메뉴 건너뛰기




Volumn 18, Issue 11, 2008, Pages 1555-1564

Multifeature object trajectory clustering for video analysis

Author keywords

Anomaly detection; Clustering; Mean shift; Trajectory analysis

Indexed keywords

CLUSTER ANALYSIS; DATA FUSION; FEATURE EXTRACTION; FLOW OF SOLIDS; MERGING; TRAJECTORIES;

EID: 55149107386     PISSN: 10518215     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCSVT.2008.2005603     Document Type: Article
Times cited : (130)

References (31)
  • 1
    • 0000470942 scopus 로고    scopus 로고
    • Learning the distribution of object trajectories for event recognition
    • presented at the, Birmingham, U.K, Sep
    • N. Johnson and D. Hogg, "Learning the distribution of object trajectories for event recognition," presented at the Brit. Conf. Machine Vision, Birmingham, U.K., Sep. 1996.
    • (1996) Brit. Conf. Machine Vision
    • Johnson, N.1    Hogg, D.2
  • 2
    • 55149107854 scopus 로고    scopus 로고
    • R. Rosales and S. Sclaroff, Trajectory Guided Tracking and Recognition of Actions, Tech. Rep. 1999-002, Comput. Sci. Dept., Univ. Boston, Boston, MA, 2008 [Online]. Available: http://citeseer.ist.psu.edu/ rosales99trajectory.html
    • R. Rosales and S. Sclaroff, "Trajectory Guided Tracking and Recognition of Actions," Tech. Rep. 1999-002, Comput. Sci. Dept., Univ. Boston, Boston, MA, 2008 [Online]. Available: http://citeseer.ist.psu.edu/ rosales99trajectory.html
  • 4
    • 84949937406 scopus 로고    scopus 로고
    • Statistical approach to clustering in pattern recognition
    • presented at the, Athens, OH, Mar
    • Y. Zeng and J. Starzyk, "Statistical approach to clustering in pattern recognition," presented at the 33rd Southeastern Symp. System Theory, Athens, OH, Mar. 2001.
    • (2001) 33rd Southeastern Symp. System Theory
    • Zeng, Y.1    Starzyk, J.2
  • 5
    • 0035481858 scopus 로고    scopus 로고
    • Self-organization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization
    • Oct
    • Y. Gdalyahu, D. Weinshall, and M. Werman, "Self-organization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 10, pp. 1053-1074, Oct. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell , vol.23 , Issue.10 , pp. 1053-1074
    • Gdalyahu, Y.1    Weinshall, D.2    Werman, M.3
  • 7
    • 33748372757 scopus 로고    scopus 로고
    • Counting pedestrians in video sequences using trajectory clustering
    • Aug
    • G. Antonini and J. Thiran, "Counting pedestrians in video sequences using trajectory clustering," IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 8, pp. 1008-1020, Aug. 2006.
    • (2006) IEEE Trans. Circuits Syst. Video Technol , vol.16 , Issue.8 , pp. 1008-1020
    • Antonini, G.1    Thiran, J.2
  • 8
    • 0002689560 scopus 로고    scopus 로고
    • Trajectory clustering with mixtures of regression models
    • presented at the, San Diego, CA, Aug
    • S. Gaffney and P. Smyth, "Trajectory clustering with mixtures of regression models," presented at the Int. Conf. Knowledge Discovery and Data Mining, San Diego, CA, Aug. 1999.
    • (1999) Int. Conf. Knowledge Discovery and Data Mining
    • Gaffney, S.1    Smyth, P.2
  • 9
    • 77951168145 scopus 로고    scopus 로고
    • Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space
    • presented at the, Singapore, Sep
    • S. Khalid and A. Naftel, "Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space," presented at the 3rd ACM Int. Workshop on Video Surveillance and Sensor Networks, Singapore, Sep. 2005.
    • (2005) 3rd ACM Int. Workshop on Video Surveillance and Sensor Networks
    • Khalid, S.1    Naftel, A.2
  • 10
    • 33845335507 scopus 로고    scopus 로고
    • Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space
    • Dec
    • A. Naftel and S. Khalid, "Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space," Trans. Multimedia Syst., vol. 12, no. 3, pp. 227-238, Dec. 2006.
    • (2006) Trans. Multimedia Syst , vol.12 , Issue.3 , pp. 227-238
    • Naftel, A.1    Khalid, S.2
  • 11
    • 33749645473 scopus 로고    scopus 로고
    • Similarity based vehicle trajectory clustering and anomaly detection
    • presented at the, Genova, Italy, Sep
    • Z. Fu, W. Hu, and T. Tan, "Similarity based vehicle trajectory clustering and anomaly detection," presented at the IEEE Intl. Conf. Image Processing, Genova, Italy, Sep. 2005.
    • (2005) IEEE Intl. Conf. Image Processing
    • Fu, Z.1    Hu, W.2    Tan, T.3
  • 12
    • 34047211509 scopus 로고    scopus 로고
    • A coarse-to-fine strategy for vehicle motion trajectory clustering
    • presented at the, Hong Kong, China, Aug
    • X. Li, W. Hu, and W. Hu, "A coarse-to-fine strategy for vehicle motion trajectory clustering," presented at the Int. Conf. Pattern Recognition, Hong Kong, China, Aug. 2006.
    • (2006) Int. Conf. Pattern Recognition
    • Li, X.1    Hu, W.2    Hu, W.3
  • 13
    • 33846212241 scopus 로고    scopus 로고
    • Real-time motion trajectory-based indexing and retrieval of video sequences
    • Jan
    • F. Bashir, A. Khokhar, and D. Schonfeld, "Real-time motion trajectory-based indexing and retrieval of video sequences," IEEE Trans. Multimedia, vol. 9, no. 1, pp. 58-65, Jan. 2007.
    • (2007) IEEE Trans. Multimedia , vol.9 , Issue.1 , pp. 58-65
    • Bashir, F.1    Khokhar, A.2    Schonfeld, D.3
  • 14
    • 0025555586 scopus 로고
    • A new algorithm for stochastic optimization
    • Dec
    • S. Andradottir, "A new algorithm for stochastic optimization," in Proc. 22nd Conf. Winter Simulation, Dec. 1990, pp. 364-366.
    • (1990) Proc. 22nd Conf. Winter Simulation , pp. 364-366
    • Andradottir, S.1
  • 15
    • 35948995212 scopus 로고    scopus 로고
    • Trajectory pattern detection by HMM parameter space features and eigenvector clustering
    • presented at the, Prague, Czech Republic, May
    • F. Porikli, "Trajectory pattern detection by HMM parameter space features and eigenvector clustering," presented at the 8th European Conf. on Computer Vision (ECCV), Prague, Czech Republic, May 2004.
    • (2004) 8th European Conf. on Computer Vision (ECCV)
    • Porikli, F.1
  • 17
    • 0032316171 scopus 로고    scopus 로고
    • Recognition and interpretation of parametric gesture
    • presented at the, Bombay, India, Jan
    • A. D. Wilson and A. F. Bobick, "Recognition and interpretation of parametric gesture," presented at the IEEE 6th Int. Conf. Computer Vision, Bombay, India, Jan. 1998.
    • (1998) IEEE 6th Int. Conf. Computer Vision
    • Wilson, A.D.1    Bobick, A.F.2
  • 18
    • 0034245149 scopus 로고    scopus 로고
    • A bayesian computer vision system for modeling human interactions
    • Aug
    • N. Oliver, B. Rosario, and A. Pentland, "A bayesian computer vision system for modeling human interactions," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 831-843, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.8 , pp. 831-843
    • Oliver, N.1    Rosario, B.2    Pentland, A.3
  • 19
    • 39749202670 scopus 로고    scopus 로고
    • Probabilistic models for joint clustering and time warping of multi-dimensional curves
    • presented at the, Acapulco, Mexico, Aug
    • D. Chudova, S. Gaffney, and P. Smyth, "Probabilistic models for joint clustering and time warping of multi-dimensional curves," presented at the 19th Conf. Uncertainty in Artificial Intelligence, Acapulco, Mexico, Aug. 2003.
    • (2003) 19th Conf. Uncertainty in Artificial Intelligence
    • Chudova, D.1    Gaffney, S.2    Smyth, P.3
  • 20
    • 0003278240 scopus 로고    scopus 로고
    • Learning spatio-temporal patterns for predicting object behaviour
    • presented at the, Southampton, U.K, Sep
    • N. Sumpter and A. J. Bulpitt, "Learning spatio-temporal patterns for predicting object behaviour," presented at the British Conf. Machine Vision, Southampton, U.K., Sep. 1998.
    • (1998) British Conf. Machine Vision
    • Sumpter, N.1    Bulpitt, A.J.2
  • 21
    • 3543105519 scopus 로고    scopus 로고
    • Learning activity patterns using fuzzy self-organizing neural network
    • Jun
    • W. Hu, D. Xie, T. Tan, and S. Maybank, "Learning activity patterns using fuzzy self-organizing neural network," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 3, pp. 334-352, Jun. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.3 , pp. 334-352
    • Hu, W.1    Xie, D.2    Tan, T.3    Maybank, S.4
  • 22
    • 0033185016 scopus 로고    scopus 로고
    • Combined compression and classification with learning vector quantization
    • Sep
    • J. Baras and S. Dey, "Combined compression and classification with learning vector quantization," IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 1911-1920, Sep. 1999.
    • (1999) IEEE Trans. Inf. Theory , vol.45 , Issue.6 , pp. 1911-1920
    • Baras, J.1    Dey, S.2
  • 23
    • 0030216085 scopus 로고    scopus 로고
    • Learning the distribution of object trajectories for event recognition
    • Aug
    • N. Johnson and D. Hogg, "Learning the distribution of object trajectories for event recognition," Image Vis. Comput., vol. 14, no. 8, pp. 609-615, Aug. 1996.
    • (1996) Image Vis. Comput , vol.14 , Issue.8 , pp. 609-615
    • Johnson, N.1    Hogg, D.2
  • 24
    • 0345566142 scopus 로고    scopus 로고
    • F. Bashir, A. Khokhar, and D. Schonfeld, Segmented trajectory based indexing and retrieval of video data, presented at the Int. Conf. Image Processing, Barcelona, Catalonia, Spain, Sep. 2003.
    • F. Bashir, A. Khokhar, and D. Schonfeld, "Segmented trajectory based indexing and retrieval of video data," presented at the Int. Conf. Image Processing, Barcelona, Catalonia, Spain, Sep. 2003.
  • 25
    • 34347372619 scopus 로고    scopus 로고
    • Object trajectory-based activity classification and recognition using hidden Markov models
    • Jul
    • F. Bashir, A. Khokhar, and D. Schonfeld, "Object trajectory-based activity classification and recognition using hidden Markov models," IEEE Trans. Image Process., vol. 16, no. 7, pp. 1912-1919, Jul. 2007.
    • (2007) IEEE Trans. Image Process , vol.16 , Issue.7 , pp. 1912-1919
    • Bashir, F.1    Khokhar, A.2    Schonfeld, D.3
  • 26
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal Mach. Intell , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 27
    • 0033444876 scopus 로고    scopus 로고
    • Distribution free decomposition of multivariate data
    • D. Comaniciu and P. Meer, "Distribution free decomposition of multivariate data," Trans. Pattern Anal. Appl., vol. 2, no. 1, pp. 22-30, 1999.
    • (1999) Trans. Pattern Anal. Appl , vol.2 , Issue.1 , pp. 22-30
    • Comaniciu, D.1    Meer, P.2
  • 28
    • 0034857778 scopus 로고    scopus 로고
    • The variable bandwidth mean shift and data-driven scale selection
    • presented at the, Vancouver, BC, Canada
    • D. Comaniciu, V. Ramesh, and P. Meer, "The variable bandwidth mean shift and data-driven scale selection," presented at the IEEE Int. Conf. Computer Vision, Vancouver, BC, Canada, 2001.
    • (2001) IEEE Int. Conf. Computer Vision
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 29
    • 12844259642 scopus 로고    scopus 로고
    • False-peaks-avoiding mean shift method for unsupervised peak-valley sliding image segmentation
    • presented at the, Sydney, Australia
    • H. Wang and D. Suter, "False-peaks-avoiding mean shift method for unsupervised peak-valley sliding image segmentation," presented at the Int. Conf. Digital Image Computing: Techniques and Applications, Sydney, Australia, 2003.
    • (2003) Int. Conf. Digital Image Computing: Techniques and Applications
    • Wang, H.1    Suter, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.