메뉴 건너뛰기




Volumn 46, Issue 2, 2009, Pages 155-163

An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs

Author keywords

Conjugate gradient; Genetic algorithm; Pharmacokinetic and pharmacodynamic property of drug; Support vector machine

Indexed keywords

ADMET PROPERTIES; BLOOD-BRAIN BARRIERS; CLASSIFICATION MODELS; CONJUGATE GRADIENT; FEATURE SELECTIONS; FEATURE SUBSETS; HUMAN INTESTINAL ABSORPTIONS; INPUT FEATURES; P GLYCOPROTEINS; PARAMETER OPTIMIZATIONS; PARAMETER SETTINGS; PHARMACOKINETIC PROPERTIES; PREDICTION ACCURACIES; PREDICTIVE MODELS; STATISTICAL LEARNING METHODS; SVM CLASSIFICATIONS;

EID: 67349139293     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.07.001     Document Type: Article
Times cited : (59)

References (39)
  • 1
    • 33846856720 scopus 로고    scopus 로고
    • Prediction of blood-brain partitioning and human serum albumin binding based on COSMO-RS σ-moments
    • Wichmann K., Diedenhofen M., and Klamt A. Prediction of blood-brain partitioning and human serum albumin binding based on COSMO-RS σ-moments. Journal of Chemical Information and Modeling 47 (2007) 228-233
    • (2007) Journal of Chemical Information and Modeling , vol.47 , pp. 228-233
    • Wichmann, K.1    Diedenhofen, M.2    Klamt, A.3
  • 2
    • 3242885550 scopus 로고    scopus 로고
    • Predictive ADMET studies, the challenges and the opportunities
    • Davis A.M., and Riley R.J. Predictive ADMET studies, the challenges and the opportunities. Current Opinion in Chemical Biology 8 (2004) 378-386
    • (2004) Current Opinion in Chemical Biology , vol.8 , pp. 378-386
    • Davis, A.M.1    Riley, R.J.2
  • 4
    • 33244467920 scopus 로고    scopus 로고
    • In silico Prediction of blood brain barrier permeability: an artificial neural network model
    • Garg P., and Verma J. In silico Prediction of blood brain barrier permeability: an artificial neural network model. Journal of Chemical Information and Modeling 46 (2006) 289-297
    • (2006) Journal of Chemical Information and Modeling , vol.46 , pp. 289-297
    • Garg, P.1    Verma, J.2
  • 5
    • 2942585265 scopus 로고    scopus 로고
    • Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases
    • Smith P.A., Sorich M.J., Low L.S.C., McKinnon R.A., and Miners J.O. Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases. Journal of Molecular Graphics and Modelling 22 (2004) 507-517
    • (2004) Journal of Molecular Graphics and Modelling , vol.22 , pp. 507-517
    • Smith, P.A.1    Sorich, M.J.2    Low, L.S.C.3    McKinnon, R.A.4    Miners, J.O.5
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 127-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 127-167
    • Burges, C.J.C.1
  • 8
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: support vector machines for pharmaceutical data analysis
    • Burbidge R., Trotter M., Buxton B., and Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computational Chemistry 26 1 (2001) 5-14
    • (2001) Computational Chemistry , vol.26 , Issue.1 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 9
    • 0041670909 scopus 로고    scopus 로고
    • Support vector machines for ADME property classification
    • Trotter M., and Holden S. Support vector machines for ADME property classification. QSAR & Combinatorial Science 22 (2003) 533-548
    • (2003) QSAR & Combinatorial Science , vol.22 , pp. 533-548
    • Trotter, M.1    Holden, S.2
  • 10
    • 33646246986 scopus 로고    scopus 로고
    • Kernel functions for attributed molecular graphs-a new similarity based approach to ADME prediction in classification and regression
    • Fröhlich H., Wegner J., Sieker F., and Zell A. Kernel functions for attributed molecular graphs-a new similarity based approach to ADME prediction in classification and regression. QSAR & Combinatorial Science 25 4 (2006) 317-326
    • (2006) QSAR & Combinatorial Science , vol.25 , Issue.4 , pp. 317-326
    • Fröhlich, H.1    Wegner, J.2    Sieker, F.3    Zell, A.4
  • 11
    • 33646420101 scopus 로고    scopus 로고
    • Statistical learning approach for predicting specific pharmacodynamic, pharmacokinetic, or toxicological properties of pharmaceutical agents
    • Li H., Yap C.W., Xue Y., Li Z.R., Ung C.Y., Han L.Y., et al. Statistical learning approach for predicting specific pharmacodynamic, pharmacokinetic, or toxicological properties of pharmaceutical agents. Drug Development Research 66 (2006) 245-259
    • (2006) Drug Development Research , vol.66 , pp. 245-259
    • Li, H.1    Yap, C.W.2    Xue, Y.3    Li, Z.R.4    Ung, C.Y.5    Han, L.Y.6
  • 12
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang C.L., and Wang C.J. A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications 31 (2006) 231-240
    • (2006) Expert Systems with Applications , vol.31 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 14
    • 0027284874 scopus 로고
    • Understanding and using genetic algorithms. Part 1. Concepts, properties and context
    • Lucasius C.B., and Kateman G. Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemometrics and Intelligent Laboratory Systems 19 (1993) 1-33
    • (1993) Chemometrics and Intelligent Laboratory Systems , vol.19 , pp. 1-33
    • Lucasius, C.B.1    Kateman, G.2
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 (2002) 389-422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 16
    • 0001912153 scopus 로고
    • Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection
    • Sutter J.M., and Kalivas J.H. Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection. Microchemical Journal 47 (1993) 60-66
    • (1993) Microchemical Journal , vol.47 , pp. 60-66
    • Sutter, J.M.1    Kalivas, J.H.2
  • 17
    • 67349263075 scopus 로고    scopus 로고
    • Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Available at: http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf; 2007 [accessed: 01.11.07].
    • Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Available at: http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf; 2007 [accessed: 01.11.07].
  • 18
    • 84864039082 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in SVM models
    • Schölkopf B., Platt J., and Hofmann T. (Eds), MIT Press, Cambridge, MA, USA
    • Keerthi S., Sindhwani V., and Chapelle O. An efficient method for gradient-based adaptation of hyperparameters in SVM models. In: Schölkopf B., Platt J., and Hofmann T. (Eds). Advances in neural information processing systems (2007), MIT Press, Cambridge, MA, USA 673-680
    • (2007) Advances in neural information processing systems , pp. 673-680
    • Keerthi, S.1    Sindhwani, V.2    Chapelle, O.3
  • 22
    • 67349188430 scopus 로고    scopus 로고
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm; 2007 [accessed: 01.11.07].
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm; 2007 [accessed: 01.11.07].
  • 24
    • 67349286517 scopus 로고    scopus 로고
    • VCCLAB, Virtual Computational Chemistry Laboratory, http://www.vcclab.org; 2007 [accessed: 01.11.07].
    • VCCLAB, Virtual Computational Chemistry Laboratory, http://www.vcclab.org; 2007 [accessed: 01.11.07].
  • 25
    • 0037171818 scopus 로고    scopus 로고
    • A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein
    • Penzotti J.E., Lamb M.L., Evensen E., and Grootenhuis P.D.J. A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. Journal of Medicinal Chemistry 45 (2002) 1737-1740
    • (2002) Journal of Medicinal Chemistry , vol.45 , pp. 1737-1740
    • Penzotti, J.E.1    Lamb, M.L.2    Evensen, E.3    Grootenhuis, P.D.J.4
  • 26
    • 0032518454 scopus 로고    scopus 로고
    • A general pattern for substrate recognition by P-glycoprotein
    • Seelig A. A general pattern for substrate recognition by P-glycoprotein. European Journal of Biochemistry 251 (1998) 252-261
    • (1998) European Journal of Biochemistry , vol.251 , pp. 252-261
    • Seelig, A.1
  • 27
    • 0036891365 scopus 로고    scopus 로고
    • ADMET evaluation. 2. A computer model for the prediction of intestinal absorption in humans
    • Klopman G., Stefan L.R., and Saiakhov R.D. ADMET evaluation. 2. A computer model for the prediction of intestinal absorption in humans. European Journal of Pharmaceutical Sciences 17 (2002) 253-263
    • (2002) European Journal of Pharmaceutical Sciences , vol.17 , pp. 253-263
    • Klopman, G.1    Stefan, L.R.2    Saiakhov, R.D.3
  • 29
    • 0036258115 scopus 로고    scopus 로고
    • Safety of nonantiarrhythmic drugs that prolong the QT interval or induce torsade de pointes: an overview
    • De Ponti F., Poluzzi E., Cavalli A., Recanatini M., and Montanaro N. Safety of nonantiarrhythmic drugs that prolong the QT interval or induce torsade de pointes: an overview. Drug Safety 25 (2002) 263-286
    • (2002) Drug Safety , vol.25 , pp. 263-286
    • De Ponti, F.1    Poluzzi, E.2    Cavalli, A.3    Recanatini, M.4    Montanaro, N.5
  • 31
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue Y., Li Z.R., Yap C.W., Sun L.Z., Chen X., and Chen Y.Z. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. Journal of Chemical Information and Computer Science 44 (2004) 1630-1638
    • (2004) Journal of Chemical Information and Computer Science , vol.44 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 32
    • 0037204545 scopus 로고    scopus 로고
    • Computational approaches to the prediction of the blood-brain distribution
    • Norinder U., and Haeberlein M. Computational approaches to the prediction of the blood-brain distribution. Advanced Drug Delivery Reviews 54 3 (2002) 291-313
    • (2002) Advanced Drug Delivery Reviews , vol.54 , Issue.3 , pp. 291-313
    • Norinder, U.1    Haeberlein, M.2
  • 33
    • 0034213636 scopus 로고    scopus 로고
    • Predicting blood-brain barrier permeation from three-dimensional molecular structure
    • Crivori P., Cruciani G., Carrupt P.A., and Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. Journal of Medicinal Chemistry 43 11 (2000) 2204-2216
    • (2000) Journal of Medicinal Chemistry , vol.43 , Issue.11 , pp. 2204-2216
    • Crivori, P.1    Cruciani, G.2    Carrupt, P.A.3    Testa, B.4
  • 34
    • 26944502743 scopus 로고    scopus 로고
    • Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods
    • Li H., Yap C.W., Ung C.Y., Xue Y., Cao Z.W., and Chen Y.Z. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. Journal of Chemical Information and Modeling 45 (2005) 1376-1384
    • (2005) Journal of Chemical Information and Modeling , vol.45 , pp. 1376-1384
    • Li, H.1    Yap, C.W.2    Ung, C.Y.3    Xue, Y.4    Cao, Z.W.5    Chen, Y.Z.6
  • 36
    • 0036844787 scopus 로고    scopus 로고
    • Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis
    • Iyer M., Mishra R., Han Y., and Hopfinger A.J. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharmaceutical Research 19 11 (2002) 1611-1621
    • (2002) Pharmaceutical Research , vol.19 , Issue.11 , pp. 1611-1621
    • Iyer, M.1    Mishra, R.2    Han, Y.3    Hopfinger, A.J.4
  • 39
    • 12244271454 scopus 로고    scopus 로고
    • Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms
    • Doniger S., Hofman T., and Yeh J. Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms. Journal of Computational Biology 9 6 (2002) 849-864
    • (2002) Journal of Computational Biology , vol.9 , Issue.6 , pp. 849-864
    • Doniger, S.1    Hofman, T.2    Yeh, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.