메뉴 건너뛰기




Volumn 11, Issue 9, 2009, Pages 1069-1080

Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells

Author keywords

[No Author keywords available]

Indexed keywords

DYNEIN ADENOSINE TRIPHOSPHATASE; MICROTUBULE PROTEIN; NOCODAZOLE; PROTEIN CLASP; SMALL INTERFERING RNA; UNCLASSIFIED DRUG;

EID: 69949178740     PISSN: 14657392     EISSN: None     Source Type: Journal    
DOI: 10.1038/ncb1920     Document Type: Article
Times cited : (248)

References (43)
  • 1
    • 38949132114 scopus 로고    scopus 로고
    • Mechanisms of mitotic spindle assembly and function
    • Walczak, C. E. and Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev.Cytol. 265, 111-158 (2008).
    • (2008) Int. Rev.Cytol , vol.265 , pp. 111-158
    • Walczak, C.E.1    Heald, R.2
  • 2
    • 0021274367 scopus 로고
    • Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs
    • Karsenti, E. et al. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J. Cell Biol. 98, 1730-1745 (1984).
    • (1984) J. Cell Biol , vol.98 , pp. 1730-1745
    • Karsenti, E.1
  • 3
    • 0029662197 scopus 로고    scopus 로고
    • Microtubule dynamics at the G2/M transition: Abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis
    • Zhai, Y. et al. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol. 135, 201-214 (1996).
    • (1996) J. Cell Biol , vol.135 , pp. 201-214
    • Zhai, Y.1
  • 4
    • 0023947838 scopus 로고
    • Posttranslational modifications of α tubulin: Detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells
    • Bulinski, J. C., Richards, J. E. & Piperno, G. Posttranslational modifications of α tubulin: Detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J. Cell Biol. 106, 1213-1220 (1988).
    • (1988) J. Cell Biol , vol.106 , pp. 1213-1220
    • Bulinski, J.C.1    Richards, J.E.2    Piperno, G.3
  • 5
    • 1642265093 scopus 로고    scopus 로고
    • Cortical control of microtubule stability and polarization
    • Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol. 16, 106-112 (2004).
    • (2004) Curr. Opin. Cell Biol , vol.16 , pp. 106-112
    • Gundersen, G.G.1    Gomes, E.R.2    Wen, Y.3
  • 6
    • 34250640194 scopus 로고    scopus 로고
    • Cooperative mechanisms of mitotic spindle formation
    • O'Connell, C. B. and Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717-1722 (2007).
    • (2007) J. Cell Sci , vol.120 , pp. 1717-1722
    • O'Connell, C.B.1    Khodjakov, A.L.2
  • 7
    • 34249305474 scopus 로고    scopus 로고
    • Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network
    • Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell. 12, 917-930 (2007).
    • (2007) Dev. Cell , vol.12 , pp. 917-930
    • Efimov, A.1
  • 8
    • 44449122449 scopus 로고    scopus 로고
    • Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay
    • Tang, D. et al. Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J. Biol. Chem. 283, 6085-6094 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 6085-6094
    • Tang, D.1
  • 9
    • 0029972823 scopus 로고    scopus 로고
    • Golgi dispersal during microtubule disruption: Regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites
    • Cole, N. B. et al. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631-650 (1996).
    • (1996) Mol. Biol. Cell , vol.7 , pp. 631-650
    • Cole, N.B.1
  • 11
    • 0032516857 scopus 로고    scopus 로고
    • The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex
    • Burkhardt, J. K., The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim. Biophys. Acta 1404, 113-126 (1998).
    • (1998) Biochim. Biophys. Acta , vol.1404 , pp. 113-126
    • Burkhardt, J.K.1
  • 12
    • 0033080404 scopus 로고    scopus 로고
    • Role of microtubules in the organization of the Golgi complex
    • Thyberg, J. & Moskalewski, S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 246, 263-279 (1999).
    • (1999) Exp. Cell Res , vol.246 , pp. 263-279
    • Thyberg, J.1    Moskalewski, S.2
  • 13
    • 54549086722 scopus 로고    scopus 로고
    • Organelle positioning and cell polarity
    • Bornens, M. Organelle positioning and cell polarity. Nature Rev. Mol. Cell Biol. 9, 874-886 (2008).
    • (2008) Nature Rev. Mol. Cell Biol , vol.9 , pp. 874-886
    • Bornens, M.1
  • 14
    • 0022919318 scopus 로고
    • Beyond self-assembly: From microtubules to morphogenesis
    • Kirschner, M. & Mitchison, T. Beyond self-assembly: From microtubules to morphogenesis. Cell 45, 329-342 (1986).
    • (1986) Cell , vol.45 , pp. 329-342
    • Kirschner, M.1    Mitchison, T.2
  • 15
    • 0032516805 scopus 로고    scopus 로고
    • Dynamics of the interphase mammalian Golgi complex as revealed through drugs producing reversible Golgi disassembly
    • Storrie, B. & Yang, W. Dynamics of the interphase mammalian Golgi complex as revealed through drugs producing reversible Golgi disassembly. Biochim. Biophys. Acta 1404, 127-137 (1998).
    • (1998) Biochim. Biophys. Acta , vol.1404 , pp. 127-137
    • Storrie, B.1    Yang, W.2
  • 16
    • 0033489921 scopus 로고    scopus 로고
    • E-MAP-115 (ensconsin) associates dynamically with microtubules in vivo and is not a physiological modulator of microtubule dynamics
    • Faire, K. et al. E-MAP-115 (ensconsin) associates dynamically with microtubules in vivo and is not a physiological modulator of microtubule dynamics. J. Cell Sci. 112, 4243-4255 (1999).
    • (1999) J. Cell Sci , vol.112 , pp. 4243-4255
    • Faire, K.1
  • 17
    • 0030727535 scopus 로고    scopus 로고
    • Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution
    • Burkhardt, J. K. et al. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469-484 (1997).
    • (1997) J. Cell Biol , vol.139 , pp. 469-484
    • Burkhardt, J.K.1
  • 18
    • 0033400723 scopus 로고    scopus 로고
    • Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment
    • Roghi, C. & Allan, V. J. Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J. Cell Sci. 112, 4673-4685 (1999).
    • (1999) J. Cell Sci , vol.112 , pp. 4673-4685
    • Roghi, C.1    Allan, V.J.2
  • 19
    • 0037191081 scopus 로고    scopus 로고
    • Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes
    • Quintyne, N. J. & Schroer, T. A. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J. Cell Biol. 159, 245-254 (2002).
    • (2002) J. Cell Biol , vol.159 , pp. 245-254
    • Quintyne, N.J.1    Schroer, T.A.2
  • 20
    • 0026503134 scopus 로고
    • The Golgi complex: In vitro veritas?
    • Mellman, I. & Simons, K. The Golgi complex: in vitro veritas? Cell 68, 829-840 (1992).
    • (1992) Cell , vol.68 , pp. 829-840
    • Mellman, I.1    Simons, K.2
  • 21
    • 33644756640 scopus 로고    scopus 로고
    • GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution
    • Puthenveedu, M. A. et al. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nature Cell Biol. 8, 238-248 (2006).
    • (2006) Nature Cell Biol , vol.8 , pp. 238-248
    • Puthenveedu, M.A.1
  • 22
    • 51349095514 scopus 로고    scopus 로고
    • GRASP55 regulates Golgi ribbon formation
    • Feinstein, T. N. & Linstedt, A. D. GRASP55 regulates Golgi ribbon formation. Mol. Biol. Cell 19, 2696-2707 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2696-2707
    • Feinstein, T.N.1    Linstedt, A.D.2
  • 23
    • 0031975380 scopus 로고    scopus 로고
    • Unravelling Golgi membrane traffic with green fluorescent protein chimeras
    • Lippincott-Schwartz, J., Cole, N. & Presley, J. Unravelling Golgi membrane traffic with green fluorescent protein chimeras. Trends Cell Biol. 8, 16-20 (1998).
    • (1998) Trends Cell Biol , vol.8 , pp. 16-20
    • Lippincott-Schwartz, J.1    Cole, N.2    Presley, J.3
  • 24
    • 0037452792 scopus 로고    scopus 로고
    • Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells
    • Taraska, J. W. et al. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl Acad. Sci. USA 100, 2070-2075 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 2070-2075
    • Taraska, J.W.1
  • 25
    • 0022881207 scopus 로고
    • Neuropeptide Y (NPY) immunoreactive neurons in the retina of different species
    • Bruun, A., Tornqvist, K. & Ehinger, B. Neuropeptide Y (NPY) immunoreactive neurons in the retina of different species. Histochemistry 86, 135-140 (1986).
    • (1986) Histochemistry , vol.86 , pp. 135-140
    • Bruun, A.1    Tornqvist, K.2    Ehinger, B.3
  • 26
    • 65249115901 scopus 로고    scopus 로고
    • A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing
    • Yadav, S., Puri, S. & Linstedt, A. D. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol. Biol. Cell 20, 1728-1736 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1728-1736
    • Yadav, S.1    Puri, S.2    Linstedt, A.D.3
  • 27
    • 1142269809 scopus 로고    scopus 로고
    • Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility
    • Prigozhina, N. L. & Waterman-Storer, C. M. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr. Biol. 14, 88-98 (2004).
    • (2004) Curr. Biol , vol.14 , pp. 88-98
    • Prigozhina, N.L.1    Waterman-Storer, C.M.2
  • 28
    • 0037221714 scopus 로고    scopus 로고
    • Microtubules meet substrate adhesions to arrange cell polarity
    • Small, J. V. & Kaverina, I. Microtubules meet substrate adhesions to arrange cell polarity. Curr. Opin.Cell Biol. 15, 40-47 (2003).
    • (2003) Curr. Opin.Cell Biol , vol.15 , pp. 40-47
    • Small, J.V.1    Kaverina, I.2
  • 29
    • 21044443326 scopus 로고    scopus 로고
    • IQGAP1: A key regulator of adhesion and migration
    • Noritake, J. et al. IQGAP1: A key regulator of adhesion and migration. J. Cell Sci. 118, 2085-2092 (2005).
    • (2005) J. Cell Sci , vol.118 , pp. 2085-2092
    • Noritake, J.1
  • 30
    • 33750949610 scopus 로고    scopus 로고
    • Role of CLASP2 in microtubule stabilization and the regulation of persistent motility
    • Drabek, K. et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr. Biol. 16, 2259-2264 (2006).
    • (2006) Curr. Biol , vol.16 , pp. 2259-2264
    • Drabek, K.1
  • 31
    • 4344674527 scopus 로고    scopus 로고
    • Cortactin signalling and dynamic actin networks
    • Daly, R. J. Cortactin signalling and dynamic actin networks. Biochem. J. 382, 13-25 (2004).
    • (2004) Biochem. J , vol.382 , pp. 13-25
    • Daly, R.J.1
  • 32
    • 2342424885 scopus 로고    scopus 로고
    • Computational model of dynein-dependent self-organization of microtubule asters
    • Cytrynbaum, E. N., Rodionov, V. & Mogilner, A. Computational model of dynein-dependent self-organization of microtubule asters. J. Cell Sci. 117, 1381-1397 (2004).
    • (2004) J. Cell Sci , vol.117 , pp. 1381-1397
    • Cytrynbaum, E.N.1    Rodionov, V.2    Mogilner, A.3
  • 33
    • 4043172029 scopus 로고    scopus 로고
    • Positioning the Golgi apparatus
    • Linstedt, A. D. Positioning the Golgi apparatus. Cell 118, 271-272 (2004).
    • (2004) Cell , vol.118 , pp. 271-272
    • Linstedt, A.D.1
  • 34
    • 4043107077 scopus 로고    scopus 로고
    • GMAP-210 recruits γ-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation
    • Rios, R. M. et al. GMAP-210 recruits γ-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118, 323-335 (2004).
    • (2004) Cell , vol.118 , pp. 323-335
    • Rios, R.M.1
  • 35
  • 37
    • 67349287493 scopus 로고    scopus 로고
    • Rivero, S. et al. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. advance online publication doi:10.1038/emboj.2009.47 (26 February 2009).
    • Rivero, S. et al. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. advance online publication doi:10.1038/emboj.2009.47 (26 February 2009).
  • 38
    • 63049094599 scopus 로고    scopus 로고
    • Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans Golgi
    • Hayes, G. L. et al. Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans Golgi. Mol. Biol. Cell 20, 209-217 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 209-217
    • Hayes, G.L.1
  • 39
    • 33745506389 scopus 로고    scopus 로고
    • CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β
    • Lansbergen, G. et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev. Cell 11, 21-32 (2006).
    • (2006) Dev. Cell , vol.11 , pp. 21-32
    • Lansbergen, G.1
  • 40
    • 22344435165 scopus 로고    scopus 로고
    • Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells
    • Wittmann, T. & Waterman-Storer, C. M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells. J. Cell Biol. 169, 929-939 (2005).
    • (2005) J. Cell Biol , vol.169 , pp. 929-939
    • Wittmann, T.1    Waterman-Storer, C.M.2
  • 41
    • 19944429410 scopus 로고    scopus 로고
    • CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex
    • Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141-153 (2005).
    • (2005) J. Cell Biol , vol.168 , pp. 141-153
    • Mimori-Kiyosue, Y.1
  • 42
    • 44449126619 scopus 로고    scopus 로고
    • The multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium
    • Patel, H. et al. The multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium. J. Cell Sci. 121, 1159-1164 (2008).
    • (2008) J. Cell Sci , vol.121 , pp. 1159-1164
    • Patel, H.1
  • 43
    • 1342306010 scopus 로고    scopus 로고
    • src64 and tec29 are required for microfilament contraction during Drosophila cellularization
    • Thomas, J. H. & Wieschaus, E. src64 and tec29 are required for microfilament contraction during Drosophila cellularization. Development 131, 863-871 (2004).
    • (2004) Development , vol.131 , pp. 863-871
    • Thomas, J.H.1    Wieschaus, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.