메뉴 건너뛰기




Volumn 7, Issue , 2015, Pages 37-54

Cytoskeleton and Golgi-apparatus interactions: A two-way road of function and structure

Author keywords

Actin; Cytoskeleton; Golgi apparatus; Membrane trafficking; Microtubules; Secretory pathway

Indexed keywords

ALPHA TUBULIN; BETA TUBULIN; CYTOPLASMIC DYNEIN; DYNACTIN; GAMMA TUBULIN; GOLGIN 160; KINESIN 1; KINESIN 2; MICROSOMAL AMINOPEPTIDASE; MICROTUBULE PROTEIN; MYOMEGALIN; MYOSIN; MYOSIN IB; MYOSIN IC; MYOSIN II; MYOSIN VI; NOCODAZOLE; PROTEIN AKAP450; PROTEIN CAP350; PROTEIN CDC42; PROTEIN CDK5RAP2; PROTEIN GMAP210; PROTEIN P50; RAB PROTEIN; RAB6 PROTEIN; RHO GUANINE NUCLEOTIDE BINDING PROTEIN; RHOA GUANINE NUCLEOTIDE BINDING PROTEIN; RHOD GUANINE NUCLEOTIDE BINDING PROTEIN; TRANSCRIPTION FACTOR PITX2; UNCLASSIFIED DRUG; UNINDEXED DRUG;

EID: 84921872839     PISSN: None     EISSN: 11791330     Source Type: Journal    
DOI: 10.2147/CHC.S57108     Document Type: Review
Times cited : (21)

References (239)
  • 1
    • 0034930079 scopus 로고    scopus 로고
    • Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae
    • Rambourg A, Jackson CL, Clermont Y. Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae. J Cell Sci. 2001;114(Pt 12): 2231–2239.
    • (2001) J Cell Sci , vol.114 , Issue.12 , pp. 2231-2239
    • Rambourg, A.1    Jackson, C.L.2    Clermont, Y.3
  • 2
    • 0027056183 scopus 로고
    • Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy
    • Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell. 1992;3(7): 789–803.
    • (1992) Mol Biol Cell , vol.3 , Issue.7 , pp. 789-803
    • Preuss, D.1    Mulholland, J.2    Franzusoff, A.3    Segev, N.4    Botstein, D.5
  • 3
    • 40349094722 scopus 로고    scopus 로고
    • 3-D ultrastructure of O. Tauri: Electron cryotomography of an entire eukaryotic cell
    • Henderson GP, Gan L, Jensen GJ. 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One. 2007; 2(1):e749.
    • (2007) Plos One , vol.2 , Issue.1
    • Henderson, G.P.1    Gan, L.2    Jensen, G.J.3
  • 4
    • 0036682223 scopus 로고    scopus 로고
    • Golgi biogenesis in Toxoplasma gondii
    • Pelletier L, Stern CA, Pypaert M, et al. Golgi biogenesis in Toxoplasma gondii. Nature. 2002;418(6897):548–552.
    • (2002) Nature , vol.418 , Issue.6897 , pp. 548-552
    • Pelletier, L.1    Stern, C.A.2    Pypaert, M.3
  • 5
    • 33846936825 scopus 로고    scopus 로고
    • Golgi biogenesis in simple eukaryotes
    • He CY. Golgi biogenesis in simple eukaryotes. Cell Microbiol. 2007; 9(3):566–572.
    • (2007) Cell Microbiol , vol.9 , Issue.3 , pp. 566-572
    • He, C.Y.1
  • 6
    • 2442451357 scopus 로고    scopus 로고
    • Golgi duplication in Trypanosoma brucei
    • He CY, Ho HH, Malsam J, et al. Golgi duplication in Trypanosoma brucei. J Cell Biol. 2004;165(3):313–321.
    • (2004) J Cell Biol , vol.165 , Issue.3 , pp. 313-321
    • He, C.Y.1    Ho, H.H.2    Malsam, J.3
  • 8
    • 0033526048 scopus 로고    scopus 로고
    • Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae
    • Rossanese OW, Soderholm J, Bevis BJ, et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol. 1999;145(1):69–81.
    • (1999) J Cell Biol , vol.145 , Issue.1 , pp. 69-81
    • Rossanese, O.W.1    Soderholm, J.2    Bevis, B.J.3
  • 9
    • 0038647481 scopus 로고    scopus 로고
    • Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris
    • Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA. Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell. 2003;14(6):2277–2291.
    • (2003) Mol Biol Cell , vol.14 , Issue.6 , pp. 2277-2291
    • Mogelsvang, S.1    Gomez-Ospina, N.2    Soderholm, J.3    Glick, B.S.4    Staehelin, L.A.5
  • 10
    • 20444386846 scopus 로고    scopus 로고
    • The plant Golgi apparatus – going with the flow
    • Hawes C, Satiat-Jeunemaitre B. The plant Golgi apparatus – going with the flow. Biochim Biophys Acta. 2005;1744(2):93–107.
    • (2005) Biochim Biophys Acta , vol.1744 , Issue.2 , pp. 93-107
    • Hawes, C.1    Satiat-Jeunemaitre, B.2
  • 11
    • 3142706602 scopus 로고    scopus 로고
    • Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells
    • daSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell. 2004;16(7):1753–1771.
    • (2004) Plant Cell , vol.16 , Issue.7 , pp. 1753-1771
    • Dasilva, L.L.1    Snapp, E.L.2    Denecke, J.3    Lippincott-Schwartz, J.4    Hawes, C.5    Brandizzi, F.6
  • 12
    • 0042672956 scopus 로고    scopus 로고
    • A novel role for dp115 in the organization of tER sites in Drosophila
    • Kondylis V, Rabouille C. A novel role for dp115 in the organization of tER sites in Drosophila. J Cell Biol. 2003;162(2):185–198.
    • (2003) J Cell Biol , vol.162 , Issue.2 , pp. 185-198
    • Kondylis, V.1    Rabouille, C.2
  • 13
    • 0037223631 scopus 로고    scopus 로고
    • The Golgi apparatus at the cell centre
    • Rios RM, Bornens M. The Golgi apparatus at the cell centre. Curr Opin Cell Biol. 2003;15(1):60–66.
    • (2003) Curr Opin Cell Biol , vol.15 , Issue.1 , pp. 60-66
    • Rios, R.M.1    Bornens, M.2
  • 15
    • 0033526005 scopus 로고    scopus 로고
    • GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein
    • Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol. 1999;145(1):83–98.
    • (1999) J Cell Biol , vol.145 , Issue.1 , pp. 83-98
    • Infante, C.1    Ramos-Morales, F.2    Fedriani, C.3    Bornens, M.4    Rios, R.M.5
  • 16
    • 0033546152 scopus 로고    scopus 로고
    • Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus
    • Takahashi M, Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y. Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus. J Biol Chem. 1999;274(24):17267–17274.
    • (1999) J Biol Chem , vol.274 , Issue.24 , pp. 17267-17274
    • Takahashi, M.1    Shibata, H.2    Shimakawa, M.3    Miyamoto, M.4    Mukai, H.5    Ono, Y.6
  • 17
    • 84904568128 scopus 로고    scopus 로고
    • The centrosome-Golgi apparatus nexus
    • Rios RM. The centrosome-Golgi apparatus nexus. Philos Trans R Soc Lond B Biol Sci. 2014;369(1650):20130462.
    • (2014) Philos Trans R Soc Lond B Biol Sci , vol.369 , Issue.1650
    • Rios, R.M.1
  • 18
    • 70349334137 scopus 로고    scopus 로고
    • Mitotic division of the mammalian Golgi apparatus
    • Wei JH, Seemann J. Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol. 2009;20(7):810–816.
    • (2009) Semin Cell Dev Biol , vol.20 , Issue.7 , pp. 810-816
    • Wei, J.H.1    Seemann, J.2
  • 19
    • 0742289586 scopus 로고    scopus 로고
    • Microtubule organization and function in epithelial cells
    • Müsch A. Microtubule organization and function in epithelial cells. Traffic. 2004;5(1):1–9.
    • (2004) Traffic , vol.5 , Issue.1 , pp. 1-9
    • Müsch, A.1
  • 20
    • 0035158716 scopus 로고    scopus 로고
    • Golgi complex reorganization during muscle differentiation: Visualization in living cells and mechanism
    • Lu Z, Joseph D, Bugnard E, Zaal KJ, Ralston E. Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol Biol Cell. 2001;12(4):795–808.
    • (2001) Mol Biol Cell , vol.12 , Issue.4 , pp. 795-808
    • Lu, Z.1    Joseph, D.2    Bugnard, E.3    Zaal, K.J.4    Ralston, E.5
  • 21
    • 84887519097 scopus 로고    scopus 로고
    • Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements
    • Oddoux S, Zaal KJ, Tate V, et al. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol. 2013;203(2):205–213.
    • (2013) J Cell Biol , vol.203 , Issue.2 , pp. 205-213
    • Oddoux, S.1    Zaal, K.J.2    Tate, V.3
  • 22
    • 84872696532 scopus 로고    scopus 로고
    • Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons
    • Ori-McKenney KM, Jan LY, Jan YN. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron. 2012;76(5):921–930.
    • (2012) Neuron , vol.76 , Issue.5 , pp. 921-930
    • Ori-McKenney, K.M.1    Jan, L.Y.2    Jan, Y.N.3
  • 23
    • 84855602576 scopus 로고    scopus 로고
    • Interplay between microtubule dynamics and intracellular organization
    • de Forges H, Bouissou A, Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol. 2012;44(2):266–274.
    • (2012) Int J Biochem Cell Biol , vol.44 , Issue.2 , pp. 266-274
    • De Forges, H.1    Bouissou, A.2    Perez, F.3
  • 25
  • 26
    • 84904886465 scopus 로고    scopus 로고
    • Connecting the cytoskeleton to the endoplasmic reticulum and Golgi
    • Gurel PS, Hatch AL, Higgs HN. Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr Biol. 2014;24(14): R660–R672.
    • (2014) Curr Biol , vol.24 , Issue.14 , pp. R660-R672
    • Gurel, P.S.1    Hatch, A.L.2    Higgs, H.N.3
  • 27
    • 27744556965 scopus 로고    scopus 로고
    • Cellular integrity plus: Organelle-related and protein-targeting functions of intermediate filaments
    • Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 2005;15(11):608–617.
    • (2005) Trends Cell Biol , vol.15 , Issue.11 , pp. 608-617
    • Toivola, D.M.1    Tao, G.Z.2    Habtezion, A.3    Liao, J.4    Omary, M.B.5
  • 28
    • 0033080404 scopus 로고    scopus 로고
    • Role of microtubules in the organization of the Golgi complex
    • Thyberg J, Moskalewski S. Role of microtubules in the organization of the Golgi complex. Exp Cell Res. 1999;246(2):263–279.
    • (1999) Exp Cell Res , vol.246 , Issue.2 , pp. 263-279
    • Thyberg, J.1    Moskalewski, S.2
  • 29
    • 0029972823 scopus 로고    scopus 로고
    • Golgi dispersal during microtubule disruption: Regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites
    • Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell. 1996;7(4):631–650.
    • (1996) Mol Biol Cell , vol.7 , Issue.4 , pp. 631-650
    • Cole, N.B.1    Sciaky, N.2    Marotta, A.3    Song, J.4    Lippincott-Schwartz, J.5
  • 30
    • 84887484404 scopus 로고    scopus 로고
    • Golgi as an MTOC: Making microtubules for its own good
    • Zhu X, Kaverina I. Golgi as an MTOC: making microtubules for its own good. Histochem Cell Biol. 2013;140(3):361–367.
    • (2013) Histochem Cell Biol , vol.140 , Issue.3 , pp. 361-367
    • Zhu, X.1    Kaverina, I.2
  • 31
    • 0035956989 scopus 로고    scopus 로고
    • Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography
    • Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci U S A. 2001;98(5):2399–2406.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.5 , pp. 2399-2406
    • Marsh, B.J.1    Mastronarde, D.N.2    Buttle, K.F.3    Howell, K.E.4    McIntosh, J.R.5
  • 33
    • 0030782188 scopus 로고    scopus 로고
    • Golgi tubule traffic and the effects of brefeldin A visualized in living cells
    • Sciaky N, Presley J, Smith C, et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol. 1997;139(5): 1137–1155.
    • (1997) J Cell Biol , vol.139 , Issue.5 , pp. 1137-1155
    • Sciaky, N.1    Presley, J.2    Smith, C.3
  • 34
    • 0030928782 scopus 로고    scopus 로고
    • Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI
    • Scales SJ, Pepperkok R, Kreis TE. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell. 1997;90(6):1137–1148.
    • (1997) Cell , vol.90 , Issue.6 , pp. 1137-1148
    • Scales, S.J.1    Pepperkok, R.2    Kreis, T.E.3
  • 35
    • 30044439559 scopus 로고    scopus 로고
    • Cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules
    • Mardones GA, Snyder CM, Howell KE. Cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules. Mol Biol Cell. 2006;17(1):525–538.
    • (2006) Mol Biol Cell , vol.17 , Issue.1 , pp. 525-538
    • Mardones, G.A.1    Snyder, C.M.2    Howell, K.E.3
  • 36
    • 7944220328 scopus 로고    scopus 로고
    • Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments
    • Trucco A, Polishchuk RS, Martella O, et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol. 2004;6(11):1071–1081.
    • (2004) Nat Cell Biol , vol.6 , Issue.11 , pp. 1071-1081
    • Trucco, A.1    Polishchuk, R.S.2    Martella, O.3
  • 37
    • 79952811199 scopus 로고    scopus 로고
    • A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells
    • Tängemo C, Ronchi P, Colombelli J, et al. A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells. J Cell Sci. 2011;124(6):978–987.
    • (2011) J Cell Sci , vol.124 , Issue.6 , pp. 978-987
    • Tängemo, C.1    Ronchi, P.2    Colombelli, J.3
  • 38
    • 33751534800 scopus 로고    scopus 로고
    • The dynein family at a glance
    • Hook P, Vallee RB. The dynein family at a glance. J Cell Sci. 2006; 119(Pt 21):4369–4371.
    • (2006) J Cell Sci , vol.119 , Issue.21 , pp. 4369-4371
    • Hook, P.1    Vallee, R.B.2
  • 39
    • 84887859097 scopus 로고    scopus 로고
    • Dynein, microtubule and cargo: A ménage à trois
    • Pavin N, Tolić-Nørrelykke IM. Dynein, microtubule and cargo: a ménage à trois. Biochem Soc Trans. 2013;41(6):1731–1735.
    • (2013) Biochem Soc Trans , vol.41 , Issue.6 , pp. 1731-1735
    • Pavin, N.1    Tolić-Nørrelykke, I.M.2
  • 40
    • 0026760941 scopus 로고
    • Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex
    • Corthésy-Theulaz I, Pauloin A, Pfeffer SR. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol. 1992;118(6):1333–1345.
    • (1992) J Cell Biol , vol.118 , Issue.6 , pp. 1333-1345
    • Corthésy-Theulaz, I.1    Pauloin, A.2    Pfeffer, S.R.3
  • 41
    • 0032489870 scopus 로고    scopus 로고
    • Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein
    • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol. 1998;141(1):51–59.
    • (1998) J Cell Biol , vol.141 , Issue.1 , pp. 51-59
    • Harada, A.1    Takei, Y.2    Kanai, Y.3    Tanaka, Y.4    Nonaka, S.5    Hirokawa, N.6
  • 42
    • 33750932783 scopus 로고    scopus 로고
    • A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex
    • Stauber T, Simpson JC, Pepperkok R, Vernos I. A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol. 2006;16(22):2245–2251.
    • (2006) Curr Biol , vol.16 , Issue.22 , pp. 2245-2251
    • Stauber, T.1    Simpson, J.C.2    Pepperkok, R.3    Vernos, I.4
  • 44
    • 67449164805 scopus 로고    scopus 로고
    • Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps
    • Palmer KJ, Hughes H, Stephens DJ. Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps. Mol Biol Cell. 2009;20(12):2885–2899.
    • (2009) Mol Biol Cell , vol.20 , Issue.12 , pp. 2885-2899
    • Palmer, K.J.1    Hughes, H.2    Stephens, D.J.3
  • 45
    • 84979578219 scopus 로고    scopus 로고
    • Opposing microtubule motors control motility, morphology and cargo segregation during ER-to-Golgi transport
    • Brown AK, Hunt SD, Stephens DJ. Opposing microtubule motors control motility, morphology and cargo segregation during ER-to-Golgi transport. Biol Open. 2014;3(5):307–313.
    • (2014) Biol Open , vol.3 , Issue.5 , pp. 307-313
    • Brown, A.K.1    Hunt, S.D.2    Stephens, D.J.3
  • 46
    • 33749015997 scopus 로고    scopus 로고
    • Microtubule motors at the intersection of trafficking and transport
    • Caviston JP, Holzbaur EL. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 2006;16(10):530–537.
    • (2006) Trends Cell Biol , vol.16 , Issue.10 , pp. 530-537
    • Caviston, J.P.1    Holzbaur, E.L.2
  • 47
    • 84908488959 scopus 로고    scopus 로고
    • Integrated regulation of motor-driven organelle transport by scaffolding proteins
    • Fu MM, Holzbaur EL. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 2014;24(10): 564–574.
    • (2014) Trends Cell Biol , vol.24 , Issue.10 , pp. 564-574
    • Fu, M.M.1    Holzbaur, E.L.2
  • 49
    • 0030727535 scopus 로고    scopus 로고
    • Overexpression of the dynamitin (P50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution
    • Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol. 1997;139(2):469–484.
    • (1997) J Cell Biol , vol.139 , Issue.2 , pp. 469-484
    • Burkhardt, J.K.1    Echeverri, C.J.2    Nilsson, T.3    Vallee, R.B.4
  • 51
    • 12344277564 scopus 로고    scopus 로고
    • Coupling of ER exit to microtubules through direct interaction of COPII with dynactin
    • Watson P, Forster R, Palmer KJ, Pepperkok R, Stephens DJ. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol. 2005;7(1):48–55.
    • (2005) Nat Cell Biol , vol.7 , Issue.1 , pp. 48-55
    • Watson, P.1    Forster, R.2    Palmer, K.J.3    Pepperkok, R.4    Stephens, D.J.5
  • 52
    • 0037415607 scopus 로고    scopus 로고
    • Dynactin is required for bidirectional organelle transport
    • Deacon SW, Serpinskaya AS, Vaughan PS, et al. Dynactin is required for bidirectional organelle transport. J Cell Biol. 2003;160(3): 297–301.
    • (2003) J Cell Biol , vol.160 , Issue.3 , pp. 297-301
    • Deacon, S.W.1    Serpinskaya, A.S.2    Vaughan, P.S.3
  • 53
    • 33744826279 scopus 로고    scopus 로고
    • Processive bidirectional motion of dynein-dynactin complexes in vitro
    • Ross JL, Wallace K, Shuman H, Goldman YE, Holzbaur EL. Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat Cell Biol. 2006;8(6):562–570.
    • (2006) Nat Cell Biol , vol.8 , Issue.6 , pp. 562-570
    • Ross, J.L.1    Wallace, K.2    Shuman, H.3    Goldman, Y.E.4    Holzbaur, E.L.5
  • 54
    • 34250306791 scopus 로고    scopus 로고
    • Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment
    • Haghnia M, Cavalli V, Shah SB, et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell. 2007;18(6):2081–2089.
    • (2007) Mol Biol Cell , vol.18 , Issue.6 , pp. 2081-2089
    • Haghnia, M.1    Cavalli, V.2    Shah, S.B.3
  • 55
    • 33846199544 scopus 로고    scopus 로고
    • Dynactin enhances the processivity of kinesin-2
    • Berezuk MA, Schroer TA. Dynactin enhances the processivity of kinesin-2. Traffic. 2007;8(2):124–129.
    • (2007) Traffic , vol.8 , Issue.2 , pp. 124-129
    • Berezuk, M.A.1    Schroer, T.A.2
  • 56
    • 3142642871 scopus 로고    scopus 로고
    • Bidirectional transport along microtubules
    • Welte MA. Bidirectional transport along microtubules. Curr Biol. 2004;14(13):R525–R537.
    • (2004) Curr Biol , vol.14 , Issue.13 , pp. R525-R537
    • Welte, M.A.1
  • 57
    • 0035422303 scopus 로고    scopus 로고
    • Mammalian Golgi-associated bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes
    • Hoogenraad CC, Akhmanova A, Howell SA, et al. Mammalian Golgi-associated bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J. 2001;20(15):4041–4054.
    • (2001) EMBO J , vol.20 , Issue.15 , pp. 4041-4054
    • Hoogenraad, C.C.1    Akhmanova, A.2    Howell, S.A.3
  • 58
    • 0036902478 scopus 로고    scopus 로고
    • Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex
    • Matanis T, Akhmanova A, Wulf P, et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol. 2002;4(12):986–992.
    • (2002) Nat Cell Biol , vol.4 , Issue.12 , pp. 986-992
    • Matanis, T.1    Akhmanova, A.2    Wulf, P.3
  • 59
    • 84868250529 scopus 로고    scopus 로고
    • BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures
    • Splinter D, Razafsky DS, Schlager MA, et al. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell. 2012;23(21):4226–4241.
    • (2012) Mol Biol Cell , vol.23 , Issue.21 , pp. 4226-4241
    • Splinter, D.1    Razafsky, D.S.2    Schlager, M.A.3
  • 60
    • 11144265757 scopus 로고    scopus 로고
    • Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’
    • Young J, Stauber T, del Nery E, Vernos I, Pepperkok R, Nilsson T. Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’. Mol Biol Cell. 2005;16(1):162–177.
    • (2005) Mol Biol Cell , vol.16 , Issue.1 , pp. 162-177
    • Young, J.1    Stauber, T.2    Del Nery, E.3    Vernos, I.4    Pepperkok, R.5    Nilsson, T.6
  • 61
    • 34547414652 scopus 로고    scopus 로고
    • Rab6 regulates transport and targeting of exocytotic carriers
    • Grigoriev I, Splinter D, Keijzer N, et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell. 2007;13(2):305–314.
    • (2007) Dev Cell , vol.13 , Issue.2 , pp. 305-314
    • Grigoriev, I.1    Splinter, D.2    Keijzer, N.3
  • 62
    • 34247282758 scopus 로고    scopus 로고
    • Functional symmetry of endomembranes
    • Saraste J, Goud B. Functional symmetry of endomembranes. Mol Biol Cell. 2007;18(4):1430–1436.
    • (2007) Mol Biol Cell , vol.18 , Issue.4 , pp. 1430-1436
    • Saraste, J.1    Goud, B.2
  • 63
    • 65249115901 scopus 로고    scopus 로고
    • A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing
    • Yadav S, Puri S, Linstedt AD. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell. 2009;20(6):1728–1736.
    • (2009) Mol Biol Cell , vol.20 , Issue.6 , pp. 1728-1736
    • Yadav, S.1    Puri, S.2    Linstedt, A.D.3
  • 64
    • 4043107077 scopus 로고    scopus 로고
    • GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation
    • Ríos RM, Sanchís A, Tassin AM, Fedriani C, Bornens M. GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell. 2004;118(3):323–335.
    • (2004) Cell , vol.118 , Issue.3 , pp. 323-335
    • Ríos, R.M.1    Sanchís, A.2    Tassin, A.M.3    Fedriani, C.4    Bornens, M.5
  • 65
    • 84864004215 scopus 로고    scopus 로고
    • Golgin160 recruits the dynein motor to position the Golgi apparatus
    • Yadav S, Puthenveedu MA, Linstedt AD. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell. 2012;23(1): 153–165.
    • (2012) Dev Cell , vol.23 , Issue.1 , pp. 153-165
    • Yadav, S.1    Puthenveedu, M.A.2    Linstedt, A.D.3
  • 66
    • 43249126878 scopus 로고    scopus 로고
    • Asymmetric tethering of flat and curved lipid membranes by a golgin
    • Drin G, Morello V, Casella JF, Gounon P, Antonny B. Asymmetric tethering of flat and curved lipid membranes by a golgin. Science. 2008;320(5876):670–673.
    • (2008) Science , vol.320 , Issue.5876 , pp. 670-673
    • Drin, G.1    Morello, V.2    Casella, J.F.3    Gounon, P.4    Antonny, B.5
  • 67
    • 70350029562 scopus 로고    scopus 로고
    • Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms
    • Cardenas J, Rivero S, Goud B, Bornens M, Rios RM. Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms. BMC Biol. 2009;7:56.
    • (2009) BMC Biol , vol.7 , pp. 56
    • Cardenas, J.1    Rivero, S.2    Goud, B.3    Bornens, M.4    Rios, R.M.5
  • 69
    • 7244248570 scopus 로고    scopus 로고
    • The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi
    • Gillingham AK, Tong AH, Boone C, Munro S. The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J Cell Biol. 2004;167(2):281–292.
    • (2004) J Cell Biol , vol.167 , Issue.2 , pp. 281-292
    • Gillingham, A.K.1    Tong, A.H.2    Boone, C.3    Munro, S.4
  • 70
    • 84856290771 scopus 로고    scopus 로고
    • The centrosome in cells and organisms
    • Bornens M. The centrosome in cells and organisms. Science. 2012; 335(6067):422–426.
    • (2012) Science , vol.335 , Issue.6067 , pp. 422-426
    • Bornens, M.1
  • 71
    • 34249305474 scopus 로고    scopus 로고
    • Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network
    • Efimov A, Kharitonov A, Efimova N, et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell. 2007;12(6):917–930.
    • (2007) Dev Cell , vol.12 , Issue.6 , pp. 917-930
    • Efimov, A.1    Kharitonov, A.2    Efimova, N.3
  • 72
    • 0035153908 scopus 로고    scopus 로고
    • The Golgi complex is a microtubule-organizing organelle
    • Chabin-Brion K, Marceiller J, Perez F, et al. The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell. 2001;12(7): 2047–2060.
    • (2001) Mol Biol Cell , vol.12 , Issue.7 , pp. 2047-2060
    • Chabin-Brion, K.1    Marceiller, J.2    Perez, F.3
  • 73
    • 28544433842 scopus 로고    scopus 로고
    • Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm
    • Malikov V, Cytrynbaum EN, Kashina A, Mogilner A, Rodionov V. Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nat Cell Biol. 2005; 7(12):1213–1218.
    • (2005) Nat Cell Biol , vol.7 , Issue.12 , pp. 1213-1218
    • Malikov, V.1    Cytrynbaum, E.N.2    Kashina, A.3    Mogilner, A.4    Rodionov, V.5
  • 74
    • 67349287493 scopus 로고    scopus 로고
    • Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130
    • Rivero S, Cardenas J, Bornens M, Rios RM. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. 2009;28(8):1016–1028.
    • (2009) EMBO J , vol.28 , Issue.8 , pp. 1016-1028
    • Rivero, S.1    Cardenas, J.2    Bornens, M.3    Rios, R.M.4
  • 75
    • 0036736094 scopus 로고    scopus 로고
    • Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex
    • Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell. 2002; 13(9):3235–3245.
    • (2002) Mol Biol Cell , vol.13 , Issue.9 , pp. 3235-3245
    • Takahashi, M.1    Yamagiwa, A.2    Nishimura, T.3    Mukai, H.4    Ono, Y.5
  • 76
    • 79959480895 scopus 로고    scopus 로고
    • Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis
    • Hurtado L, Caballero C, Gavilan MP, Cardenas J, Bornens M, Rios RM. Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. J Cell Biol. 2011;193(5):917–933.
    • (2011) J Cell Biol , vol.193 , Issue.5 , pp. 917-933
    • Hurtado, L.1    Caballero, C.2    Gavilan, M.P.3    Cardenas, J.4    Bornens, M.5    Rios, R.M.6
  • 77
    • 77954615930 scopus 로고    scopus 로고
    • Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex
    • Wang Z, Wu T, Shi L, et al. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem. 2010;285(29):22658–22665.
    • (2010) J Biol Chem , vol.285 , Issue.29 , pp. 22658-22665
    • Wang, Z.1    Wu, T.2    Shi, L.3
  • 78
    • 84965053078 scopus 로고    scopus 로고
    • Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules
    • Roubin R, Acquaviva C, Chevrier V, et al. Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules. Biol Open. 2013;2(2):238–250.
    • (2013) Biol Open , vol.2 , Issue.2 , pp. 238-250
    • Roubin, R.1    Acquaviva, C.2    Chevrier, V.3
  • 79
    • 77950566340 scopus 로고    scopus 로고
    • CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response
    • Barr AR, Kilmartin JV, Gergely F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J Cell Biol. 2010;189(1):23–39.
    • (2010) J Cell Biol , vol.189 , Issue.1 , pp. 23-39
    • Barr, A.R.1    Kilmartin, J.V.2    Gergely, F.3
  • 80
    • 84911956027 scopus 로고    scopus 로고
    • A novel myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport
    • Wang Z, Zhang C, Qi RZ. A novel myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport. J Cell Sci. 2014;127(22):4904–4917.
    • (2014) J Cell Sci , vol.127 , Issue.22 , pp. 4904-4917
    • Wang, Z.1    Zhang, C.2    Qi, R.Z.3
  • 81
    • 78650115459 scopus 로고    scopus 로고
    • CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex
    • Choi YK, Liu P, Sze SK, Dai C, Qi RZ. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex. J Cell Biol. 2010;191(6):1089–1095.
    • (2010) J Cell Biol , vol.191 , Issue.6 , pp. 1089-1095
    • Choi, Y.K.1    Liu, P.2    Sze, S.K.3    Dai, C.4    Qi, R.Z.5
  • 82
    • 38749152785 scopus 로고    scopus 로고
    • CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex
    • Fong KW, Choi YK, Rattner JB, Qi RZ. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol Biol Cell. 2008;19(1):115–125.
    • (2008) Mol Biol Cell , vol.19 , Issue.1 , pp. 115-125
    • Fong, K.W.1    Choi, Y.K.2    Rattner, J.B.3    Qi, R.Z.4
  • 83
    • 0035815666 scopus 로고    scopus 로고
    • Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase
    • Verde I, Pahlke G, Salanova M, et al. Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem. 2001;276(14):11189–11198.
    • (2001) J Biol Chem , vol.276 , Issue.14 , pp. 11189-11198
    • Verde, I.1    Pahlke, G.2    Salanova, M.3
  • 84
    • 33847624241 scopus 로고    scopus 로고
    • Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex
    • Kim HS, Takahashi M, Matsuo K, Ono Y. Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex. Genes Cells. 2007;12(3):421–434.
    • (2007) Genes Cells , vol.12 , Issue.3 , pp. 421-434
    • Kim, H.S.1    Takahashi, M.2    Matsuo, K.3    Ono, Y.4
  • 85
    • 31944450657 scopus 로고    scopus 로고
    • Complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring
    • Yan X, Habedanck R, Nigg EA. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol Biol Cell. 2006;17(2):634–644.
    • (2006) Mol Biol Cell , vol.17 , Issue.2 , pp. 634-644
    • Yan, X.1    Habedanck, R.2    Nigg, E.3
  • 86
    • 35548937762 scopus 로고    scopus 로고
    • Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex
    • Hoppeler-Lebel A, Celati C, Bellett G, et al. Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci. 2007;120(Pt 18):3299–3308.
    • (2007) J Cell Sci , vol.120 , Issue.18 , pp. 3299-3308
    • Hoppeler-Lebel, A.1    Celati, C.2    Bellett, G.3
  • 87
    • 81755162751 scopus 로고    scopus 로고
    • PTTG1/securin modulates microtubule nucleation and cell migration
    • Moreno-Mateos MA, Espina AG, Torres B, et al. PTTG1/securin modulates microtubule nucleation and cell migration. Mol Biol Cell. 2011;22(22):4302–4311.
    • (2011) Mol Biol Cell , vol.22 , Issue.22 , pp. 4302-4311
    • Moreno-Mateos, M.A.1    Espina, A.G.2    Torres, B.3
  • 88
    • 84872598176 scopus 로고    scopus 로고
    • Modulation of Golgi-associated microtubule nucleation throughout the cell cycle
    • Maia AR, Zhu X, Miller P, Gu G, Maiato H, Kaverina I. Modulation of Golgi-associated microtubule nucleation throughout the cell cycle. Cytoskeleton (Hoboken). 2013;70(1):32–43.
    • (2013) Cytoskeleton (Hoboken) , vol.70 , Issue.1 , pp. 32-43
    • Maia, A.R.1    Zhu, X.2    Miller, P.3    Gu, G.4    Maiato, H.5    Kaverina, I.6
  • 89
    • 0029166933 scopus 로고
    • Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata
    • Miller DD, Scordilis SP, Hepler PK. Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci. 1995;108(Pt 7):2549–2563.
    • (1995) J Cell Sci , vol.108 , Issue.7 , pp. 2549-2563
    • Miller, D.D.1    Scordilis, S.P.2    Hepler, P.K.3
  • 90
    • 69949178740 scopus 로고    scopus 로고
    • Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells
    • Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol. 2009;11(9):1069–1080.
    • (2009) Nat Cell Biol , vol.11 , Issue.9 , pp. 1069-1080
    • Miller, P.M.1    Folkmann, A.W.2    Maia, A.R.3    Efimova, N.4    Efimov, A.5    Kaverina, I.6
  • 91
    • 84862323152 scopus 로고    scopus 로고
    • The Golgi in cell migration: Regulation by signal transduction and its implications for cancer cell metastasis
    • Millarte V, Farhan H. The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. Scientific World Journal. 2012;2012:498278.
    • (2012) Scientific World Journal , vol.2012
    • Millarte, V.1    Farhan, H.2
  • 92
    • 0033574528 scopus 로고    scopus 로고
    • Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles
    • Heimann K, Percival JM, Weinberger R, Gunning P, Stow JL. Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles. J Biol Chem. 1999;274(16):10743–10750.
    • (1999) J Biol Chem , vol.274 , Issue.16 , pp. 10743-10750
    • Heimann, K.1    Percival, J.M.2    Weinberger, R.3    Gunning, P.4    Stow, J.L.5
  • 94
    • 33751163972 scopus 로고    scopus 로고
    • Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH
    • Lázaro-Diéguez F, Jiménez N, Barth H, et al. Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton. 2006;63(12):778–791.
    • (2006) Cell Motil Cytoskeleton , vol.63 , Issue.12 , pp. 778-791
    • Lázaro-Diéguez, F.1    Jiménez, N.2    Barth, H.3
  • 95
    • 0031779777 scopus 로고    scopus 로고
    • Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex
    • Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G. Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol. 1998;76(1):9–17.
    • (1998) Eur J Cell Biol , vol.76 , Issue.1 , pp. 9-17
    • Valderrama, F.1    Babia, T.2    Ayala, I.3    Kok, J.W.4    Renau-Piqueras, J.5    Egea, G.6
  • 96
    • 0034800091 scopus 로고    scopus 로고
    • Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells
    • Valderrama F, Durán JM, Babià T, Barth H, Renau-Piqueras J, Egea G. Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic. 2001;2(10):717–726.
    • (2001) Traffic , vol.2 , Issue.10 , pp. 717-726
    • Valderrama, F.1    Durán, J.M.2    Babià, T.3    Barth, H.4    Renau-Piqueras, J.5    Egea, G.6
  • 97
    • 0034652215 scopus 로고    scopus 로고
    • The Golgi-associated COPI-coated buds and vesicles contain beta/gamma-actin
    • Valderrama F, Luna A, Babià T, et al. The Golgi-associated COPI-coated buds and vesicles contain beta/gamma-actin. Proc Natl Acad Sci U S A. 2000;97(4):1560–1565.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , Issue.4 , pp. 1560-1565
    • Valderrama, F.1    Luna, A.2    Babià, T.3
  • 98
    • 46149096223 scopus 로고    scopus 로고
    • WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport
    • Campellone KG, Webb NJ, Znameroski EA, Welch MD. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell. 2008;134(1):148–161.
    • (2008) Cell , vol.134 , Issue.1 , pp. 148-161
    • Campellone, K.G.1    Webb, N.J.2    Znameroski, E.A.3    Welch, M.D.4
  • 99
    • 84866508744 scopus 로고    scopus 로고
    • Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology
    • Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken). 2012;69(9):625–643.
    • (2012) Cytoskeleton (Hoboken) , vol.69 , Issue.9 , pp. 625-643
    • Kirkbride, K.C.1    Hong, N.H.2    French, C.L.3    Clark, E.S.4    Jerome, W.G.5    Weaver, A.M.6
  • 100
    • 70349835304 scopus 로고    scopus 로고
    • GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding
    • Dippold HC, Ng MM, Farber-Katz SE, et al. GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell. 2009;139(2):337–351.
    • (2009) Cell , vol.139 , Issue.2 , pp. 337-351
    • Dippold, H.C.1    Ng, M.M.2    Farber-Katz, S.E.3
  • 102
    • 80054046064 scopus 로고    scopus 로고
    • Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex
    • Colón-Franco JM, Gomez TS, Billadeau DD. Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex. J Cell Sci. 2011;124(Pt 18): 3118–3126.
    • (2011) J Cell Sci , vol.124 , Issue.18 , pp. 3118-3126
    • Colón-Franco, J.M.1    Gomez, T.S.2    Billadeau, D.D.3
  • 103
    • 84055217451 scopus 로고    scopus 로고
    • Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture
    • Ramabhadran V, Korobova F, Rahme GJ, Higgs HN. Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture. Mol Biol Cell. 2011;22(24):4822–4833.
    • (2011) Mol Biol Cell , vol.22 , Issue.24 , pp. 4822-4833
    • Ramabhadran, V.1    Korobova, F.2    Rahme, G.J.3    Higgs, H.N.4
  • 104
    • 80051677622 scopus 로고    scopus 로고
    • Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics
    • Zilberman Y, Alieva NO, Miserey-Lenkei S, et al. Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics. Mol Biol Cell. 2011;22(16):2900–2911.
    • (2011) Mol Biol Cell , vol.22 , Issue.16 , pp. 2900-2911
    • Zilberman, Y.1    Alieva, N.O.2    Miserey-Lenkei, S.3
  • 105
    • 0027993053 scopus 로고
    • Golgi spectrin: Identification of an erythroid beta-spectrin homolog associated with the Golgi complex
    • Beck KA, Buchanan JA, Malhotra V, Nelson WJ. Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex. J Cell Biol. 1994;127(3):707–723.
    • (1994) J Cell Biol , vol.127 , Issue.3 , pp. 707-723
    • Beck, K.A.1    Buchanan, J.A.2    Malhotra, V.3    Nelson, W.J.4
  • 106
    • 0032516894 scopus 로고    scopus 로고
    • A spectrin membrane skeleton of the Golgi complex
    • Beck KA, Nelson WJ. A spectrin membrane skeleton of the Golgi complex. Biochim Biophys Acta. 1998;1404(1–2):153–160.
    • (1998) Biochim Biophys Acta , vol.1404 , Issue.1-2 , pp. 153-160
    • Beck, K.A.1    Nelson, W.J.2
  • 107
    • 0031975510 scopus 로고    scopus 로고
    • Speculating about spectrin: New insights into the Golgi-associated cytoskeleton
    • Holleran EA, Holzbaur EL. Speculating about spectrin: new insights into the Golgi-associated cytoskeleton. Trends Cell Biol. 1998; 8(1):26–29.
    • (1998) Trends Cell Biol , vol.8 , Issue.1 , pp. 26-29
    • Holleran, E.A.1    Holzbaur, E.L.2
  • 108
    • 13144266740 scopus 로고    scopus 로고
    • ADP ribosylation factor regulates spectrin binding to the Golgi complex
    • Godi A, Santone I, Pertile P, et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc Natl Acad Sci U S A. 1998;95(15):8607–8612.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , Issue.15 , pp. 8607-8612
    • Godi, A.1    Santone, I.2    Pertile, P.3
  • 109
    • 0033880909 scopus 로고    scopus 로고
    • Spectrin tethers and mesh in the biosynthetic pathway
    • De Matteis MA, Morrow JS. Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci. 2000;113(Pt 13):2331–2343.
    • (2000) J Cell Sci , vol.113 , Issue.13 , pp. 2331-2343
    • De Matteis, M.A.1    Morrow, J.S.2
  • 110
    • 84873867735 scopus 로고    scopus 로고
    • Jovic M, et al. βIII Spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex
    • Salcedo-Sicilia L, Granell S, Jovic M, et al. βIII Spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem. 2013;288(4):2157–2166.
    • (2013) J Biol Chem , vol.288 , Issue.4 , pp. 2157-2166
    • Salcedo-Sicilia, L.1    Granell, S.2
  • 111
    • 0032564278 scopus 로고    scopus 로고
    • A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles
    • Stankewich MC, Tse WT, Peters LL, et al. A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci U S A. 1998;95(24):14158–14163.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , Issue.24 , pp. 14158-14163
    • Stankewich, M.C.1    Tse, W.T.2    Peters, L.L.3
  • 112
    • 0030918480 scopus 로고    scopus 로고
    • Golgi membrane skeleton: Identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex
    • Beck KA, Buchanan JA, Nelson WJ. Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. J Cell Sci. 1997; 110(Pt 10):1239–1249.
    • (1997) J Cell Sci , vol.110 , Issue.10 , pp. 1239-1249
    • Beck, K.A.1    Buchanan, J.A.2    Nelson, W.J.3
  • 113
    • 0029898290 scopus 로고    scopus 로고
    • Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus
    • Devarajan P, Stabach PR, Mann AS, Ardito T, Kashgarian M, Morrow JS. Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. J Cell Biol. 1996;133(4):819–830.
    • (1996) J Cell Biol , vol.133 , Issue.4 , pp. 819-830
    • Devarajan, P.1    Stabach, P.R.2    Mann, A.S.3    Ardito, T.4    Kashgarian, M.5    Morrow, J.S.6
  • 114
    • 0030923518 scopus 로고    scopus 로고
    • Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells
    • Devarajan P, Stabach PR, De Matteis MA, Morrow JS. Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc Natl Acad Sci U S A. 1997;94(20): 10711–10716.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , Issue.20 , pp. 10711-10716
    • Devarajan, P.1    Stabach, P.R.2    De Matteis, M.A.3    Morrow, J.S.4
  • 115
    • 66849138216 scopus 로고    scopus 로고
    • A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane
    • Kang Q, Wang T, Zhang H, Mohandas N, An X. A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane. J Cell Sci. 2009;122(Pt 8):1091–1099.
    • (2009) J Cell Sci , vol.122 , Issue.8 , pp. 1091-1099
    • Kang, Q.1    Wang, T.2    Zhang, H.3    Mohandas, N.4    An, X.5
  • 116
    • 0035150705 scopus 로고    scopus 로고
    • Identification of the full-length AE2 (AE2a) isoform as the Golgi-associated anion exchanger in fibroblasts
    • Holappa K, Suokas M, Soininen P, Kellokumpu S. Identification of the full-length AE2 (AE2a) isoform as the Golgi-associated anion exchanger in fibroblasts. J Histochem Cytochem. 2001; 49(2):259–269.
    • (2001) J Histochem Cytochem , vol.49 , Issue.2 , pp. 259-269
    • Holappa, K.1    Suokas, M.2    Soininen, P.3    Kellokumpu, S.4
  • 117
    • 1842828896 scopus 로고    scopus 로고
    • The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells
    • Holappa K, Munoz MT, Egea G, Kellokumpu S. The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells. FEBS Lett. 2004;564(1–2): 97–103.
    • (2004) FEBS Lett , vol.564 , Issue.12 , pp. 97-103
    • Holappa, K.1    Munoz, M.T.2    Egea, G.3    Kellokumpu, S.4
  • 118
    • 0347360322 scopus 로고    scopus 로고
    • Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex
    • Percival JM, Hughes JA, Brown DL, et al. Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol Biol Cell. 2004;15(1):268–280.
    • (2004) Mol Biol Cell , vol.15 , Issue.1 , pp. 268-280
    • Percival, J.M.1    Hughes, J.A.2    Brown, D.L.3
  • 119
    • 0037449756 scopus 로고    scopus 로고
    • Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate
    • Siddhanta A, Radulescu A, Stankewich MC, Morrow JS, Shields D. Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2003;278(3):1957–1965.
    • (2003) J Biol Chem , vol.278 , Issue.3 , pp. 1957-1965
    • Siddhanta, A.1    Radulescu, A.2    Stankewich, M.C.3    Morrow, J.S.4    Shields, D.5
  • 121
    • 0024962604 scopus 로고
    • H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures
    • Moriyama Y, Nelson N. H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J Biol Chem. 1989;264(31):18445–18450.
    • (1989) J Biol Chem. , vol.264 , Issue.31 , pp. 18445-18450
    • Moriyama, Y.1    Nelson, N.2
  • 122
    • 12544258841 scopus 로고    scopus 로고
    • Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation
    • Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem. 2005;280(2):1561–1572.
    • (2005) J Biol Chem , vol.280 , Issue.2 , pp. 1561-1572
    • Nakamura, N.1    Tanaka, S.2    Teko, Y.3    Mitsui, K.4    Kanazawa, H.5
  • 123
    • 84862519850 scopus 로고    scopus 로고
    • Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast
    • Curwin AJ, von Blume J, Malhotra V. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol Biol Cell. 2012;23(12):2327–2338.
    • (2012) Mol Biol Cell , vol.23 , Issue.12 , pp. 2327-2338
    • Curwin, A.J.1    Von Blume, J.2    Malhotra, V.3
  • 124
    • 76149090527 scopus 로고    scopus 로고
    • Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network
    • von Blume J, Duran JM, Forlanelli E, et al. Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. J Cell Biol. 2009;187(7):1055–1069.
    • (2009) J Cell Biol , vol.187 , Issue.7 , pp. 1055-1069
    • Von Blume, J.1    Duran, J.M.2    Forlanelli, E.3
  • 125
    • 79955925696 scopus 로고    scopus 로고
    • ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1
    • von Blume J, Alleaume AM, Cantero-Recasens G, et al. ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell. 2011;20(5):652–662.
    • (2011) Dev Cell , vol.20 , Issue.5 , pp. 652-662
    • Von Blume, J.1    Alleaume, A.M.2    Cantero-Recasens, G.3
  • 126
    • 33845355027 scopus 로고    scopus 로고
    • Interaction of epithelial ion channels with the actin-based cytoskeleton
    • Mazzochi C, Benos DJ, Smith PR. Interaction of epithelial ion channels with the actin-based cytoskeleton. Am J Physiol Renal Physiol. 2006;291(6):F1113–F1122.
    • (2006) Am J Physiol Renal Physiol , vol.291 , Issue.6 , pp. F1113-F1122
    • Mazzochi, C.1    Benos, D.J.2    Smith, P.R.3
  • 128
    • 34547125988 scopus 로고    scopus 로고
    • Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network
    • Lázaro-Diéguez F, Colonna C, Cortegano M, Calvo M, Martínez SE, Egea G. Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network. FEBS Lett. 2007; 581(20):3875–3881.
    • (2007) FEBS Lett , vol.581 , Issue.20 , pp. 3875-3881
    • Lázaro-Diéguez, F.1    Colonna, C.2    Cortegano, M.3    Calvo, M.4    Martínez, S.E.5    Egea, G.6
  • 129
    • 0029998595 scopus 로고    scopus 로고
    • Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus
    • Erickson JW, Zhang C, Kahn RA, Evans T, Cerione RA. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J Biol Chem. 1996;271(43):26850–26854.
    • (1996) J Biol Chem , vol.271 , Issue.43 , pp. 26850-26854
    • Erickson, J.W.1    Zhang, C.2    Kahn, R.A.3    Evans, T.4    Cerione, R.A.5
  • 130
    • 0034705414 scopus 로고    scopus 로고
    • Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes
    • Fucini RV, Navarrete A, Vadakkan C, et al. Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes. J Biol Chem. 2000;275(25):18824–18829.
    • (2000) J Biol Chem , vol.275 , Issue.25 , pp. 18824-18829
    • Fucini, R.V.1    Navarrete, A.2    Vadakkan, C.3
  • 131
    • 0036201054 scopus 로고    scopus 로고
    • Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP
    • Luna A, Matas OB, Martínez-Menárguez JA, et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell. 2002;13(3):866–879.
    • (2002) Mol Biol Cell , vol.13 , Issue.3 , pp. 866-879
    • Luna, A.1    Matas, O.B.2    Martínez-Menárguez, J.A.3
  • 132
    • 7244238111 scopus 로고    scopus 로고
    • Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes
    • Matas OB, Martínez-Menárguez JA, Egea G. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic. 2004;5(11):838–846.
    • (2004) Traffic , vol.5 , Issue.11 , pp. 838-846
    • Matas, O.B.1    Martínez-Menárguez, J.A.2    Egea, G.3
  • 133
    • 1142269809 scopus 로고    scopus 로고
    • Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility
    • Prigozhina NL, Waterman-Storer CM. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol. 2004;14(2):88–98.
    • (2004) Curr Biol , vol.14 , Issue.2 , pp. 88-98
    • Prigozhina, N.L.1    Waterman-Storer, C.M.2
  • 134
    • 0001264854 scopus 로고    scopus 로고
    • The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation
    • Wu WJ, Erickson JW, Lin R, Cerione RA. The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature. 2000;405(6788):800–804.
    • (2000) Nature , vol.405 , Issue.6788 , pp. 800-804
    • Wu, W.J.1    Erickson, J.W.2    Lin, R.3    Cerione, R.A.4
  • 135
    • 77956454496 scopus 로고    scopus 로고
    • Cdc42 and vesicle trafficking in polarized cells
    • Harris KP, Tepass U. Cdc42 and vesicle trafficking in polarized cells. Traffic. 2010;11(10):1272–1279.
    • (2010) Traffic , vol.11 , Issue.10 , pp. 1272-1279
    • Harris, K.P.1    Tepass, U.2
  • 136
    • 70350111046 scopus 로고    scopus 로고
    • Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42
    • Hehnly H, Longhini KM, Chen JL, Stamnes M. Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42. Mol Biol Cell. 2009;20(20):4303–4312.
    • (2009) Mol Biol Cell , vol.20 , Issue.20 , pp. 4303-4312
    • Hehnly, H.1    Longhini, K.M.2    Chen, J.L.3    Stamnes, M.4
  • 138
    • 34248149386 scopus 로고    scopus 로고
    • Regulating cytoskeleton-based vesicle motility
    • Hehnly H, Stamnes M. Regulating cytoskeleton-based vesicle motility. FEBS Lett. 2007;581(11):2112–2118.
    • (2007) FEBS Lett , vol.581 , Issue.11 , pp. 2112-2118
    • Hehnly, H.1    Stamnes, M.2
  • 139
    • 0034903162 scopus 로고    scopus 로고
    • Selective control of basolateral membrane protein polarity by Cdc42
    • Cohen D, Müsch A, Rodriguez-Boulan E. Selective control of basolateral membrane protein polarity by Cdc42. Traffic. 2001;2(8): 556–564.
    • (2001) Traffic , vol.2 , Issue.8 , pp. 556-564
    • Cohen, D.1    Müsch, A.2    Rodriguez-Boulan, E.3
  • 140
    • 0033126052 scopus 로고    scopus 로고
    • Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells
    • Kroschewski R, Hall A, Mellman I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol. 1999;1(1):8–13.
    • (1999) Nat Cell Biol , vol.1 , Issue.1 , pp. 8-13
    • Kroschewski, R.1    Hall, A.2    Mellman, I.3
  • 141
    • 0035341316 scopus 로고    scopus 로고
    • Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network
    • Müsch A, Cohen D, Kreitzer G, Rodriguez-Boulan E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 2001;20(9):2171–2179.
    • (2001) EMBO J , vol.20 , Issue.9 , pp. 2171-2179
    • Müsch, A.1    Cohen, D.2    Kreitzer, G.3    Rodriguez-Boulan, E.4
  • 142
    • 17344369066 scopus 로고    scopus 로고
    • Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics
    • Dubois T, Paleotti O, Mironov AA, et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol. 2005;7(4):353–364.
    • (2005) Nat Cell Biol , vol.7 , Issue.4 , pp. 353-364
    • Dubois, T.1    Paleotti, O.2    Mironov, A.A.3
  • 143
    • 0035282910 scopus 로고    scopus 로고
    • Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane
    • Estrada L, Caron E, Gorski JL. Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane. Hum Mol Genet. 2001;10(5):485–495.
    • (2001) Hum Mol Genet , vol.10 , Issue.5 , pp. 485-495
    • Estrada, L.1    Caron, E.2    Gorski, J.L.3
  • 144
    • 13244257110 scopus 로고    scopus 로고
    • The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs
    • Kostenko EV, Mahon GM, Cheng L, Whitehead IP. The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs. J Biol Chem. 2005;280(4):2807–2817.
    • (2005) J Biol Chem , vol.280 , Issue.4 , pp. 2807-2817
    • Kostenko, E.V.1    Mahon, G.M.2    Cheng, L.3    Whitehead, I.P.4
  • 145
    • 10744221375 scopus 로고    scopus 로고
    • Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation
    • Camera P, da Silva JS, Griffiths G, et al. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol. 2003;5(12):1071–1078.
    • (2003) Nat Cell Biol , vol.5 , Issue.12 , pp. 1071-1078
    • Camera, P.1    Da Silva, J.S.2    Griffiths, G.3
  • 146
    • 84871253887 scopus 로고    scopus 로고
    • RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules
    • Gad AK, Nehru V, Ruusala A, Aspenström P. RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules. Mol Biol Cell. 2012;23(24):4807–4819.
    • (2012) Mol Biol Cell , vol.23 , Issue.24 , pp. 4807-4819
    • Gad, A.K.1    Nehru, V.2    Ruusala, A.3    Aspenström, P.4
  • 147
    • 77950520993 scopus 로고    scopus 로고
    • Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN
    • Anitei M, Stange C, Parshina I, et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat Cell Biol. 2010;12(4):330–340.
    • (2010) Nat Cell Biol , vol.12 , Issue.4 , pp. 330-340
    • Anitei, M.1    Stange, C.2    Parshina, I.3
  • 148
    • 3042808106 scopus 로고    scopus 로고
    • LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons
    • Rosso S, Bollati F, Bisbal M, et al. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell. 2004;15(7):3433–3449.
    • (2004) Mol Biol Cell , vol.15 , Issue.7 , pp. 3433-3449
    • Rosso, S.1    Bollati, F.2    Bisbal, M.3
  • 149
    • 63049103127 scopus 로고    scopus 로고
    • LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network
    • Salvarezza SB, Deborde S, Schreiner R, et al. LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol Biol Cell. 2009;20(1):438–451.
    • (2009) Mol Biol Cell , vol.20 , Issue.1 , pp. 438-451
    • Salvarezza, S.B.1    Deborde, S.2    Schreiner, R.3
  • 150
    • 84865078112 scopus 로고    scopus 로고
    • The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic
    • Pathak R, Delorme-Walker VD, Howell MC, et al. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic. Dev Cell. 2012;23(2): 397–411.
    • (2012) Dev Cell , vol.23 , Issue.2 , pp. 397-411
    • Pathak, R.1    Delorme-Walker, V.D.2    Howell, M.C.3
  • 152
    • 3042548289 scopus 로고    scopus 로고
    • Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network
    • Carreno S, Engqvist-Goldstein AE, Zhang CX, McDonald KL, Drubin DG. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J Cell Biol. 2004;165(6):781–788.
    • (2004) J Cell Biol , vol.165 , Issue.6 , pp. 781-788
    • Carreno, S.1    Engqvist-Goldstein, A.E.2    Zhang, C.X.3    McDonald, K.L.4    Drubin, D.G.5
  • 153
    • 2442494215 scopus 로고    scopus 로고
    • Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes
    • Chen JL, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett. 2004;566(1–3):281–286.
    • (2004) FEBS Lett , vol.566 , Issue.13 , pp. 281-286
    • Chen, J.L.1    Lacomis, L.2    Erdjument-Bromage, H.3    Tempst, P.4    Stamnes, M.5
  • 154
    • 0035846602 scopus 로고    scopus 로고
    • The Spir actin organizers are involved in vesicle transport processes
    • Kerkhoff E, Simpson JC, Leberfinger CB, et al. The Spir actin organizers are involved in vesicle transport processes. Curr Biol. 2001; 11(24):1963–1968.
    • (2001) Curr Biol , vol.11 , Issue.24 , pp. 1963-1968
    • Kerkhoff, E.1    Simpson, J.C.2    Leberfinger, C.B.3
  • 155
    • 18344381438 scopus 로고    scopus 로고
    • Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport
    • Cao H, Weller S, Orth JD, et al. Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol. 2005;7(5):483–492.
    • (2005) Nat Cell Biol , vol.7 , Issue.5 , pp. 483-492
    • Cao, H.1    Weller, S.2    Orth, J.D.3
  • 156
    • 4344619558 scopus 로고    scopus 로고
    • The syndapin protein family: Linking membrane trafficking with the cytoskeleton
    • Kessels MM, Qualmann B. The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci. 2004;117(Pt 15): 3077–3086.
    • (2004) J Cell Sci , vol.117 , Issue.15 , pp. 3077-3086
    • Kessels, M.M.1    Qualmann, B.2
  • 157
    • 0742288598 scopus 로고    scopus 로고
    • The dynamin superfamily: Universal membrane tubulation and fission molecules?
    • Praefcke GJ, McMahon HT. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol. 2004;5(2):133–147.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , Issue.2 , pp. 133-147
    • Praefcke, G.J.1    McMahon, H.T.2
  • 158
    • 17144439652 scopus 로고    scopus 로고
    • Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3
    • Rozelle AL, Machesky LM, Yamamoto M, et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol. 2000;10(6):311–320.
    • (2000) Curr Biol , vol.10 , Issue.6 , pp. 311-320
    • Rozelle, A.L.1    Machesky, L.M.2    Yamamoto, M.3
  • 159
    • 33646710836 scopus 로고    scopus 로고
    • Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network
    • Kessels MM, Dong J, Leibig W, Westermann P, Qualmann B. Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J Cell Sci. 2006;119(Pt 8):1504–1516
    • (2006) J Cell Sci , vol.119 , Issue.8 , pp. 1504-1516
    • Kessels, M.M.1    Dong, J.2    Leibig, W.3    Westermann, P.4    Qualmann, B.5
  • 160
    • 71549167371 scopus 로고    scopus 로고
    • A FAM21-containing WASH complex regulates retromer-dependent sorting
    • Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell. 2009;17(5):699–711.
    • (2009) Dev Cell , vol.17 , Issue.5 , pp. 699-711
    • Gomez, T.S.1    Billadeau, D.D.2
  • 162
    • 36749027680 scopus 로고    scopus 로고
    • ARF1-mediated actin polymerization produces movement of artificial vesicles
    • Heuvingh J, Franco M, Chavrier P, Sykes C. ARF1-mediated actin polymerization produces movement of artificial vesicles. Proc Natl Acad Sci U S A. 2007;104(43):16928–16933.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.43 , pp. 16928-16933
    • Heuvingh, J.1    Franco, M.2    Chavrier, P.3    Sykes, C.4
  • 163
    • 19344375254 scopus 로고    scopus 로고
    • Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells
    • Merrifield CJ, Perrais D, Zenisek D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell. 2005;121(4):593–606.
    • (2005) Cell , vol.121 , Issue.4 , pp. 593-606
    • Merrifield, C.J.1    Perrais, D.2    Zenisek, D.3
  • 164
    • 84859986511 scopus 로고    scopus 로고
    • A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis
    • Taylor MJ, Lampe M, Merrifield CJ. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol. 2012;10(4):1001302.
    • (2012) Plos Biol , vol.10 , Issue.4
    • Taylor, M.J.1    Lampe, M.2    Merrifield, C.J.3
  • 165
    • 33644873004 scopus 로고    scopus 로고
    • Actin dynamics at the Golgi complex in mammalian cells
    • Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol. 2006;18(2):168–178.
    • (2006) Curr Opin Cell Biol , vol.18 , Issue.2 , pp. 168-178
    • Egea, G.1    Lázaro-Diéguez, F.2    Vilella, M.3
  • 166
    • 79959954909 scopus 로고    scopus 로고
    • Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network
    • Almeida CG, Yamada A, Tenza D, Louvard D, Raposo G, Coudrier E. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat Cell Biol. 2011;13(7):779–789.
    • (2011) Nat Cell Biol , vol.13 , Issue.7 , pp. 779-789
    • Almeida, C.G.1    Yamada, A.2    Tenza, D.3    Louvard, D.4    Raposo, G.5    Coudrier, E.6
  • 167
    • 0027393092 scopus 로고
    • Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein
    • Fath KR, Burgess DR. Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol. 1993; 120(1):117–127.
    • (1993) J Cell Biol , vol.120 , Issue.1 , pp. 117-127
    • Fath, K.R.1    Burgess, D.R.2
  • 168
    • 0037380088 scopus 로고    scopus 로고
    • Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells
    • Jacob R, Heine M, Alfalah M, Naim HY. Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol. 2003;13(7):607–612.
    • (2003) Curr Biol , vol.13 , Issue.7 , pp. 607-612
    • Jacob, R.1    Heine, M.2    Alfalah, M.3    Naim, H.Y.4
  • 169
    • 0030823761 scopus 로고    scopus 로고
    • Myosin I interactions with actin filaments and trans-Golgi-derived vesicles in MDCK cell monolayers
    • Montes de Oca G, Lezama RA, Mondragón R, Castillo AM, Meza I. Myosin I interactions with actin filaments and trans-Golgi-derived vesicles in MDCK cell monolayers. Arch Med Res. 1997; 28(3):321–328.
    • (1997) Arch Med Res , vol.28 , Issue.3 , pp. 321-328
    • Montes De Oca, G.1    Lezama, R.A.2    Mondragón, R.3    Castillo, A.M.4    Meza, I.5
  • 171
    • 84887447201 scopus 로고    scopus 로고
    • Myosin 1 controls membrane shape by coupling F-actin to membrane
    • Coudrier E, Almeida CG. Myosin 1 controls membrane shape by coupling F-actin to membrane. Bioarchitecture. 2011;1(5):230–235.
    • (2011) Bioarchitecture , vol.1 , Issue.5 , pp. 230-235
    • Coudrier, E.1    Almeida, C.G.2
  • 172
    • 52549110350 scopus 로고    scopus 로고
    • Myosins in the secretory pathway: Tethers or transporters?
    • Loubéry S, Coudrier E. Myosins in the secretory pathway: tethers or transporters? Cell Mol Life Sci. 2008;65(18):2790–2800.
    • (2008) Cell Mol Life Sci , vol.65 , Issue.18 , pp. 2790-2800
    • Loubéry, S.1    Coudrier, E.2
  • 173
    • 84863089556 scopus 로고    scopus 로고
    • Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion
    • Brandstaetter H, Kendrick-Jones J, Buss F. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion. J Cell Sci. 2012;125(Pt 8):1991–2003.
    • (2012) J Cell Sci , vol.125 , Issue.8 , pp. 1991-2003
    • Brandstaetter, H.1    Kendrick-Jones, J.2    Buss, F.3
  • 174
    • 22244458555 scopus 로고    scopus 로고
    • Characterization of myosin-II binding to Golgi stacks in vitro
    • Fath KR. Characterization of myosin-II binding to Golgi stacks in vitro. Cell Motil Cytoskeleton. 2005;60(4):222–235.
    • (2005) Cell Motil Cytoskeleton , vol.60 , Issue.4 , pp. 222-235
    • Fath, K.R.1
  • 175
    • 34748860590 scopus 로고    scopus 로고
    • Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts
    • DePina AS, Wollert T, Langford GM. Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell Motil Cytoskeleton. 2007;64(10):739–755.
    • (2007) Cell Motil Cytoskeleton , vol.64 , Issue.10 , pp. 739-755
    • Depina, A.S.1    Wollert, T.2    Langford, G.M.3
  • 176
    • 0037328573 scopus 로고    scopus 로고
    • Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport
    • Duran JM, Valderrama F, Castel S, et al. Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell. 2003;14(2):445–459.
    • (2003) Mol Biol Cell , vol.14 , Issue.2 , pp. 445-459
    • Duran, J.M.1    Valderrama, F.2    Castel, S.3
  • 177
    • 0040971539 scopus 로고    scopus 로고
    • Myosin II is involved in the production of constitutive transport vesicles from the TGN
    • Müsch A, Cohen D, Rodriguez-Boulan E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol. 1997;138(2):291–306.
    • (1997) J Cell Biol , vol.138 , Issue.2 , pp. 291-306
    • Müsch, A.1    Cohen, D.2    Rodriguez-Boulan, E.3
  • 178
    • 0031890696 scopus 로고    scopus 로고
    • Budding roles for myosin II on the Golgi
    • Stow JL, Fath KR, Burgess DR. Budding roles for myosin II on the Golgi. Trends Cell Biol. 1998;8(4):138–141.
    • (1998) Trends Cell Biol , vol.8 , Issue.4 , pp. 138-141
    • Stow, J.L.1    Fath, K.R.2    Burgess, D.R.3
  • 180
    • 84859606183 scopus 로고    scopus 로고
    • Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number
    • Storrie B, Micaroni M, Morgan GP, et al. Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic. 2012;13(5):727–744.
    • (2012) Traffic , vol.13 , Issue.5 , pp. 727-744
    • Storrie, B.1    Micaroni, M.2    Morgan, G.P.3
  • 181
    • 84867571843 scopus 로고    scopus 로고
    • A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface
    • Wakana Y, van Galen J, Meissner F, et al. A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface. EMBO J. 2012;31(20):3976–3990.
    • (2012) EMBO J , vol.31 , Issue.20 , pp. 3976-3990
    • Wakana, Y.1    Van Galen, J.2    Meissner, F.3
  • 182
    • 84887069906 scopus 로고    scopus 로고
    • Identification and characterization of multiple novel Rab-myosin Va interactions
    • Lindsay AJ, Jollivet F, Horgan CP, et al. Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell. 2013;24(21):3420–3434
    • (2013) Mol Biol Cell , vol.24 , Issue.21 , pp. 3420-3434
    • Lindsay, A.J.1    Jollivet, F.2    Horgan, C.P.3
  • 184
    • 0037415731 scopus 로고    scopus 로고
    • Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice
    • Warner CL, Stewart A, Luzio JP, et al. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J. 2003;22(3):569–579.
    • (2003) EMBO J , vol.22 , Issue.3 , pp. 569-579
    • Warner, C.L.1    Stewart, A.2    Luzio, J.P.3
  • 185
    • 18544367185 scopus 로고    scopus 로고
    • Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis
    • Sahlender DA, Roberts RC, Arden SD, et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol. 2005;169(2):285–295.
    • (2005) J Cell Biol , vol.169 , Issue.2 , pp. 285-295
    • Sahlender, D.A.1    Roberts, R.C.2    Arden, S.D.3
  • 186
    • 27744520682 scopus 로고    scopus 로고
    • Rab proteins, connecting transport and vesicle fusion
    • Jordens I, Marsman M, Kuijl C, Neefjes J. Rab proteins, connecting transport and vesicle fusion. Traffic. 2005;6(12):1070–1077.
    • (2005) Traffic , vol.6 , Issue.12 , pp. 1070-1077
    • Jordens, I.1    Marsman, M.2    Kuijl, C.3    Neefjes, J.4
  • 187
    • 77953536722 scopus 로고    scopus 로고
    • TGN golgins, Rabs and cytoskeleton: Regulating the Golgi trafficking highways
    • Goud B, Gleeson PA. TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol. 2010;20(6): 329–336.
    • (2010) Trends Cell Biol , vol.20 , Issue.6 , pp. 329-336
    • Goud, B.1    Gleeson, P.A.2
  • 188
    • 84875993366 scopus 로고    scopus 로고
    • Mammalian myosin-18A, a highly divergent myosin
    • Guzik-Lendrum S, Heissler SM, Billington N, et al. Mammalian myosin-18A, a highly divergent myosin. J Biol Chem. 2013;288(13): 9532–9548.
    • (2013) J Biol Chem , vol.288 , Issue.13 , pp. 9532-9548
    • Guzik-Lendrum, S.1    Heissler, S.M.2    Billington, N.3
  • 189
    • 84893516766 scopus 로고    scopus 로고
    • DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3
    • Farber-Katz SE, Dippold HC, Buschman MD, et al. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell. 2014; 156(3):413–427.
    • (2014) Cell , vol.156 , Issue.3 , pp. 413-427
    • Farber-Katz, S.E.1    Dippold, H.C.2    Buschman, M.D.3
  • 190
    • 79955720787 scopus 로고    scopus 로고
    • Physics, biology and the right chemistry
    • Bassereau P, Goud B. Physics, biology and the right chemistry. F1000 Biol Rep. 2011;3:7.
    • (2011) F1000 Biol Rep , vol.3 , pp. 7
    • Bassereau, P.1    Goud, B.2
  • 191
    • 84905656743 scopus 로고    scopus 로고
    • Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events
    • Guet D, Mandal K, Pinot M, et al. Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events. Curr Biol. 2014;24(15):1700–1711.
    • (2014) Curr Biol , vol.24 , Issue.15 , pp. 1700-1711
    • Guet, D.1    Mandal, K.2    Pinot, M.3
  • 192
    • 33751206848 scopus 로고    scopus 로고
    • Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes
    • Samaj J, Müller J, Beck M, Böhm N, Menzel D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006;11(12):594–600.
    • (2006) Trends Plant Sci , vol.11 , Issue.12 , pp. 594-600
    • Samaj, J.1    Müller, J.2    Beck, M.3    Böhm, N.4    Menzel, D.5
  • 193
    • 80054715242 scopus 로고    scopus 로고
    • Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization
    • Akkerman M, Overdijk EJ, Schel JH, Emons AM, Ketelaar T. Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. Plant Cell Physiol. 2011;52(10):1844–1855.
    • (2011) Plant Cell Physiol , vol.52 , Issue.10 , pp. 1844-1855
    • Akkerman, M.1    Overdijk, E.J.2    Schel, J.H.3    Emons, A.M.4    Ketelaar, T.5
  • 194
    • 1642364245 scopus 로고    scopus 로고
    • Cytoplasmic streaming in plants
    • Shimmen T, Yokota E. Cytoplasmic streaming in plants. Curr Opin Cell Biol. 2004;16(1):68–72.
    • (2004) Curr Opin Cell Biol , vol.16 , Issue.1 , pp. 68-72
    • Shimmen, T.1    Yokota, E.2
  • 195
    • 0032144201 scopus 로고    scopus 로고
    • Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network
    • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 1998;15(3):441–447.
    • (1998) Plant J , vol.15 , Issue.3 , pp. 441-2447
    • Boevink, P.1    Oparka, K.2    Santa Cruz, S.3    Martin, B.4    Betteridge, A.5    Hawes, C.6
  • 196
    • 0037355147 scopus 로고    scopus 로고
    • The relationship between endomembranes and the plant cytoskeleton
    • Brandizzi F, Saint-Jore C, Moore I, Hawes C. The relationship between endomembranes and the plant cytoskeleton. Cell Biol Int. 2003;27(3):177–179.
    • (2003) Cell Biol Int , vol.27 , Issue.3 , pp. 177-179
    • Brandizzi, F.1    Saint-Jore, C.2    Moore, I.3    Hawes, C.4
  • 197
    • 0016901238 scopus 로고
    • But not colchicine, inhibits migration of secretory vesicles in root tips of maize
    • Mollenhauer HH, Morre DJ. Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma. 1976;87(1–3):39–48.
    • (1976) Protoplasma , vol.87 , Issue.13 , pp. 39-48
    • Mollenhauer, H.H.1    Morre, D.J.2    Cytochalasin, B.3
  • 198
    • 0029965895 scopus 로고    scopus 로고
    • Brefeldin A effects in plant and fungal cells: Something new about vesicle trafficking?
    • Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C. Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc. 1996;181(Pt 2):162–177.
    • (1996) J Microsc , vol.181 , Issue.2 , pp. 162-177
    • Satiat-Jeunemaitre, B.1    Cole, L.2    Bourett, T.3    Howard, R.4    Hawes, C.5
  • 199
    • 84871897748 scopus 로고    scopus 로고
    • Nakano A. Cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells
    • Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell. 2012;23(16):3203–3214.
    • (2012) Mol Biol Cell , vol.23 , Issue.16 , pp. 3203-3214
    • Ito, Y.1    Uemura, T.2    Shoda, K.3    Fujimoto, M.4    Ueda, T.5
  • 200
    • 33745668694 scopus 로고    scopus 로고
    • Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B
    • Chen Y, Chen T, Shen S, et al. Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J. 2006;47(2):174–195.
    • (2006) Plant J , vol.47 , Issue.2 , pp. 174-195
    • Chen, Y.1    Chen, T.2    Shen, S.3
  • 201
    • 26844472700 scopus 로고    scopus 로고
    • Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites
    • Yang YD, Elamawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG. Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell. 2005;17(5):1513–1531.
    • (2005) Plant Cell , vol.17 , Issue.5 , pp. 1513-1531
    • Yang, Y.D.1    Elamawi, R.2    Bubeck, J.3    Pepperkok, R.4    Ritzenthaler, C.5    Robinson, D.G.6
  • 202
    • 0036006196 scopus 로고    scopus 로고
    • Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks
    • Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C. Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J. 2002;29(5):661–678.
    • (2002) Plant J , vol.29 , Issue.5 , pp. 661-678
    • Saint-Jore, C.M.1    Evins, J.2    Batoko, H.3    Brandizzi, F.4    Moore, I.5    Hawes, C.6
  • 203
    • 0019579916 scopus 로고
    • Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D
    • Picton JM, Steer MW. Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci. 1981;49:261–272.
    • (1981) J Cell Sci , vol.49 , pp. 261-272
    • Picton, J.M.1    Steer, M.W.2
  • 204
    • 0035172425 scopus 로고    scopus 로고
    • Actin polymerization is essential for pollen tube growth
    • Vidali L, McKenna ST, Hepler PK. Actin polymerization is essential for pollen tube growth. Mol Biol Cell. 2001;12(8):2534–2545.
    • (2001) Mol Biol Cell , vol.12 , Issue.8 , pp. 2534-2545
    • Vidali, L.1    McKenna, S.T.2    Hepler, P.K.3
  • 205
    • 0036077953 scopus 로고    scopus 로고
    • The cytoskeleton and gravitropism in higher plants
    • Blancaflor EB. The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul. 2002;21(2):120–136.
    • (2002) J Plant Growth Regul , vol.21 , Issue.2 , pp. 120-136
    • Blancaflor, E.B.1
  • 206
    • 0242381332 scopus 로고    scopus 로고
    • The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization
    • Hu Y, Zhong R, Morrison WH 3rd, Ye ZH. The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta. 2003;217(6):912–921.
    • (2003) Planta , vol.217 , Issue.6 , pp. 912-921
    • Hu, Y.1    Zhong, R.2    Morrison, W.H.3    Ye, Z.H.4
  • 207
    • 0342288633 scopus 로고    scopus 로고
    • Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system
    • Nebenfuhr A, Gallagher LA, Dunahay TG, et al. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 1999;121(4):1127–1142.
    • (1999) Plant Physiol , vol.121 , Issue.4 , pp. 1127-1142
    • Nebenfuhr, A.1    Gallagher, L.A.2    Dunahay, T.G.3
  • 208
    • 34248572638 scopus 로고    scopus 로고
    • Involvement of the cytoskeleton in the secretory pathway and plasma membrane organisation of higher plant cells
    • Boutté Y, Vernhettes S, Satiat-Jeunemaitre B. Involvement of the cytoskeleton in the secretory pathway and plasma membrane organisation of higher plant cells. Cell Biol Int. 2007;31(7):649–654.
    • (2007) Cell Biol Int , vol.31 , Issue.7 , pp. 649-654
    • Boutté, Y.1    Vernhettes, S.2    Satiat-Jeunemaitre, B.3
  • 209
    • 33745767358 scopus 로고    scopus 로고
    • Harnessing actin dynamics for clathrin-mediated endocytosis
    • Kaksonen M, Toret CP, Drubin DG. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2006; 7(6):404–414.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , Issue.6 , pp. 404-414
    • Kaksonen, M.1    Toret, C.P.2    Drubin, D.G.3
  • 210
    • 0030930123 scopus 로고    scopus 로고
    • Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle
    • Mulholland J, Wesp A, Riezman H, Botstein D. Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle. Mol Biol Cell. 1997;8(8):1481–1499.
    • (1997) Mol Biol Cell , vol.8 , Issue.8 , pp. 1481-1499
    • Mulholland, J.1    Wesp, A.2    Riezman, H.3    Botstein, D.4
  • 211
    • 0021355377 scopus 로고
    • Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae
    • Adams AE, Pringle JR. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol. 1984;98(3):934–945.
    • (1984) J Cell Biol , vol.98 , Issue.3 , pp. 934-945
    • Adams, A.E.1    Pringle, J.R.2
  • 212
    • 0021369651 scopus 로고
    • Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces
    • Kilmartin JV, Adams AE. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol. 1984;98(3):922–933.
    • (1984) J Cell Biol , vol.98 , Issue.3 , pp. 922-933
    • Kilmartin, J.V.1    Adams, A.E.2
  • 213
    • 33749258375 scopus 로고    scopus 로고
    • The yeast actin cytoskeleton: From cellular function to biochemical mechanism
    • Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev. 2006; 70(3):605–645.
    • (2006) Microbiol Mol Biol Rev , vol.70 , Issue.3 , pp. 605-645
    • Moseley, J.B.1    Goode, B.L.2
  • 215
    • 0033761839 scopus 로고    scopus 로고
    • Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae
    • Finger FP, Novick P. Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae. Genetics. 2000;156(3):943–951.
    • (2000) Genetics , vol.156 , Issue.3 , pp. 943-951
    • Finger, F.P.1    Novick, P.2
  • 216
    • 0032734240 scopus 로고    scopus 로고
    • The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton
    • Spelbrink RG, Nothwehr SF. The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol Biol Cell. 1999;10(12):4263–4281.
    • (1999) Mol Biol Cell , vol.10 , Issue.12 , pp. 4263-4281
    • Spelbrink, R.G.1    Nothwehr, S.F.2
  • 217
    • 34247235696 scopus 로고    scopus 로고
    • Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway
    • Harsay E, Schekman R. Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell. 2007;18(4):1203–1219.
    • (2007) Mol Biol Cell , vol.18 , Issue.4 , pp. 1203-1219
    • Harsay, E.1    Schekman, R.2
  • 218
    • 0035795423 scopus 로고    scopus 로고
    • A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae
    • Rossanese OW, Reinke CA, Bevis BJ, et al. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol. 2001;153(1):47–62.
    • (2001) J Cell Biol , vol.153 , Issue.1 , pp. 47-62
    • Rossanese, O.W.1    Reinke, C.A.2    Bevis, B.J.3
  • 219
    • 46049104580 scopus 로고    scopus 로고
    • Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2
    • Arai S, Noda Y, Kainuma S, Wada I, Yoda K. Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2. Curr Biol. 2008;18(13):987–991.
    • (2008) Curr Biol , vol.18 , Issue.13 , pp. 987-991
    • Arai, S.1    Noda, Y.2    Kainuma, S.3    Wada, I.4    Yoda, K.5
  • 220
    • 78651445373 scopus 로고    scopus 로고
    • PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast
    • Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev Cell. 2011;20(1):47–59.
    • (2011) Dev Cell , vol.20 , Issue.1 , pp. 47-59
    • Santiago-Tirado, F.H.1    Legesse-Miller, A.2    Schott, D.3    Bretscher, A.4
  • 221
    • 83455229807 scopus 로고    scopus 로고
    • Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex
    • Jin Y, Sultana A, Gandhi P, et al. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell. 2011;21(6):1156–1170.
    • (2011) Dev Cell , vol.21 , Issue.6 , pp. 1156-1170
    • Jin, Y.1    Sultana, A.2    Gandhi, P.3
  • 222
    • 0034731811 scopus 로고    scopus 로고
    • A fission yeast kinesin affects Golgi membrane recycling
    • Brazer SC, Williams HP, Chappell TG, Cande WZ. A fission yeast kinesin affects Golgi membrane recycling. Yeast. 2000;16(2):149–166.
    • (2000) Yeast , vol.16 , Issue.2 , pp. 149-166
    • Brazer, S.C.1    Williams, H.P.2    Chappell, T.G.3    Cande, W.Z.4
  • 223
    • 84862735467 scopus 로고    scopus 로고
    • Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants
    • Jarmoszewicz K, Lukasiak K, Riezman H, Kaminska J. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants. PloS One. 2012;7(6):e39582.
    • (2012) Plos One , vol.7 , Issue.6
    • Jarmoszewicz, K.1    Lukasiak, K.2    Riezman, H.3    Kaminska, J.4
  • 224
    • 80054846627 scopus 로고    scopus 로고
    • Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro
    • Kaminska J, Spiess M, Stawiecka-Mirota M, et al. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro. Eur J Cell Biol. 2011;90(12):1016–1028.
    • (2011) Eur J Cell Biol , vol.90 , Issue.12 , pp. 1016-1028
    • Kaminska, J.1    Spiess, M.2    Stawiecka-Mirota, M.3
  • 225
    • 70450223327 scopus 로고    scopus 로고
    • The Golgi apparatus: Lessons from Drosophila
    • Kondylis V, Rabouille C. The Golgi apparatus: lessons from Drosophila. FEBS Lett. 2009;583(23):3827–3838.
    • (2009) FEBS Lett , vol.583 , Issue.23 , pp. 3827-3838
    • Kondylis, V.1    Rabouille, C.2
  • 226
    • 34249316147 scopus 로고    scopus 로고
    • Van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C. The Golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE
    • Kondylis V, van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C. The Golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE. Dev Cell. 2007;12(6):901–915.
    • (2007) Dev Cell , vol.12 , Issue.6 , pp. 901-915
    • Kondylis, V.1
  • 227
    • 20444393413 scopus 로고    scopus 로고
    • The golgin lava lamp mediates dynein-based Golgi movements during Drosophila cellularization
    • Papoulas O, Hays TS, Sisson JC. The golgin lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol. 2005;7(6):612–618.
    • (2005) Nat Cell Biol , vol.7 , Issue.6 , pp. 612-618
    • Papoulas, O.1    Hays, T.S.2    Sisson, J.C.3
  • 228
    • 0034645066 scopus 로고    scopus 로고
    • Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization
    • Sisson JC, Field C, Ventura R, Royou A, Sullivan W. Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol. 2000;151(4):905–918.
    • (2000) J Cell Biol , vol.151 , Issue.4 , pp. 905-918
    • Sisson, J.C.1    Field, C.2    Ventura, R.3    Royou, A.4    Sullivan, W.5
  • 229
    • 31844440878 scopus 로고    scopus 로고
    • Functional genomics reveals genes involved in protein secretion and Golgi organization
    • Bard F, Casano L, Mallabiabarrena A, et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature. 2006;439(7076):604–607.
    • (2006) Nature , vol.439 , Issue.7076 , pp. 604-607
    • Bard, F.1    Casano, L.2    Mallabiabarrena, A.3
  • 230
    • 21244477562 scopus 로고    scopus 로고
    • Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking
    • Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays. 2005;27(6):625–632.
    • (2005) Bioessays , vol.27 , Issue.6 , pp. 625-632
    • Rybakin, V.1    Clemen, C.S.2
  • 231
    • 0029808891 scopus 로고    scopus 로고
    • The secretory pathway of protists: Spatial and functional organization and evolution
    • Becker B, Melkonian M. The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev. 1996;60(4):697–721.
    • (1996) Microbiol Rev , vol.60 , Issue.4 , pp. 697-721
    • Becker, B.1    Melkonian, M.2
  • 232
    • 0029958869 scopus 로고    scopus 로고
    • Linking microfilaments to intracellular membranes: The actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity
    • Jung E, Fucini P, Stewart M, Noegel AA, Schleicher M. Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity. EMBO J. 1996;15(6):1238–1246.
    • (1996) EMBO J , vol.15 , Issue.6 , pp. 1238-1246
    • Jung, E.1    Fucini, P.2    Stewart, M.3    Noegel, A.A.4    Schleicher, M.5
  • 233
    • 0027361181 scopus 로고
    • The actin-binding protein comitin (P24) is a component of the Golgi apparatus
    • Weiner OH, Murphy J, Griffiths G, Schleicher M, Noegel AA. The actin-binding protein comitin (p24) is a component of the Golgi apparatus. J Cell Biol. 1993;123(1):23–34.
    • (1993) J Cell Biol , vol.123 , Issue.1 , pp. 23-34
    • Weiner, O.H.1    Murphy, J.2    Griffiths, G.3    Schleicher, M.4    Noegel, A.A.5
  • 234
    • 0038446802 scopus 로고    scopus 로고
    • Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton
    • Gloss A, Rivero F, Khaire N, et al. Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton. Mol Biol Cell. 2003;14(7):2716–2727.
    • (2003) Mol Biol Cell , vol.14 , Issue.7 , pp. 2716-2727
    • Gloss, A.1    Rivero, F.2    Khaire, N.3
  • 235
    • 19644371017 scopus 로고    scopus 로고
    • Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics
    • Rehberg M, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Gräf R. Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell. 2005;16(6):2759–2771.
    • (2005) Mol Biol Cell , vol.16 , Issue.6 , pp. 2759-2771
    • Rehberg, M.1    Kleylein-Sohn, J.2    Faix, J.3    Ho, T.H.4    Schulz, I.5    Gräf, R.6
  • 236
    • 84868253124 scopus 로고    scopus 로고
    • The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells
    • Noratel EF, Petty CL, Kelsey JS, Cost HN, Basappa N, Blumberg DD. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells. BMC Cell Biol. 2012;13:29.
    • (2012) BMC Cell Biol , vol.13 , pp. 29
    • Noratel, E.F.1    Petty, C.L.2    Kelsey, J.S.3    Cost, H.N.4    Basappa, N.5    Blumberg, D.D.6
  • 237
    • 18344395923 scopus 로고    scopus 로고
    • The genome of the social amoeba Dictyostelium discoideum
    • Eichinger L, Pachebat JA, Glöckner G, et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435(7038):43–57.
    • (2005) Nature , vol.435 , Issue.7038 , pp. 43-57
    • Eichinger, L.1    Pachebat, J.A.2    Glöckner, G.3
  • 238
    • 67649400346 scopus 로고    scopus 로고
    • Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis
    • Lee S, Han JW, Leeper L, Gruver JS, Chung CY. Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis. Biochim Biophys Acta. 2009; 1793(7):1199–1209.
    • (2009) Biochim Biophys Acta , vol.1793 , Issue.7 , pp. 1199-1209
    • Lee, S.1    Han, J.W.2    Leeper, L.3    Gruver, J.S.4    Chung, C.Y.5
  • 239
    • 33747017861 scopus 로고    scopus 로고
    • Dictyostelium RacH regulates endocytic vesicular trafficking and is required for localization of vacuolin
    • Somesh BP, Neffgen C, Iijima M, Devreotes P, Rivero F. Dictyostelium RacH regulates endocytic vesicular trafficking and is required for localization of vacuolin. Traffic. 2006;7(9):1194–1212.
    • (2006) Traffic , vol.7 , Issue.9 , pp. 1194-1212
    • Somesh, B.P.1    Neffgen, C.2    Iijima, M.3    Devreotes, P.4    Rivero, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.