GA, Snyder CM, Howell KE. Cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules. Mol Biol Cell. 2006;17(1):525–538.
-
(2006)
Mol Biol Cell
, vol.17
, Issue.1
, pp. 525-538
-
-
Mardones, G.A.1
Snyder, C.M.2
Howell, K.E.3
-
36
-
-
7944220328
-
Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments
-
Trucco A, Polishchuk RS, Martella O, et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol. 2004;6(11):1071–1081.
-
(2004)
Nat Cell Biol
, vol.6
, Issue.11
, pp. 1071-1081
-
-
Trucco, A.1
Polishchuk, R.S.2
Martella, O.3
-
37
-
-
79952811199
-
A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells
-
Tängemo C, Ronchi P, Colombelli J, et al. A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells. J Cell Sci. 2011;124(6):978–987.
-
(2011)
J Cell Sci
, vol.124
, Issue.6
, pp. 978-987
-
-
Tängemo, C.1
Ronchi, P.2
Colombelli, J.3
-
38
-
-
33751534800
-
The dynein family at a glance
-
Hook P, Vallee RB. The dynein family at a glance. J Cell Sci. 2006; 119(Pt 21):4369–4371.
-
(2006)
J Cell Sci
, vol.119
, Issue.21
, pp. 4369-4371
-
-
Hook, P.1
Vallee, R.B.2
-
39
-
-
84887859097
-
Dynein, microtubule and cargo: A ménage à trois
-
Pavin N, Tolić-Nørrelykke IM. Dynein, microtubule and cargo: a ménage à trois. Biochem Soc Trans. 2013;41(6):1731–1735.
-
(2013)
Biochem Soc Trans
, vol.41
, Issue.6
, pp. 1731-1735
-
-
Pavin, N.1
Tolić-Nørrelykke, I.M.2
-
40
-
-
0026760941
-
Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex
-
Corthésy-Theulaz I, Pauloin A, Pfeffer SR. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol. 1992;118(6):1333–1345.
-
(1992)
J Cell Biol
, vol.118
, Issue.6
, pp. 1333-1345
-
-
Corthésy-Theulaz, I.1
Pauloin, A.2
Pfeffer, S.R.3
-
41
-
-
0032489870
-
Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein
-
Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol. 1998;141(1):51–59.
-
(1998)
J Cell Biol
, vol.141
, Issue.1
, pp. 51-59
-
-
Harada, A.1
Takei, Y.2
Kanai, Y.3
Tanaka, Y.4
Nonaka, S.5
Hirokawa, N.6
-
42
-
-
33750932783
-
A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex
-
Stauber T, Simpson JC, Pepperkok R, Vernos I. A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol. 2006;16(22):2245–2251.
-
(2006)
Curr Biol
, vol.16
, Issue.22
, pp. 2245-2251
-
-
Stauber, T.1
Simpson, J.C.2
Pepperkok, R.3
Vernos, I.4
-
43
-
-
0028926583
-
Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic
-
Lippincott-Schwartz J, Cole NB, Marotta A, Conrad PA, Bloom GS. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol. 1995;128(3):293–306.
-
(1995)
J Cell Biol
, vol.128
, Issue.3
, pp. 293-306
-
-
Lippincott-Schwartz, J.1
Cole, N.B.2
Marotta, A.3
Conrad, P.A.4
Bloom, G.S.5
-
44
-
-
67449164805
-
Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps
-
Palmer KJ, Hughes H, Stephens DJ. Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps. Mol Biol Cell. 2009;20(12):2885–2899.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.12
, pp. 2885-2899
-
-
Palmer, K.J.1
Hughes, H.2
Stephens, D.J.3
-
45
-
-
84979578219
-
Opposing microtubule motors control motility, morphology and cargo segregation during ER-to-Golgi transport
-
Brown AK, Hunt SD, Stephens DJ. Opposing microtubule motors control motility, morphology and cargo segregation during ER-to-Golgi transport. Biol Open. 2014;3(5):307–313.
-
(2014)
Biol Open
, vol.3
, Issue.5
, pp. 307-313
-
-
Brown, A.K.1
Hunt, S.D.2
Stephens, D.J.3
-
46
-
-
33749015997
-
Microtubule motors at the intersection of trafficking and transport
-
Caviston JP, Holzbaur EL. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 2006;16(10):530–537.
-
(2006)
Trends Cell Biol
, vol.16
, Issue.10
, pp. 530-537
-
-
Caviston, J.P.1
Holzbaur, E.L.2
-
47
-
-
84908488959
-
Integrated regulation of motor-driven organelle transport by scaffolding proteins
-
Fu MM, Holzbaur EL. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 2014;24(10): 564–574.
-
(2014)
Trends Cell Biol
, vol.24
, Issue.10
, pp. 564-574
-
-
Fu, M.M.1
Holzbaur, E.L.2
-
49
-
-
0030727535
-
Overexpression of the dynamitin (P50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution
-
Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol. 1997;139(2):469–484.
-
(1997)
J Cell Biol
, vol.139
, Issue.2
, pp. 469-484
-
-
Burkhardt, J.K.1
Echeverri, C.J.2
Nilsson, T.3
Vallee, R.B.4
-
50
-
-
0032701651
-
Dynactin is required for microtubule anchoring at centrosomes
-
Quintyne NJ, Gill SR, Eckley DM, Crego CL, Compton DA, Schroer TA. Dynactin is required for microtubule anchoring at centrosomes. J Cell Biol. 1999;147(2):321–334.
-
(1999)
J Cell Biol
, vol.147
, Issue.2
, pp. 321-334
-
-
Quintyne, N.J.1
Gill, S.R.2
Eckley, D.M.3
Crego, C.L.4
Compton, D.A.5
Schroer, T.A.6
-
51
-
-
12344277564
-
Coupling of ER exit to microtubules through direct interaction of COPII with dynactin
-
Watson P, Forster R, Palmer KJ, Pepperkok R, Stephens DJ. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol. 2005;7(1):48–55.
-
(2005)
Nat Cell Biol
, vol.7
, Issue.1
, pp. 48-55
-
-
Watson, P.1
Forster, R.2
Palmer, K.J.3
Pepperkok, R.4
Stephens, D.J.5
-
52
-
-
0037415607
-
Dynactin is required for bidirectional organelle transport
-
Deacon SW, Serpinskaya AS, Vaughan PS, et al. Dynactin is required for bidirectional organelle transport. J Cell Biol. 2003;160(3): 297–301.
-
(2003)
J Cell Biol
, vol.160
, Issue.3
, pp. 297-301
-
-
Deacon, S.W.1
Serpinskaya, A.S.2
Vaughan, P.S.3
-
53
-
-
33744826279
-
Processive bidirectional motion of dynein-dynactin complexes in vitro
-
Ross JL, Wallace K, Shuman H, Goldman YE, Holzbaur EL. Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat Cell Biol. 2006;8(6):562–570.
-
(2006)
Nat Cell Biol
, vol.8
, Issue.6
, pp. 562-570
-
-
Ross, J.L.1
Wallace, K.2
Shuman, H.3
Goldman, Y.E.4
Holzbaur, E.L.5
-
54
-
-
34250306791
-
Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment
-
Haghnia M, Cavalli V, Shah SB, et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell. 2007;18(6):2081–2089.
-
(2007)
Mol Biol Cell
, vol.18
, Issue.6
, pp. 2081-2089
-
-
Haghnia, M.1
Cavalli, V.2
Shah, S.B.3
-
55
-
-
33846199544
-
Dynactin enhances the processivity of kinesin-2
-
Berezuk MA, Schroer TA. Dynactin enhances the processivity of kinesin-2. Traffic. 2007;8(2):124–129.
-
(2007)
Traffic
, vol.8
, Issue.2
, pp. 124-129
-
-
Berezuk, M.A.1
Schroer, T.A.2
-
56
-
-
3142642871
-
Bidirectional transport along microtubules
-
Welte MA. Bidirectional transport along microtubules. Curr Biol. 2004;14(13):R525–R537.
-
(2004)
Curr Biol
, vol.14
, Issue.13
, pp. R525-R537
-
-
Welte, M.A.1
-
57
-
-
0035422303
-
Mammalian Golgi-associated bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes
-
Hoogenraad CC, Akhmanova A, Howell SA, et al. Mammalian Golgi-associated bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J. 2001;20(15):4041–4054.
-
(2001)
EMBO J
, vol.20
, Issue.15
, pp. 4041-4054
-
-
Hoogenraad, C.C.1
Akhmanova, A.2
Howell, S.A.3
-
58
-
-
0036902478
-
Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex
-
Matanis T, Akhmanova A, Wulf P, et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol. 2002;4(12):986–992.
-
(2002)
Nat Cell Biol
, vol.4
, Issue.12
, pp. 986-992
-
-
Matanis, T.1
Akhmanova, A.2
Wulf, P.3
-
59
-
-
84868250529
-
BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures
-
Splinter D, Razafsky DS, Schlager MA, et al. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell. 2012;23(21):4226–4241.
-
(2012)
Mol Biol Cell
, vol.23
, Issue.21
, pp. 4226-4241
-
-
Splinter, D.1
Razafsky, D.S.2
Schlager, M.A.3
-
60
-
-
11144265757
-
Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’
-
Young J, Stauber T, del Nery E, Vernos I, Pepperkok R, Nilsson T. Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’. Mol Biol Cell. 2005;16(1):162–177.
-
(2005)
Mol Biol Cell
, vol.16
, Issue.1
, pp. 162-177
-
-
Young, J.1
Stauber, T.2
Del Nery, E.3
Vernos, I.4
Pepperkok, R.5
Nilsson, T.6
-
61
-
-
34547414652
-
Rab6 regulates transport and targeting of exocytotic carriers
-
Grigoriev I, Splinter D, Keijzer N, et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell. 2007;13(2):305–314.
-
(2007)
Dev Cell
, vol.13
, Issue.2
, pp. 305-314
-
-
Grigoriev, I.1
Splinter, D.2
Keijzer, N.3
-
62
-
-
34247282758
-
Functional symmetry of endomembranes
-
Saraste J, Goud B. Functional symmetry of endomembranes. Mol Biol Cell. 2007;18(4):1430–1436.
-
(2007)
Mol Biol Cell
, vol.18
, Issue.4
, pp. 1430-1436
-
-
Saraste, J.1
Goud, B.2
-
63
-
-
65249115901
-
A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing
-
Yadav S, Puri S, Linstedt AD. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell. 2009;20(6):1728–1736.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.6
, pp. 1728-1736
-
-
Yadav, S.1
Puri, S.2
Linstedt, A.D.3
-
64
-
-
4043107077
-
GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation
-
Ríos RM, Sanchís A, Tassin AM, Fedriani C, Bornens M. GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell. 2004;118(3):323–335.
-
(2004)
Cell
, vol.118
, Issue.3
, pp. 323-335
-
-
Ríos, R.M.1
Sanchís, A.2
Tassin, A.M.3
Fedriani, C.4
Bornens, M.5
-
65
-
-
84864004215
-
Golgin160 recruits the dynein motor to position the Golgi apparatus
-
Yadav S, Puthenveedu MA, Linstedt AD. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell. 2012;23(1): 153–165.
-
(2012)
Dev Cell
, vol.23
, Issue.1
, pp. 153-165
-
-
Yadav, S.1
Puthenveedu, M.A.2
Linstedt, A.D.3
-
66
-
-
43249126878
-
Asymmetric tethering of flat and curved lipid membranes by a golgin
-
Drin G, Morello V, Casella JF, Gounon P, Antonny B. Asymmetric tethering of flat and curved lipid membranes by a golgin. Science. 2008;320(5876):670–673.
-
(2008)
Science
, vol.320
, Issue.5876
, pp. 670-673
-
-
Drin, G.1
Morello, V.2
Casella, J.F.3
Gounon, P.4
Antonny, B.5
-
67
-
-
70350029562
-
Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms
-
Cardenas J, Rivero S, Goud B, Bornens M, Rios RM. Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms. BMC Biol. 2009;7:56.
-
(2009)
BMC Biol
, vol.7
, pp. 56
-
-
Cardenas, J.1
Rivero, S.2
Goud, B.3
Bornens, M.4
Rios, R.M.5
-
68
-
-
33846956769
-
A general amphipathic alpha-helical motif for sensing membrane curvature
-
Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol. 2007;14(2):138–146.
-
(2007)
Nat Struct Mol Biol
, vol.14
, Issue.2
, pp. 138-146
-
-
Drin, G.1
Casella, J.F.2
Gautier, R.3
Boehmer, T.4
Schwartz, T.U.5
Antonny, B.6
-
69
-
-
7244248570
-
The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi
-
Gillingham AK, Tong AH, Boone C, Munro S. The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J Cell Biol. 2004;167(2):281–292.
-
(2004)
J Cell Biol
, vol.167
, Issue.2
, pp. 281-292
-
-
Gillingham, A.K.1
Tong, A.H.2
Boone, C.3
Munro, S.4
-
70
-
-
84856290771
-
The centrosome in cells and organisms
-
Bornens M. The centrosome in cells and organisms. Science. 2012; 335(6067):422–426.
-
(2012)
Science
, vol.335
, Issue.6067
, pp. 422-426
-
-
Bornens, M.1
-
71
-
-
34249305474
-
Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network
-
Efimov A, Kharitonov A, Efimova N, et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell. 2007;12(6):917–930.
-
(2007)
Dev Cell
, vol.12
, Issue.6
, pp. 917-930
-
-
Efimov, A.1
Kharitonov, A.2
Efimova, N.3
-
72
-
-
0035153908
-
The Golgi complex is a microtubule-organizing organelle
-
Chabin-Brion K, Marceiller J, Perez F, et al. The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell. 2001;12(7): 2047–2060.
-
(2001)
Mol Biol Cell
, vol.12
, Issue.7
, pp. 2047-2060
-
-
Chabin-Brion, K.1
Marceiller, J.2
Perez, F.3
-
73
-
-
28544433842
-
Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm
-
Malikov V, Cytrynbaum EN, Kashina A, Mogilner A, Rodionov V. Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nat Cell Biol. 2005; 7(12):1213–1218.
-
(2005)
Nat Cell Biol
, vol.7
, Issue.12
, pp. 1213-1218
-
-
Malikov, V.1
Cytrynbaum, E.N.2
Kashina, A.3
Mogilner, A.4
Rodionov, V.5
-
74
-
-
67349287493
-
Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130
-
Rivero S, Cardenas J, Bornens M, Rios RM. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. 2009;28(8):1016–1028.
-
(2009)
EMBO J
, vol.28
, Issue.8
, pp. 1016-1028
-
-
Rivero, S.1
Cardenas, J.2
Bornens, M.3
Rios, R.M.4
-
75
-
-
0036736094
-
Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex
-
Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell. 2002; 13(9):3235–3245.
-
(2002)
Mol Biol Cell
, vol.13
, Issue.9
, pp. 3235-3245
-
-
Takahashi, M.1
Yamagiwa, A.2
Nishimura, T.3
Mukai, H.4
Ono, Y.5
-
76
-
-
79959480895
-
Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis
-
Hurtado L, Caballero C, Gavilan MP, Cardenas J, Bornens M, Rios RM. Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. J Cell Biol. 2011;193(5):917–933.
-
(2011)
J Cell Biol
, vol.193
, Issue.5
, pp. 917-933
-
-
Hurtado, L.1
Caballero, C.2
Gavilan, M.P.3
Cardenas, J.4
Bornens, M.5
Rios, R.M.6
-
77
-
-
77954615930
-
Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex
-
Wang Z, Wu T, Shi L, et al. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem. 2010;285(29):22658–22665.
-
(2010)
J Biol Chem
, vol.285
, Issue.29
, pp. 22658-22665
-
-
Wang, Z.1
Wu, T.2
Shi, L.3
-
78
-
-
84965053078
-
Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules
-
Roubin R, Acquaviva C, Chevrier V, et al. Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules. Biol Open. 2013;2(2):238–250.
-
(2013)
Biol Open
, vol.2
, Issue.2
, pp. 238-250
-
-
Roubin, R.1
Acquaviva, C.2
Chevrier, V.3
-
79
-
-
77950566340
-
CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response
-
Barr AR, Kilmartin JV, Gergely F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J Cell Biol. 2010;189(1):23–39.
-
(2010)
J Cell Biol
, vol.189
, Issue.1
, pp. 23-39
-
-
Barr, A.R.1
Kilmartin, J.V.2
Gergely, F.3
-
80
-
-
84911956027
-
A novel myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport
-
Wang Z, Zhang C, Qi RZ. A novel myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport. J Cell Sci. 2014;127(22):4904–4917.
-
(2014)
J Cell Sci
, vol.127
, Issue.22
, pp. 4904-4917
-
-
Wang, Z.1
Zhang, C.2
Qi, R.Z.3
-
81
-
-
78650115459
-
CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex
-
Choi YK, Liu P, Sze SK, Dai C, Qi RZ. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex. J Cell Biol. 2010;191(6):1089–1095.
-
(2010)
J Cell Biol
, vol.191
, Issue.6
, pp. 1089-1095
-
-
Choi, Y.K.1
Liu, P.2
Sze, S.K.3
Dai, C.4
Qi, R.Z.5
-
82
-
-
38749152785
-
CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex
-
Fong KW, Choi YK, Rattner JB, Qi RZ. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol Biol Cell. 2008;19(1):115–125.
-
(2008)
Mol Biol Cell
, vol.19
, Issue.1
, pp. 115-125
-
-
Fong, K.W.1
Choi, Y.K.2
Rattner, J.B.3
Qi, R.Z.4
-
83
-
-
0035815666
-
Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase
-
Verde I, Pahlke G, Salanova M, et al. Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem. 2001;276(14):11189–11198.
-
(2001)
J Biol Chem
, vol.276
, Issue.14
, pp. 11189-11198
-
-
Verde, I.1
Pahlke, G.2
Salanova, M.3
-
84
-
-
33847624241
-
Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex
-
Kim HS, Takahashi M, Matsuo K, Ono Y. Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex. Genes Cells. 2007;12(3):421–434.
-
(2007)
Genes Cells
, vol.12
, Issue.3
, pp. 421-434
-
-
Kim, H.S.1
Takahashi, M.2
Matsuo, K.3
Ono, Y.4
-
85
-
-
31944450657
-
Complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring
-
Yan X, Habedanck R, Nigg EA. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol Biol Cell. 2006;17(2):634–644.
-
(2006)
Mol Biol Cell
, vol.17
, Issue.2
, pp. 634-644
-
-
Yan, X.1
Habedanck, R.2
Nigg, E.3
-
86
-
-
35548937762
-
Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex
-
Hoppeler-Lebel A, Celati C, Bellett G, et al. Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci. 2007;120(Pt 18):3299–3308.
-
(2007)
J Cell Sci
, vol.120
, Issue.18
, pp. 3299-3308
-
-
Hoppeler-Lebel, A.1
Celati, C.2
Bellett, G.3
-
87
-
-
81755162751
-
PTTG1/securin modulates microtubule nucleation and cell migration
-
Moreno-Mateos MA, Espina AG, Torres B, et al. PTTG1/securin modulates microtubule nucleation and cell migration. Mol Biol Cell. 2011;22(22):4302–4311.
-
(2011)
Mol Biol Cell
, vol.22
, Issue.22
, pp. 4302-4311
-
-
Moreno-Mateos, M.A.1
Espina, A.G.2
Torres, B.3
-
88
-
-
84872598176
-
Modulation of Golgi-associated microtubule nucleation throughout the cell cycle
-
Maia AR, Zhu X, Miller P, Gu G, Maiato H, Kaverina I. Modulation of Golgi-associated microtubule nucleation throughout the cell cycle. Cytoskeleton (Hoboken). 2013;70(1):32–43.
-
(2013)
Cytoskeleton (Hoboken)
, vol.70
, Issue.1
, pp. 32-43
-
-
Maia, A.R.1
Zhu, X.2
Miller, P.3
Gu, G.4
Maiato, H.5
Kaverina, I.6
-
89
-
-
0029166933
-
Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata
-
Miller DD, Scordilis SP, Hepler PK. Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci. 1995;108(Pt 7):2549–2563.
-
(1995)
J Cell Sci
, vol.108
, Issue.7
, pp. 2549-2563
-
-
Miller, D.D.1
Scordilis, S.P.2
Hepler, P.K.3
-
90
-
-
69949178740
-
Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells
-
Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol. 2009;11(9):1069–1080.
-
(2009)
Nat Cell Biol
, vol.11
, Issue.9
, pp. 1069-1080
-
-
Miller, P.M.1
Folkmann, A.W.2
Maia, A.R.3
Efimova, N.4
Efimov, A.5
Kaverina, I.6
-
91
-
-
84862323152
-
The Golgi in cell migration: Regulation by signal transduction and its implications for cancer cell metastasis
-
Millarte V, Farhan H. The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. Scientific World Journal. 2012;2012:498278.
-
(2012)
Scientific World Journal
, vol.2012
-
-
Millarte, V.1
Farhan, H.2
-
92
-
-
0033574528
-
Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles
-
Heimann K, Percival JM, Weinberger R, Gunning P, Stow JL. Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles. J Biol Chem. 1999;274(16):10743–10750.
-
(1999)
J Biol Chem
, vol.274
, Issue.16
, pp. 10743-10750
-
-
Heimann, K.1
Percival, J.M.2
Weinberger, R.3
Gunning, P.4
Stow, J.L.5
-
93
-
-
0032773274
-
Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements
-
di Campli A, Valderrama F, Babià T, De Matteis MA, Luini A, Egea G. Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil Cytoskeleton. 1999;43(4):334–348.
-
(1999)
Cell Motil Cytoskeleton
, vol.43
, Issue.4
, pp. 334-348
-
-
Di Campli, A.1
Valderrama, F.2
Babià, T.3
De Matteis, M.A.4
Luini, A.5
Egea, G.6
-
94
-
-
33751163972
-
Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH
-
Lázaro-Diéguez F, Jiménez N, Barth H, et al. Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton. 2006;63(12):778–791.
-
(2006)
Cell Motil Cytoskeleton
, vol.63
, Issue.12
, pp. 778-791
-
-
Lázaro-Diéguez, F.1
Jiménez, N.2
Barth, H.3
-
95
-
-
0031779777
-
Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex
-
Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G. Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol. 1998;76(1):9–17.
-
(1998)
Eur J Cell Biol
, vol.76
, Issue.1
, pp. 9-17
-
-
Valderrama, F.1
Babia, T.2
Ayala, I.3
Kok, J.W.4
Renau-Piqueras, J.5
Egea, G.6
-
96
-
-
0034800091
-
Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells
-
Valderrama F, Durán JM, Babià T, Barth H, Renau-Piqueras J, Egea G. Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic. 2001;2(10):717–726.
-
(2001)
Traffic
, vol.2
, Issue.10
, pp. 717-726
-
-
Valderrama, F.1
Durán, J.M.2
Babià, T.3
Barth, H.4
Renau-Piqueras, J.5
Egea, G.6
-
97
-
-
0034652215
-
The Golgi-associated COPI-coated buds and vesicles contain beta/gamma-actin
-
Valderrama F, Luna A, Babià T, et al. The Golgi-associated COPI-coated buds and vesicles contain beta/gamma-actin. Proc Natl Acad Sci U S A. 2000;97(4):1560–1565.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.4
, pp. 1560-1565
-
-
Valderrama, F.1
Luna, A.2
Babià, T.3
-
98
-
-
46149096223
-
WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport
-
Campellone KG, Webb NJ, Znameroski EA, Welch MD. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell. 2008;134(1):148–161.
-
(2008)
Cell
, vol.134
, Issue.1
, pp. 148-161
-
-
Campellone, K.G.1
Webb, N.J.2
Znameroski, E.A.3
Welch, M.D.4
-
99
-
-
84866508744
-
Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology
-
Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken). 2012;69(9):625–643.
-
(2012)
Cytoskeleton (Hoboken)
, vol.69
, Issue.9
, pp. 625-643
-
-
Kirkbride, K.C.1
Hong, N.H.2
French, C.L.3
Clark, E.S.4
Jerome, W.G.5
Weaver, A.M.6
-
100
-
-
70349835304
-
GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding
-
Dippold HC, Ng MM, Farber-Katz SE, et al. GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell. 2009;139(2):337–351.
-
(2009)
Cell
, vol.139
, Issue.2
, pp. 337-351
-
-
Dippold, H.C.1
Ng, M.M.2
Farber-Katz, S.E.3
-
101
-
-
84875172714
-
GOLPH3L antagonizes GOLPH3 to determine Golgi morphology
-
Ng MM, Dippold HC, Buschman MD, Noakes CJ, Field SJ. GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Mol Biol Cell. 2013;24(6):796–808.
-
(2013)
Mol Biol Cell
, vol.24
, Issue.6
, pp. 796-808
-
-
Ng, M.M.1
Dippold, H.C.2
Buschman, M.D.3
Noakes, C.J.4
Field, S.J.5
-
102
-
-
80054046064
-
Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex
-
Colón-Franco JM, Gomez TS, Billadeau DD. Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex. J Cell Sci. 2011;124(Pt 18): 3118–3126.
-
(2011)
J Cell Sci
, vol.124
, Issue.18
, pp. 3118-3126
-
-
Colón-Franco, J.M.1
Gomez, T.S.2
Billadeau, D.D.3
-
103
-
-
84055217451
-
Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture
-
Ramabhadran V, Korobova F, Rahme GJ, Higgs HN. Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture. Mol Biol Cell. 2011;22(24):4822–4833.
-
(2011)
Mol Biol Cell
, vol.22
, Issue.24
, pp. 4822-4833
-
-
Ramabhadran, V.1
Korobova, F.2
Rahme, G.J.3
Higgs, H.N.4
-
104
-
-
80051677622
-
Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics
-
Zilberman Y, Alieva NO, Miserey-Lenkei S, et al. Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics. Mol Biol Cell. 2011;22(16):2900–2911.
-
(2011)
Mol Biol Cell
, vol.22
, Issue.16
, pp. 2900-2911
-
-
Zilberman, Y.1
Alieva, N.O.2
Miserey-Lenkei, S.3
-
105
-
-
0027993053
-
Golgi spectrin: Identification of an erythroid beta-spectrin homolog associated with the Golgi complex
-
Beck KA, Buchanan JA, Malhotra V, Nelson WJ. Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex. J Cell Biol. 1994;127(3):707–723.
-
(1994)
J Cell Biol
, vol.127
, Issue.3
, pp. 707-723
-
-
Beck, K.A.1
Buchanan, J.A.2
Malhotra, V.3
Nelson, W.J.4
-
106
-
-
0032516894
-
A spectrin membrane skeleton of the Golgi complex
-
Beck KA, Nelson WJ. A spectrin membrane skeleton of the Golgi complex. Biochim Biophys Acta. 1998;1404(1–2):153–160.
-
(1998)
Biochim Biophys Acta
, vol.1404
, Issue.1-2
, pp. 153-160
-
-
Beck, K.A.1
Nelson, W.J.2
-
107
-
-
0031975510
-
Speculating about spectrin: New insights into the Golgi-associated cytoskeleton
-
Holleran EA, Holzbaur EL. Speculating about spectrin: new insights into the Golgi-associated cytoskeleton. Trends Cell Biol. 1998; 8(1):26–29.
-
(1998)
Trends Cell Biol
, vol.8
, Issue.1
, pp. 26-29
-
-
Holleran, E.A.1
Holzbaur, E.L.2
-
108
-
-
13144266740
-
ADP ribosylation factor regulates spectrin binding to the Golgi complex
-
Godi A, Santone I, Pertile P, et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc Natl Acad Sci U S A. 1998;95(15):8607–8612.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, Issue.15
, pp. 8607-8612
-
-
Godi, A.1
Santone, I.2
Pertile, P.3
-
109
-
-
0033880909
-
Spectrin tethers and mesh in the biosynthetic pathway
-
De Matteis MA, Morrow JS. Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci. 2000;113(Pt 13):2331–2343.
-
(2000)
J Cell Sci
, vol.113
, Issue.13
, pp. 2331-2343
-
-
De Matteis, M.A.1
Morrow, J.S.2
-
110
-
-
84873867735
-
Jovic M, et al. βIII Spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex
-
Salcedo-Sicilia L, Granell S, Jovic M, et al. βIII Spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem. 2013;288(4):2157–2166.
-
(2013)
J Biol Chem
, vol.288
, Issue.4
, pp. 2157-2166
-
-
Salcedo-Sicilia, L.1
Granell, S.2
-
111
-
-
0032564278
-
A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles
-
Stankewich MC, Tse WT, Peters LL, et al. A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci U S A. 1998;95(24):14158–14163.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, Issue.24
, pp. 14158-14163
-
-
Stankewich, M.C.1
Tse, W.T.2
Peters, L.L.3
-
112
-
-
0030918480
-
Golgi membrane skeleton: Identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex
-
Beck KA, Buchanan JA, Nelson WJ. Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. J Cell Sci. 1997; 110(Pt 10):1239–1249.
-
(1997)
J Cell Sci
, vol.110
, Issue.10
, pp. 1239-1249
-
-
Beck, K.A.1
Buchanan, J.A.2
Nelson, W.J.3
-
113
-
-
0029898290
-
Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus
-
Devarajan P, Stabach PR, Mann AS, Ardito T, Kashgarian M, Morrow JS. Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. J Cell Biol. 1996;133(4):819–830.
-
(1996)
J Cell Biol
, vol.133
, Issue.4
, pp. 819-830
-
-
Devarajan, P.1
Stabach, P.R.2
Mann, A.S.3
Ardito, T.4
Kashgarian, M.5
Morrow, J.S.6
-
114
-
-
0030923518
-
Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells
-
Devarajan P, Stabach PR, De Matteis MA, Morrow JS. Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc Natl Acad Sci U S A. 1997;94(20): 10711–10716.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, Issue.20
, pp. 10711-10716
-
-
Devarajan, P.1
Stabach, P.R.2
De Matteis, M.A.3
Morrow, J.S.4
-
115
-
-
66849138216
-
A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane
-
Kang Q, Wang T, Zhang H, Mohandas N, An X. A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane. J Cell Sci. 2009;122(Pt 8):1091–1099.
-
(2009)
J Cell Sci
, vol.122
, Issue.8
, pp. 1091-1099
-
-
Kang, Q.1
Wang, T.2
Zhang, H.3
Mohandas, N.4
An, X.5
-
116
-
-
0035150705
-
Identification of the full-length AE2 (AE2a) isoform as the Golgi-associated anion exchanger in fibroblasts
-
Holappa K, Suokas M, Soininen P, Kellokumpu S. Identification of the full-length AE2 (AE2a) isoform as the Golgi-associated anion exchanger in fibroblasts. J Histochem Cytochem. 2001; 49(2):259–269.
-
(2001)
J Histochem Cytochem
, vol.49
, Issue.2
, pp. 259-269
-
-
Holappa, K.1
Suokas, M.2
Soininen, P.3
Kellokumpu, S.4
-
117
-
-
1842828896
-
The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells
-
Holappa K, Munoz MT, Egea G, Kellokumpu S. The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells. FEBS Lett. 2004;564(1–2): 97–103.
-
(2004)
FEBS Lett
, vol.564
, Issue.12
, pp. 97-103
-
-
Holappa, K.1
Munoz, M.T.2
Egea, G.3
Kellokumpu, S.4
-
118
-
-
0347360322
-
Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex
-
Percival JM, Hughes JA, Brown DL, et al. Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol Biol Cell. 2004;15(1):268–280.
-
(2004)
Mol Biol Cell
, vol.15
, Issue.1
, pp. 268-280
-
-
Percival, J.M.1
Hughes, J.A.2
Brown, D.L.3
-
119
-
-
0037449756
-
Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate
-
Siddhanta A, Radulescu A, Stankewich MC, Morrow JS, Shields D. Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2003;278(3):1957–1965.
-
(2003)
J Biol Chem
, vol.278
, Issue.3
, pp. 1957-1965
-
-
Siddhanta, A.1
Radulescu, A.2
Stankewich, M.C.3
Morrow, J.S.4
Shields, D.5
-
120
-
-
0035965256
-
Spectrin binds to the Arp1 subunit of dynactin
-
Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL. βIII Spectrin binds to the Arp1 subunit of dynactin. J Biol Chem. 2001;276(39):36598–36605.
-
(2001)
J Biol Chem
, vol.276
, Issue.39
, pp. 36598-36605
-
-
Holleran, E.A.1
Ligon, L.A.2
Tokito, M.3
Stankewich, M.C.4
Morrow, J.S.5
Holzbaur, E.L.6
-
121
-
-
0024962604
-
H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures
-
Moriyama Y, Nelson N. H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J Biol Chem. 1989;264(31):18445–18450.
-
(1989)
J Biol Chem.
, vol.264
, Issue.31
, pp. 18445-18450
-
-
Moriyama, Y.1
Nelson, N.2
-
122
-
-
12544258841
-
Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation
-
Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem. 2005;280(2):1561–1572.
-
(2005)
J Biol Chem
, vol.280
, Issue.2
, pp. 1561-1572
-
-
Nakamura, N.1
Tanaka, S.2
Teko, Y.3
Mitsui, K.4
Kanazawa, H.5
-
123
-
-
84862519850
-
Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast
-
Curwin AJ, von Blume J, Malhotra V. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol Biol Cell. 2012;23(12):2327–2338.
-
(2012)
Mol Biol Cell
, vol.23
, Issue.12
, pp. 2327-2338
-
-
Curwin, A.J.1
Von Blume, J.2
Malhotra, V.3
-
124
-
-
76149090527
-
Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network
-
von Blume J, Duran JM, Forlanelli E, et al. Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. J Cell Biol. 2009;187(7):1055–1069.
-
(2009)
J Cell Biol
, vol.187
, Issue.7
, pp. 1055-1069
-
-
Von Blume, J.1
Duran, J.M.2
Forlanelli, E.3
-
125
-
-
79955925696
-
ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1
-
von Blume J, Alleaume AM, Cantero-Recasens G, et al. ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell. 2011;20(5):652–662.
-
(2011)
Dev Cell
, vol.20
, Issue.5
, pp. 652-662
-
-
Von Blume, J.1
Alleaume, A.M.2
Cantero-Recasens, G.3
-
126
-
-
33845355027
-
Interaction of epithelial ion channels with the actin-based cytoskeleton
-
Mazzochi C, Benos DJ, Smith PR. Interaction of epithelial ion channels with the actin-based cytoskeleton. Am J Physiol Renal Physiol. 2006;291(6):F1113–F1122.
-
(2006)
Am J Physiol Renal Physiol
, vol.291
, Issue.6
, pp. F1113-F1122
-
-
Mazzochi, C.1
Benos, D.J.2
Smith, P.R.3
-
128
-
-
34547125988
-
Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network
-
Lázaro-Diéguez F, Colonna C, Cortegano M, Calvo M, Martínez SE, Egea G. Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network. FEBS Lett. 2007; 581(20):3875–3881.
-
(2007)
FEBS Lett
, vol.581
, Issue.20
, pp. 3875-3881
-
-
Lázaro-Diéguez, F.1
Colonna, C.2
Cortegano, M.3
Calvo, M.4
Martínez, S.E.5
Egea, G.6
-
129
-
-
0029998595
-
Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus
-
Erickson JW, Zhang C, Kahn RA, Evans T, Cerione RA. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J Biol Chem. 1996;271(43):26850–26854.
-
(1996)
J Biol Chem
, vol.271
, Issue.43
, pp. 26850-26854
-
-
Erickson, J.W.1
Zhang, C.2
Kahn, R.A.3
Evans, T.4
Cerione, R.A.5
-
130
-
-
0034705414
-
Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes
-
Fucini RV, Navarrete A, Vadakkan C, et al. Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes. J Biol Chem. 2000;275(25):18824–18829.
-
(2000)
J Biol Chem
, vol.275
, Issue.25
, pp. 18824-18829
-
-
Fucini, R.V.1
Navarrete, A.2
Vadakkan, C.3
-
131
-
-
0036201054
-
Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP
-
Luna A, Matas OB, Martínez-Menárguez JA, et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell. 2002;13(3):866–879.
-
(2002)
Mol Biol Cell
, vol.13
, Issue.3
, pp. 866-879
-
-
Luna, A.1
Matas, O.B.2
Martínez-Menárguez, J.A.3
-
132
-
-
7244238111
-
Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes
-
Matas OB, Martínez-Menárguez JA, Egea G. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic. 2004;5(11):838–846.
-
(2004)
Traffic
, vol.5
, Issue.11
, pp. 838-846
-
-
Matas, O.B.1
Martínez-Menárguez, J.A.2
Egea, G.3
-
133
-
-
1142269809
-
Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility
-
Prigozhina NL, Waterman-Storer CM. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol. 2004;14(2):88–98.
-
(2004)
Curr Biol
, vol.14
, Issue.2
, pp. 88-98
-
-
Prigozhina, N.L.1
Waterman-Storer, C.M.2
-
134
-
-
0001264854
-
The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation
-
Wu WJ, Erickson JW, Lin R, Cerione RA. The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature. 2000;405(6788):800–804.
-
(2000)
Nature
, vol.405
, Issue.6788
, pp. 800-804
-
-
Wu, W.J.1
Erickson, J.W.2
Lin, R.3
Cerione, R.A.4
-
135
-
-
77956454496
-
Cdc42 and vesicle trafficking in polarized cells
-
Harris KP, Tepass U. Cdc42 and vesicle trafficking in polarized cells. Traffic. 2010;11(10):1272–1279.
-
(2010)
Traffic
, vol.11
, Issue.10
, pp. 1272-1279
-
-
Harris, K.P.1
Tepass, U.2
-
136
-
-
70350111046
-
Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42
-
Hehnly H, Longhini KM, Chen JL, Stamnes M. Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42. Mol Biol Cell. 2009;20(20):4303–4312.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.20
, pp. 4303-4312
-
-
Hehnly, H.1
Longhini, K.M.2
Chen, J.L.3
Stamnes, M.4
-
137
-
-
18844381624
-
Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles
-
Chen JL, Fucini RV, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J Cell Biol. 2005;169(3):383–389.
-
(2005)
J Cell Biol
, vol.169
, Issue.3
, pp. 383-389
-
-
Chen, J.L.1
Fucini, R.V.2
Lacomis, L.3
Erdjument-Bromage, H.4
Tempst, P.5
Stamnes, M.6
-
138
-
-
34248149386
-
Regulating cytoskeleton-based vesicle motility
-
Hehnly H, Stamnes M. Regulating cytoskeleton-based vesicle motility. FEBS Lett. 2007;581(11):2112–2118.
-
(2007)
FEBS Lett
, vol.581
, Issue.11
, pp. 2112-2118
-
-
Hehnly, H.1
Stamnes, M.2
-
139
-
-
0034903162
-
Selective control of basolateral membrane protein polarity by Cdc42
-
Cohen D, Müsch A, Rodriguez-Boulan E. Selective control of basolateral membrane protein polarity by Cdc42. Traffic. 2001;2(8): 556–564.
-
(2001)
Traffic
, vol.2
, Issue.8
, pp. 556-564
-
-
Cohen, D.1
Müsch, A.2
Rodriguez-Boulan, E.3
-
140
-
-
0033126052
-
Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells
-
Kroschewski R, Hall A, Mellman I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol. 1999;1(1):8–13.
-
(1999)
Nat Cell Biol
, vol.1
, Issue.1
, pp. 8-13
-
-
Kroschewski, R.1
Hall, A.2
Mellman, I.3
-
141
-
-
0035341316
-
Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network
-
Müsch A, Cohen D, Kreitzer G, Rodriguez-Boulan E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 2001;20(9):2171–2179.
-
(2001)
EMBO J
, vol.20
, Issue.9
, pp. 2171-2179
-
-
Müsch, A.1
Cohen, D.2
Kreitzer, G.3
Rodriguez-Boulan, E.4
-
142
-
-
17344369066
-
Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics
-
Dubois T, Paleotti O, Mironov AA, et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol. 2005;7(4):353–364.
-
(2005)
Nat Cell Biol
, vol.7
, Issue.4
, pp. 353-364
-
-
Dubois, T.1
Paleotti, O.2
Mironov, A.A.3
-
143
-
-
0035282910
-
Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane
-
Estrada L, Caron E, Gorski JL. Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane. Hum Mol Genet. 2001;10(5):485–495.
-
(2001)
Hum Mol Genet
, vol.10
, Issue.5
, pp. 485-495
-
-
Estrada, L.1
Caron, E.2
Gorski, J.L.3
-
144
-
-
13244257110
-
The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs
-
Kostenko EV, Mahon GM, Cheng L, Whitehead IP. The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs. J Biol Chem. 2005;280(4):2807–2817.
-
(2005)
J Biol Chem
, vol.280
, Issue.4
, pp. 2807-2817
-
-
Kostenko, E.V.1
Mahon, G.M.2
Cheng, L.3
Whitehead, I.P.4
-
145
-
-
10744221375
-
Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation
-
Camera P, da Silva JS, Griffiths G, et al. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol. 2003;5(12):1071–1078.
-
(2003)
Nat Cell Biol
, vol.5
, Issue.12
, pp. 1071-1078
-
-
Camera, P.1
Da Silva, J.S.2
Griffiths, G.3
-
146
-
-
84871253887
-
RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules
-
Gad AK, Nehru V, Ruusala A, Aspenström P. RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules. Mol Biol Cell. 2012;23(24):4807–4819.
-
(2012)
Mol Biol Cell
, vol.23
, Issue.24
, pp. 4807-4819
-
-
Gad, A.K.1
Nehru, V.2
Ruusala, A.3
Aspenström, P.4
-
147
-
-
77950520993
-
Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN
-
Anitei M, Stange C, Parshina I, et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat Cell Biol. 2010;12(4):330–340.
-
(2010)
Nat Cell Biol
, vol.12
, Issue.4
, pp. 330-340
-
-
Anitei, M.1
Stange, C.2
Parshina, I.3
-
148
-
-
3042808106
-
LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons
-
Rosso S, Bollati F, Bisbal M, et al. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell. 2004;15(7):3433–3449.
-
(2004)
Mol Biol Cell
, vol.15
, Issue.7
, pp. 3433-3449
-
-
Rosso, S.1
Bollati, F.2
Bisbal, M.3
-
149
-
-
63049103127
-
LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network
-
Salvarezza SB, Deborde S, Schreiner R, et al. LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol Biol Cell. 2009;20(1):438–451.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.1
, pp. 438-451
-
-
Salvarezza, S.B.1
Deborde, S.2
Schreiner, R.3
-
150
-
-
84865078112
-
The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic
-
Pathak R, Delorme-Walker VD, Howell MC, et al. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic. Dev Cell. 2012;23(2): 397–411.
-
(2012)
Dev Cell
, vol.23
, Issue.2
, pp. 397-411
-
-
Pathak, R.1
Delorme-Walker, V.D.2
Howell, M.C.3
-
152
-
-
3042548289
-
Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network
-
Carreno S, Engqvist-Goldstein AE, Zhang CX, McDonald KL, Drubin DG. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J Cell Biol. 2004;165(6):781–788.
-
(2004)
J Cell Biol
, vol.165
, Issue.6
, pp. 781-788
-
-
Carreno, S.1
Engqvist-Goldstein, A.E.2
Zhang, C.X.3
McDonald, K.L.4
Drubin, D.G.5
-
153
-
-
2442494215
-
Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes
-
Chen JL, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett. 2004;566(1–3):281–286.
-
(2004)
FEBS Lett
, vol.566
, Issue.13
, pp. 281-286
-
-
Chen, J.L.1
Lacomis, L.2
Erdjument-Bromage, H.3
Tempst, P.4
Stamnes, M.5
-
154
-
-
0035846602
-
The Spir actin organizers are involved in vesicle transport processes
-
Kerkhoff E, Simpson JC, Leberfinger CB, et al. The Spir actin organizers are involved in vesicle transport processes. Curr Biol. 2001; 11(24):1963–1968.
-
(2001)
Curr Biol
, vol.11
, Issue.24
, pp. 1963-1968
-
-
Kerkhoff, E.1
Simpson, J.C.2
Leberfinger, C.B.3
-
155
-
-
18344381438
-
Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport
-
Cao H, Weller S, Orth JD, et al. Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol. 2005;7(5):483–492.
-
(2005)
Nat Cell Biol
, vol.7
, Issue.5
, pp. 483-492
-
-
Cao, H.1
Weller, S.2
Orth, J.D.3
-
156
-
-
4344619558
-
The syndapin protein family: Linking membrane trafficking with the cytoskeleton
-
Kessels MM, Qualmann B. The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci. 2004;117(Pt 15): 3077–3086.
-
(2004)
J Cell Sci
, vol.117
, Issue.15
, pp. 3077-3086
-
-
Kessels, M.M.1
Qualmann, B.2
-
157
-
-
0742288598
-
The dynamin superfamily: Universal membrane tubulation and fission molecules?
-
Praefcke GJ, McMahon HT. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol. 2004;5(2):133–147.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, Issue.2
, pp. 133-147
-
-
Praefcke, G.J.1
McMahon, H.T.2
-
158
-
-
17144439652
-
Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3
-
Rozelle AL, Machesky LM, Yamamoto M, et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol. 2000;10(6):311–320.
-
(2000)
Curr Biol
, vol.10
, Issue.6
, pp. 311-320
-
-
Rozelle, A.L.1
Machesky, L.M.2
Yamamoto, M.3
-
159
-
-
33646710836
-
Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network
-
Kessels MM, Dong J, Leibig W, Westermann P, Qualmann B. Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J Cell Sci. 2006;119(Pt 8):1504–1516
-
(2006)
J Cell Sci
, vol.119
, Issue.8
, pp. 1504-1516
-
-
Kessels, M.M.1
Dong, J.2
Leibig, W.3
Westermann, P.4
Qualmann, B.5
-
160
-
-
71549167371
-
A FAM21-containing WASH complex regulates retromer-dependent sorting
-
Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell. 2009;17(5):699–711.
-
(2009)
Dev Cell
, vol.17
, Issue.5
, pp. 699-711
-
-
Gomez, T.S.1
Billadeau, D.D.2
-
162
-
-
36749027680
-
ARF1-mediated actin polymerization produces movement of artificial vesicles
-
Heuvingh J, Franco M, Chavrier P, Sykes C. ARF1-mediated actin polymerization produces movement of artificial vesicles. Proc Natl Acad Sci U S A. 2007;104(43):16928–16933.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.43
, pp. 16928-16933
-
-
Heuvingh, J.1
Franco, M.2
Chavrier, P.3
Sykes, C.4
-
163
-
-
19344375254
-
Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells
-
Merrifield CJ, Perrais D, Zenisek D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell. 2005;121(4):593–606.
-
(2005)
Cell
, vol.121
, Issue.4
, pp. 593-606
-
-
Merrifield, C.J.1
Perrais, D.2
Zenisek, D.3
-
164
-
-
84859986511
-
A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis
-
Taylor MJ, Lampe M, Merrifield CJ. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol. 2012;10(4):1001302.
-
(2012)
Plos Biol
, vol.10
, Issue.4
-
-
Taylor, M.J.1
Lampe, M.2
Merrifield, C.J.3
-
165
-
-
33644873004
-
Actin dynamics at the Golgi complex in mammalian cells
-
Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol. 2006;18(2):168–178.
-
(2006)
Curr Opin Cell Biol
, vol.18
, Issue.2
, pp. 168-178
-
-
Egea, G.1
Lázaro-Diéguez, F.2
Vilella, M.3
-
166
-
-
79959954909
-
Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network
-
Almeida CG, Yamada A, Tenza D, Louvard D, Raposo G, Coudrier E. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat Cell Biol. 2011;13(7):779–789.
-
(2011)
Nat Cell Biol
, vol.13
, Issue.7
, pp. 779-789
-
-
Almeida, C.G.1
Yamada, A.2
Tenza, D.3
Louvard, D.4
Raposo, G.5
Coudrier, E.6
-
167
-
-
0027393092
-
Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein
-
Fath KR, Burgess DR. Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol. 1993; 120(1):117–127.
-
(1993)
J Cell Biol
, vol.120
, Issue.1
, pp. 117-127
-
-
Fath, K.R.1
Burgess, D.R.2
-
168
-
-
0037380088
-
Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells
-
Jacob R, Heine M, Alfalah M, Naim HY. Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol. 2003;13(7):607–612.
-
(2003)
Curr Biol
, vol.13
, Issue.7
, pp. 607-612
-
-
Jacob, R.1
Heine, M.2
Alfalah, M.3
Naim, H.Y.4
-
169
-
-
0030823761
-
Myosin I interactions with actin filaments and trans-Golgi-derived vesicles in MDCK cell monolayers
-
Montes de Oca G, Lezama RA, Mondragón R, Castillo AM, Meza I. Myosin I interactions with actin filaments and trans-Golgi-derived vesicles in MDCK cell monolayers. Arch Med Res. 1997; 28(3):321–328.
-
(1997)
Arch Med Res
, vol.28
, Issue.3
, pp. 321-328
-
-
Montes De Oca, G.1
Lezama, R.A.2
Mondragón, R.3
Castillo, A.M.4
Meza, I.5
-
170
-
-
18244409866
-
Myosin-1a is critical for normal brush border structure and composition
-
Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS. Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell. 2005;16(5):2443–2457.
-
(2005)
Mol Biol Cell
, vol.16
, Issue.5
, pp. 2443-2457
-
-
Tyska, M.J.1
Mackey, A.T.2
Huang, J.D.3
Copeland, N.G.4
Jenkins, N.A.5
Mooseker, M.S.6
-
171
-
-
84887447201
-
Myosin 1 controls membrane shape by coupling F-actin to membrane
-
Coudrier E, Almeida CG. Myosin 1 controls membrane shape by coupling F-actin to membrane. Bioarchitecture. 2011;1(5):230–235.
-
(2011)
Bioarchitecture
, vol.1
, Issue.5
, pp. 230-235
-
-
Coudrier, E.1
Almeida, C.G.2
-
172
-
-
52549110350
-
Myosins in the secretory pathway: Tethers or transporters?
-
Loubéry S, Coudrier E. Myosins in the secretory pathway: tethers or transporters? Cell Mol Life Sci. 2008;65(18):2790–2800.
-
(2008)
Cell Mol Life Sci
, vol.65
, Issue.18
, pp. 2790-2800
-
-
Loubéry, S.1
Coudrier, E.2
-
173
-
-
84863089556
-
Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion
-
Brandstaetter H, Kendrick-Jones J, Buss F. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion. J Cell Sci. 2012;125(Pt 8):1991–2003.
-
(2012)
J Cell Sci
, vol.125
, Issue.8
, pp. 1991-2003
-
-
Brandstaetter, H.1
Kendrick-Jones, J.2
Buss, F.3
-
174
-
-
22244458555
-
Characterization of myosin-II binding to Golgi stacks in vitro
-
Fath KR. Characterization of myosin-II binding to Golgi stacks in vitro. Cell Motil Cytoskeleton. 2005;60(4):222–235.
-
(2005)
Cell Motil Cytoskeleton
, vol.60
, Issue.4
, pp. 222-235
-
-
Fath, K.R.1
-
175
-
-
34748860590
-
Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts
-
DePina AS, Wollert T, Langford GM. Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell Motil Cytoskeleton. 2007;64(10):739–755.
-
(2007)
Cell Motil Cytoskeleton
, vol.64
, Issue.10
, pp. 739-755
-
-
Depina, A.S.1
Wollert, T.2
Langford, G.M.3
-
176
-
-
0037328573
-
Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport
-
Duran JM, Valderrama F, Castel S, et al. Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell. 2003;14(2):445–459.
-
(2003)
Mol Biol Cell
, vol.14
, Issue.2
, pp. 445-459
-
-
Duran, J.M.1
Valderrama, F.2
Castel, S.3
-
177
-
-
0040971539
-
Myosin II is involved in the production of constitutive transport vesicles from the TGN
-
Müsch A, Cohen D, Rodriguez-Boulan E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol. 1997;138(2):291–306.
-
(1997)
J Cell Biol
, vol.138
, Issue.2
, pp. 291-306
-
-
Müsch, A.1
Cohen, D.2
Rodriguez-Boulan, E.3
-
179
-
-
77954228100
-
Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex
-
Miserey-Lenkei S, Chalancon G, Bardin S, Formstecher E, Goud B, Echard A. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol. 2010;12(7):645–654.
-
(2010)
Nat Cell Biol
, vol.12
, Issue.7
, pp. 645-654
-
-
Miserey-Lenkei, S.1
Chalancon, G.2
Bardin, S.3
Formstecher, E.4
Goud, B.5
Echard, A.6
-
180
-
-
84859606183
-
Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number
-
Storrie B, Micaroni M, Morgan GP, et al. Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic. 2012;13(5):727–744.
-
(2012)
Traffic
, vol.13
, Issue.5
, pp. 727-744
-
-
Storrie, B.1
Micaroni, M.2
Morgan, G.P.3
-
181
-
-
84867571843
-
A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface
-
Wakana Y, van Galen J, Meissner F, et al. A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface. EMBO J. 2012;31(20):3976–3990.
-
(2012)
EMBO J
, vol.31
, Issue.20
, pp. 3976-3990
-
-
Wakana, Y.1
Van Galen, J.2
Meissner, F.3
-
182
-
-
84887069906
-
Identification and characterization of multiple novel Rab-myosin Va interactions
-
Lindsay AJ, Jollivet F, Horgan CP, et al. Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell. 2013;24(21):3420–3434
-
(2013)
Mol Biol Cell
, vol.24
, Issue.21
, pp. 3420-3434
-
-
Lindsay, A.J.1
Jollivet, F.2
Horgan, C.P.3
-
184
-
-
0037415731
-
Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice
-
Warner CL, Stewart A, Luzio JP, et al. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J. 2003;22(3):569–579.
-
(2003)
EMBO J
, vol.22
, Issue.3
, pp. 569-579
-
-
Warner, C.L.1
Stewart, A.2
Luzio, J.P.3
-
185
-
-
18544367185
-
Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis
-
Sahlender DA, Roberts RC, Arden SD, et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol. 2005;169(2):285–295.
-
(2005)
J Cell Biol
, vol.169
, Issue.2
, pp. 285-295
-
-
Sahlender, D.A.1
Roberts, R.C.2
Arden, S.D.3
-
186
-
-
27744520682
-
Rab proteins, connecting transport and vesicle fusion
-
Jordens I, Marsman M, Kuijl C, Neefjes J. Rab proteins, connecting transport and vesicle fusion. Traffic. 2005;6(12):1070–1077.
-
(2005)
Traffic
, vol.6
, Issue.12
, pp. 1070-1077
-
-
Jordens, I.1
Marsman, M.2
Kuijl, C.3
Neefjes, J.4
-
187
-
-
77953536722
-
TGN golgins, Rabs and cytoskeleton: Regulating the Golgi trafficking highways
-
Goud B, Gleeson PA. TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol. 2010;20(6): 329–336.
-
(2010)
Trends Cell Biol
, vol.20
, Issue.6
, pp. 329-336
-
-
Goud, B.1
Gleeson, P.A.2
-
188
-
-
84875993366
-
Mammalian myosin-18A, a highly divergent myosin
-
Guzik-Lendrum S, Heissler SM, Billington N, et al. Mammalian myosin-18A, a highly divergent myosin. J Biol Chem. 2013;288(13): 9532–9548.
-
(2013)
J Biol Chem
, vol.288
, Issue.13
, pp. 9532-9548
-
-
Guzik-Lendrum, S.1
Heissler, S.M.2
Billington, N.3
-
189
-
-
84893516766
-
DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3
-
Farber-Katz SE, Dippold HC, Buschman MD, et al. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell. 2014; 156(3):413–427.
-
(2014)
Cell
, vol.156
, Issue.3
, pp. 413-427
-
-
Farber-Katz, S.E.1
Dippold, H.C.2
Buschman, M.D.3
-
190
-
-
79955720787
-
Physics, biology and the right chemistry
-
Bassereau P, Goud B. Physics, biology and the right chemistry. F1000 Biol Rep. 2011;3:7.
-
(2011)
F1000 Biol Rep
, vol.3
, pp. 7
-
-
Bassereau, P.1
Goud, B.2
-
191
-
-
84905656743
-
Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events
-
Guet D, Mandal K, Pinot M, et al. Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events. Curr Biol. 2014;24(15):1700–1711.
-
(2014)
Curr Biol
, vol.24
, Issue.15
, pp. 1700-1711
-
-
Guet, D.1
Mandal, K.2
Pinot, M.3
-
192
-
-
33751206848
-
Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes
-
Samaj J, Müller J, Beck M, Böhm N, Menzel D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006;11(12):594–600.
-
(2006)
Trends Plant Sci
, vol.11
, Issue.12
, pp. 594-600
-
-
Samaj, J.1
Müller, J.2
Beck, M.3
Böhm, N.4
Menzel, D.5
-
193
-
-
80054715242
-
Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization
-
Akkerman M, Overdijk EJ, Schel JH, Emons AM, Ketelaar T. Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. Plant Cell Physiol. 2011;52(10):1844–1855.
-
(2011)
Plant Cell Physiol
, vol.52
, Issue.10
, pp. 1844-1855
-
-
Akkerman, M.1
Overdijk, E.J.2
Schel, J.H.3
Emons, A.M.4
Ketelaar, T.5
-
194
-
-
1642364245
-
Cytoplasmic streaming in plants
-
Shimmen T, Yokota E. Cytoplasmic streaming in plants. Curr Opin Cell Biol. 2004;16(1):68–72.
-
(2004)
Curr Opin Cell Biol
, vol.16
, Issue.1
, pp. 68-72
-
-
Shimmen, T.1
Yokota, E.2
-
195
-
-
0032144201
-
Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network
-
Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 1998;15(3):441–447.
-
(1998)
Plant J
, vol.15
, Issue.3
, pp. 441-2447
-
-
Boevink, P.1
Oparka, K.2
Santa Cruz, S.3
Martin, B.4
Betteridge, A.5
Hawes, C.6
-
196
-
-
0037355147
-
The relationship between endomembranes and the plant cytoskeleton
-
Brandizzi F, Saint-Jore C, Moore I, Hawes C. The relationship between endomembranes and the plant cytoskeleton. Cell Biol Int. 2003;27(3):177–179.
-
(2003)
Cell Biol Int
, vol.27
, Issue.3
, pp. 177-179
-
-
Brandizzi, F.1
Saint-Jore, C.2
Moore, I.3
Hawes, C.4
-
197
-
-
0016901238
-
But not colchicine, inhibits migration of secretory vesicles in root tips of maize
-
Mollenhauer HH, Morre DJ. Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma. 1976;87(1–3):39–48.
-
(1976)
Protoplasma
, vol.87
, Issue.13
, pp. 39-48
-
-
Mollenhauer, H.H.1
Morre, D.J.2
Cytochalasin, B.3
-
198
-
-
0029965895
-
Brefeldin A effects in plant and fungal cells: Something new about vesicle trafficking?
-
Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C. Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc. 1996;181(Pt 2):162–177.
-
(1996)
J Microsc
, vol.181
, Issue.2
, pp. 162-177
-
-
Satiat-Jeunemaitre, B.1
Cole, L.2
Bourett, T.3
Howard, R.4
Hawes, C.5
-
199
-
-
84871897748
-
Nakano A. Cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells
-
Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell. 2012;23(16):3203–3214.
-
(2012)
Mol Biol Cell
, vol.23
, Issue.16
, pp. 3203-3214
-
-
Ito, Y.1
Uemura, T.2
Shoda, K.3
Fujimoto, M.4
Ueda, T.5
-
200
-
-
33745668694
-
Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B
-
Chen Y, Chen T, Shen S, et al. Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J. 2006;47(2):174–195.
-
(2006)
Plant J
, vol.47
, Issue.2
, pp. 174-195
-
-
Chen, Y.1
Chen, T.2
Shen, S.3
-
201
-
-
26844472700
-
Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites
-
Yang YD, Elamawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG. Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell. 2005;17(5):1513–1531.
-
(2005)
Plant Cell
, vol.17
, Issue.5
, pp. 1513-1531
-
-
Yang, Y.D.1
Elamawi, R.2
Bubeck, J.3
Pepperkok, R.4
Ritzenthaler, C.5
Robinson, D.G.6
-
202
-
-
0036006196
-
Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks
-
Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C. Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J. 2002;29(5):661–678.
-
(2002)
Plant J
, vol.29
, Issue.5
, pp. 661-678
-
-
Saint-Jore, C.M.1
Evins, J.2
Batoko, H.3
Brandizzi, F.4
Moore, I.5
Hawes, C.6
-
203
-
-
0019579916
-
Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D
-
Picton JM, Steer MW. Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci. 1981;49:261–272.
-
(1981)
J Cell Sci
, vol.49
, pp. 261-272
-
-
Picton, J.M.1
Steer, M.W.2
-
204
-
-
0035172425
-
Actin polymerization is essential for pollen tube growth
-
Vidali L, McKenna ST, Hepler PK. Actin polymerization is essential for pollen tube growth. Mol Biol Cell. 2001;12(8):2534–2545.
-
(2001)
Mol Biol Cell
, vol.12
, Issue.8
, pp. 2534-2545
-
-
Vidali, L.1
McKenna, S.T.2
Hepler, P.K.3
-
205
-
-
0036077953
-
The cytoskeleton and gravitropism in higher plants
-
Blancaflor EB. The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul. 2002;21(2):120–136.
-
(2002)
J Plant Growth Regul
, vol.21
, Issue.2
, pp. 120-136
-
-
Blancaflor, E.B.1
-
206
-
-
0242381332
-
The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization
-
Hu Y, Zhong R, Morrison WH 3rd, Ye ZH. The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta. 2003;217(6):912–921.
-
(2003)
Planta
, vol.217
, Issue.6
, pp. 912-921
-
-
Hu, Y.1
Zhong, R.2
Morrison, W.H.3
Ye, Z.H.4
-
207
-
-
0342288633
-
Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system
-
Nebenfuhr A, Gallagher LA, Dunahay TG, et al. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 1999;121(4):1127–1142.
-
(1999)
Plant Physiol
, vol.121
, Issue.4
, pp. 1127-1142
-
-
Nebenfuhr, A.1
Gallagher, L.A.2
Dunahay, T.G.3
-
208
-
-
34248572638
-
Involvement of the cytoskeleton in the secretory pathway and plasma membrane organisation of higher plant cells
-
Boutté Y, Vernhettes S, Satiat-Jeunemaitre B. Involvement of the cytoskeleton in the secretory pathway and plasma membrane organisation of higher plant cells. Cell Biol Int. 2007;31(7):649–654.
-
(2007)
Cell Biol Int
, vol.31
, Issue.7
, pp. 649-654
-
-
Boutté, Y.1
Vernhettes, S.2
Satiat-Jeunemaitre, B.3
-
209
-
-
33745767358
-
Harnessing actin dynamics for clathrin-mediated endocytosis
-
Kaksonen M, Toret CP, Drubin DG. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2006; 7(6):404–414.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, Issue.6
, pp. 404-414
-
-
Kaksonen, M.1
Toret, C.P.2
Drubin, D.G.3
-
210
-
-
0030930123
-
Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle
-
Mulholland J, Wesp A, Riezman H, Botstein D. Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle. Mol Biol Cell. 1997;8(8):1481–1499.
-
(1997)
Mol Biol Cell
, vol.8
, Issue.8
, pp. 1481-1499
-
-
Mulholland, J.1
Wesp, A.2
Riezman, H.3
Botstein, D.4
-
211
-
-
0021355377
-
Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae
-
Adams AE, Pringle JR. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol. 1984;98(3):934–945.
-
(1984)
J Cell Biol
, vol.98
, Issue.3
, pp. 934-945
-
-
Adams, A.E.1
Pringle, J.R.2
-
212
-
-
0021369651
-
Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces
-
Kilmartin JV, Adams AE. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol. 1984;98(3):922–933.
-
(1984)
J Cell Biol
, vol.98
, Issue.3
, pp. 922-933
-
-
Kilmartin, J.V.1
Adams, A.E.2
-
213
-
-
33749258375
-
The yeast actin cytoskeleton: From cellular function to biochemical mechanism
-
Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev. 2006; 70(3):605–645.
-
(2006)
Microbiol Mol Biol Rev
, vol.70
, Issue.3
, pp. 605-645
-
-
Moseley, J.B.1
Goode, B.L.2
-
214
-
-
8444223155
-
Mechanisms of polarized growth and organelle segregation in yeast
-
Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol. 2004;20:559–591.
-
(2004)
Annu Rev Cell Dev Biol
, vol.20
, pp. 559-591
-
-
Pruyne, D.1
Legesse-Miller, A.2
Gao, L.3
Dong, Y.4
Bretscher, A.5
-
215
-
-
0033761839
-
Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae
-
Finger FP, Novick P. Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae. Genetics. 2000;156(3):943–951.
-
(2000)
Genetics
, vol.156
, Issue.3
, pp. 943-951
-
-
Finger, F.P.1
Novick, P.2
-
216
-
-
0032734240
-
The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton
-
Spelbrink RG, Nothwehr SF. The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol Biol Cell. 1999;10(12):4263–4281.
-
(1999)
Mol Biol Cell
, vol.10
, Issue.12
, pp. 4263-4281
-
-
Spelbrink, R.G.1
Nothwehr, S.F.2
-
217
-
-
34247235696
-
Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway
-
Harsay E, Schekman R. Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell. 2007;18(4):1203–1219.
-
(2007)
Mol Biol Cell
, vol.18
, Issue.4
, pp. 1203-1219
-
-
Harsay, E.1
Schekman, R.2
-
218
-
-
0035795423
-
A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae
-
Rossanese OW, Reinke CA, Bevis BJ, et al. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol. 2001;153(1):47–62.
-
(2001)
J Cell Biol
, vol.153
, Issue.1
, pp. 47-62
-
-
Rossanese, O.W.1
Reinke, C.A.2
Bevis, B.J.3
-
219
-
-
46049104580
-
Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2
-
Arai S, Noda Y, Kainuma S, Wada I, Yoda K. Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2. Curr Biol. 2008;18(13):987–991.
-
(2008)
Curr Biol
, vol.18
, Issue.13
, pp. 987-991
-
-
Arai, S.1
Noda, Y.2
Kainuma, S.3
Wada, I.4
Yoda, K.5
-
220
-
-
78651445373
-
PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast
-
Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev Cell. 2011;20(1):47–59.
-
(2011)
Dev Cell
, vol.20
, Issue.1
, pp. 47-59
-
-
Santiago-Tirado, F.H.1
Legesse-Miller, A.2
Schott, D.3
Bretscher, A.4
-
221
-
-
83455229807
-
Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex
-
Jin Y, Sultana A, Gandhi P, et al. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell. 2011;21(6):1156–1170.
-
(2011)
Dev Cell
, vol.21
, Issue.6
, pp. 1156-1170
-
-
Jin, Y.1
Sultana, A.2
Gandhi, P.3
-
222
-
-
0034731811
-
A fission yeast kinesin affects Golgi membrane recycling
-
Brazer SC, Williams HP, Chappell TG, Cande WZ. A fission yeast kinesin affects Golgi membrane recycling. Yeast. 2000;16(2):149–166.
-
(2000)
Yeast
, vol.16
, Issue.2
, pp. 149-166
-
-
Brazer, S.C.1
Williams, H.P.2
Chappell, T.G.3
Cande, W.Z.4
-
223
-
-
84862735467
-
Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants
-
Jarmoszewicz K, Lukasiak K, Riezman H, Kaminska J. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants. PloS One. 2012;7(6):e39582.
-
(2012)
Plos One
, vol.7
, Issue.6
-
-
Jarmoszewicz, K.1
Lukasiak, K.2
Riezman, H.3
Kaminska, J.4
-
224
-
-
80054846627
-
Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro
-
Kaminska J, Spiess M, Stawiecka-Mirota M, et al. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro. Eur J Cell Biol. 2011;90(12):1016–1028.
-
(2011)
Eur J Cell Biol
, vol.90
, Issue.12
, pp. 1016-1028
-
-
Kaminska, J.1
Spiess, M.2
Stawiecka-Mirota, M.3
-
225
-
-
70450223327
-
The Golgi apparatus: Lessons from Drosophila
-
Kondylis V, Rabouille C. The Golgi apparatus: lessons from Drosophila. FEBS Lett. 2009;583(23):3827–3838.
-
(2009)
FEBS Lett
, vol.583
, Issue.23
, pp. 3827-3838
-
-
Kondylis, V.1
Rabouille, C.2
-
226
-
-
34249316147
-
Van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C. The Golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE
-
Kondylis V, van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C. The Golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE. Dev Cell. 2007;12(6):901–915.
-
(2007)
Dev Cell
, vol.12
, Issue.6
, pp. 901-915
-
-
Kondylis, V.1
-
227
-
-
20444393413
-
The golgin lava lamp mediates dynein-based Golgi movements during Drosophila cellularization
-
Papoulas O, Hays TS, Sisson JC. The golgin lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol. 2005;7(6):612–618.
-
(2005)
Nat Cell Biol
, vol.7
, Issue.6
, pp. 612-618
-
-
Papoulas, O.1
Hays, T.S.2
Sisson, J.C.3
-
228
-
-
0034645066
-
Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization
-
Sisson JC, Field C, Ventura R, Royou A, Sullivan W. Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol. 2000;151(4):905–918.
-
(2000)
J Cell Biol
, vol.151
, Issue.4
, pp. 905-918
-
-
Sisson, J.C.1
Field, C.2
Ventura, R.3
Royou, A.4
Sullivan, W.5
-
229
-
-
31844440878
-
Functional genomics reveals genes involved in protein secretion and Golgi organization
-
Bard F, Casano L, Mallabiabarrena A, et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature. 2006;439(7076):604–607.
-
(2006)
Nature
, vol.439
, Issue.7076
, pp. 604-607
-
-
Bard, F.1
Casano, L.2
Mallabiabarrena, A.3
-
230
-
-
21244477562
-
Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking
-
Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays. 2005;27(6):625–632.
-
(2005)
Bioessays
, vol.27
, Issue.6
, pp. 625-632
-
-
Rybakin, V.1
Clemen, C.S.2
-
231
-
-
0029808891
-
The secretory pathway of protists: Spatial and functional organization and evolution
-
Becker B, Melkonian M. The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev. 1996;60(4):697–721.
-
(1996)
Microbiol Rev
, vol.60
, Issue.4
, pp. 697-721
-
-
Becker, B.1
Melkonian, M.2
-
232
-
-
0029958869
-
Linking microfilaments to intracellular membranes: The actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity
-
Jung E, Fucini P, Stewart M, Noegel AA, Schleicher M. Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity. EMBO J. 1996;15(6):1238–1246.
-
(1996)
EMBO J
, vol.15
, Issue.6
, pp. 1238-1246
-
-
Jung, E.1
Fucini, P.2
Stewart, M.3
Noegel, A.A.4
Schleicher, M.5
-
233
-
-
0027361181
-
The actin-binding protein comitin (P24) is a component of the Golgi apparatus
-
Weiner OH, Murphy J, Griffiths G, Schleicher M, Noegel AA. The actin-binding protein comitin (p24) is a component of the Golgi apparatus. J Cell Biol. 1993;123(1):23–34.
-
(1993)
J Cell Biol
, vol.123
, Issue.1
, pp. 23-34
-
-
Weiner, O.H.1
Murphy, J.2
Griffiths, G.3
Schleicher, M.4
Noegel, A.A.5
-
234
-
-
0038446802
-
Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton
-
Gloss A, Rivero F, Khaire N, et al. Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton. Mol Biol Cell. 2003;14(7):2716–2727.
-
(2003)
Mol Biol Cell
, vol.14
, Issue.7
, pp. 2716-2727
-
-
Gloss, A.1
Rivero, F.2
Khaire, N.3
-
235
-
-
19644371017
-
Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics
-
Rehberg M, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Gräf R. Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell. 2005;16(6):2759–2771.
-
(2005)
Mol Biol Cell
, vol.16
, Issue.6
, pp. 2759-2771
-
-
Rehberg, M.1
Kleylein-Sohn, J.2
Faix, J.3
Ho, T.H.4
Schulz, I.5
Gräf, R.6
-
236
-
-
84868253124
-
The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells
-
Noratel EF, Petty CL, Kelsey JS, Cost HN, Basappa N, Blumberg DD. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells. BMC Cell Biol. 2012;13:29.
-
(2012)
BMC Cell Biol
, vol.13
, pp. 29
-
-
Noratel, E.F.1
Petty, C.L.2
Kelsey, J.S.3
Cost, H.N.4
Basappa, N.5
Blumberg, D.D.6
-
237
-
-
18344395923
-
The genome of the social amoeba Dictyostelium discoideum
-
Eichinger L, Pachebat JA, Glöckner G, et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435(7038):43–57.
-
(2005)
Nature
, vol.435
, Issue.7038
, pp. 43-57
-
-
Eichinger, L.1
Pachebat, J.A.2
Glöckner, G.3
-
238
-
-
67649400346
-
Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis
-
Lee S, Han JW, Leeper L, Gruver JS, Chung CY. Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis. Biochim Biophys Acta. 2009; 1793(7):1199–1209.
-
(2009)
Biochim Biophys Acta
, vol.1793
, Issue.7
, pp. 1199-1209
-
-
Lee, S.1
Han, J.W.2
Leeper, L.3
Gruver, J.S.4
Chung, C.Y.5
-
239
-
-
33747017861
-
Dictyostelium RacH regulates endocytic vesicular trafficking and is required for localization of vacuolin
-
Somesh BP, Neffgen C, Iijima M, Devreotes P, Rivero F. Dictyostelium RacH regulates endocytic vesicular trafficking and is required for localization of vacuolin. Traffic. 2006;7(9):1194–1212.
-
(2006)
Traffic
, vol.7
, Issue.9
, pp. 1194-1212
-
-
Somesh, B.P.1
Neffgen, C.2
Iijima, M.3
Devreotes, P.4
Rivero, F.5
|