-
2
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
84856621489
-
Hellinger distance decision trees are robust and skew-insensitive
-
D.A. Cieslak, T.R. Hoens, N.V. Chawla, and W.P. Kegelmeyer. Hellinger distance decision trees are robust and skew-insensitive. Data Mining and Knowledge Discovery, pages 1-23, 2012.
-
(2012)
Data Mining and Knowledge Discovery
, pp. 1-23
-
-
Cieslak, D.A.1
Hoens, T.R.2
Chawla, N.V.3
Kegelmeyer, W.P.4
-
7
-
-
0034592774
-
Explicitly representing expected cost: An alternative to ROC representation
-
Chris Drummond and Robert C. Holte. Explicitly representing expected cost: an alternative to ROC representation. KDD, pages 198-207, 2000.
-
(2000)
KDD
, pp. 198-207
-
-
Drummond, C.1
Holte, R.C.2
-
8
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
J. Elith, C.H. Graham, R.P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, et al. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1):29-36, 1982.
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Elith, J.1
Graham, C.H.2
Anderson, R.P.3
Dudik, M.4
Ferrier, S.5
Guisan, A.6
Hijmans, R.J.7
Huettmann, F.8
Leathwick, J.R.9
Lehmann, A.10
-
9
-
-
33645917058
-
Novel methods improve prediction of species' distributions from occurrence data
-
J. Elith, C.H. Graham, R.P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, et al. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29(2):129-151, 2006.
-
(2006)
Ecography
, vol.29
, Issue.2
, pp. 129-151
-
-
Elith, J.1
Graham, C.H.2
Anderson, R.P.3
Dudik, M.4
Ferrier, S.5
Guisan, A.6
Hijmans, R.J.7
Huettmann, F.8
Leathwick, J.R.9
Lehmann, A.10
-
10
-
-
1942421135
-
The geometry of ROC space: Understanding machine learning metrics through ROC isometrics
-
P.A. Flach. The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-, volume 20, page 194, 2003.
-
(2003)
Machine Learning-International Workshop Then Conference
, vol.20
, pp. 194
-
-
Flach, P.A.1
-
11
-
-
84872411092
-
The worldclim interpolated global terrestrial climate surfaces. version 1.3
-
accessed April, 2006
-
RJ Hijmans, SE Cameron, JL Parra, PG Jones, and A. Jarvis. The worldclim interpolated global terrestrial climate surfaces. version 1.3. Computer program available at website http://biogeo.berkeley.edu/[accessed April, 2006], 2004.
-
(2004)
Computer Program
-
-
Hijmans, R.J.1
Cameron, S.E.2
Parra, J.L.3
Jones, P.G.4
Jarvis, A.5
-
12
-
-
33845536164
-
The class imbalance problem: A systematic study
-
N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent data analysis, 6(5):429-449, 2002.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
13
-
-
31844432693
-
Learning the structure of Markov logic networks
-
New York, NY, USA, ACM
-
Stanley Kok and Pedro Domingos. Learning the structure of Markov logic networks. In ICML, pages 441-448, New York, NY, USA, 2005. ACM.
-
(2005)
ICML
, pp. 441-448
-
-
Kok, S.1
Domingos, P.2
-
14
-
-
34147120594
-
Precision-recall operating characteristic (p-roc) curves in imprecise environments
-
IEEE
-
T.C.W. Landgrebe, P. Paclik, R.P.W. Duin, and A.P. Bradley. Precision-recall operating characteristic (p-roc) curves in imprecise environments. In Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, volume 4, pages 123-127. IEEE, 2006.
-
(2006)
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
, vol.4
, pp. 123-127
-
-
Landgrebe, T.C.W.1
Paclik, P.2
Duin, R.P.W.3
Bradley, A.P.4
-
16
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
Foster J. Provost, Tom Fawcett, and Ron Kohavi. The Case Against Accuracy Estimation for Comparing Induction Algorithms. ICML, 1998.
-
(1998)
ICML
-
-
Provost, F.J.1
Fawcett, T.2
Kohavi, R.3
-
17
-
-
33744584654
-
Induction of decision trees
-
J.R. Quinlan. Induction of decision trees. Machine learning, 1(1):81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
18
-
-
13344265612
-
Classification with hybrid generative/discriminative models
-
R. Raina, Y. Shen, A.Y. Ng, and A. McCallum. Classification with hybrid generative/discriminative models. Advances in neural information processing systems, 16, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.16
-
-
Raina, R.1
Shen, Y.2
Ng, A.Y.3
McCallum, A.4
-
19
-
-
0002618996
-
A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance
-
C.R. Rao. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Questiió: Quaderns d'Estadística, Sistemes, Informatica i Investigació Operativa, 19(1):23-63, 1995.
-
(1995)
Questiió: Quaderns D'Estadística, Sistemes, Informatica i Investigació Operativa
, vol.19
, Issue.1
, pp. 23-63
-
-
Rao, C.R.1
-
20
-
-
17244371152
-
Correlation between a discrete and a continuous variable. Point-biserial correlation
-
R.F. Tate. Correlation between a discrete and a continuous variable. point-biserial correlation. The Annals of Mathematical Statistics, 25(3):603-607, 1954.
-
(1954)
The Annals of Mathematical Statistics
, vol.25
, Issue.3
, pp. 603-607
-
-
Tate, R.F.1
|