메뉴 건너뛰기




Volumn 35, Issue 11, 2014, Pages 562-570

NOD-like receptor cooperativity in effector-triggered immunity

Author keywords

Innate immunity; NLR pairs; Plant defense; Transcriptional reprogramming

Indexed keywords

INFLAMMASOME; NEURONAL APOPTOSIS INHIBITORY PROTEIN; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN PROTEIN; PROTEIN BINDING;

EID: 84920561150     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.09.005     Document Type: Review
Times cited : (45)

References (120)
  • 1
    • 84875422919 scopus 로고    scopus 로고
    • Effector-triggered versus pattern-triggered immunity: how animals sense pathogens
    • Stuart L.M., et al. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 2013, 13:199-206.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 199-206
    • Stuart, L.M.1
  • 2
    • 84881413993 scopus 로고    scopus 로고
    • Pivoting the plant immune system from dissection to deployment
    • Dangl J.L., et al. Pivoting the plant immune system from dissection to deployment. Science 2013, 341:746-751.
    • (2013) Science , vol.341 , pp. 746-751
    • Dangl, J.L.1
  • 3
    • 84903535147 scopus 로고    scopus 로고
    • Plant pattern-recognition receptors
    • Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014, 35:345-351.
    • (2014) Trends Immunol. , vol.35 , pp. 345-351
    • Zipfel, C.1
  • 4
    • 80051967147 scopus 로고    scopus 로고
    • NLR functions in plant and animal immune systems: so far and yet so close
    • Maekawa T., et al. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 2011, 12:817-826.
    • (2011) Nat. Immunol. , vol.12 , pp. 817-826
    • Maekawa, T.1
  • 5
    • 33751100626 scopus 로고    scopus 로고
    • The plant immune system
    • Jones J.D.G., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
    • (2006) Nature , vol.444 , pp. 323-329
    • Jones, J.D.G.1    Dangl, J.L.2
  • 6
    • 3042537244 scopus 로고    scopus 로고
    • Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance
    • Eulgem T., et al. Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol. 2004, 135:1129-1144.
    • (2004) Plant Physiol. , vol.135 , pp. 1129-1144
    • Eulgem, T.1
  • 7
    • 0037324536 scopus 로고    scopus 로고
    • Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae
    • Tao Y. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 2003, 15:317-330.
    • (2003) Plant Cell , vol.15 , pp. 317-330
    • Tao, Y.1
  • 8
    • 0001119910 scopus 로고
    • Current status of the gene-for-gene concept
    • Flor H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9:275-296.
    • (1971) Annu. Rev. Phytopathol. , vol.9 , pp. 275-296
    • Flor, H.H.1
  • 9
    • 33745015480 scopus 로고    scopus 로고
    • Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes
    • Dodds P.N., et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:8888-8893.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 8888-8893
    • Dodds, P.N.1
  • 10
    • 84878228493 scopus 로고    scopus 로고
    • The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding
    • Cesari S., et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 2013, 25:1463-1481.
    • (2013) Plant Cell , vol.25 , pp. 1463-1481
    • Cesari, S.1
  • 11
    • 0037155687 scopus 로고    scopus 로고
    • RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
    • Mackey D., et al. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 2002, 108:743-754.
    • (2002) Cell , vol.108 , pp. 743-754
    • Mackey, D.1
  • 12
    • 0037423390 scopus 로고    scopus 로고
    • Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4
    • Axtell M.J., Staskawicz B.J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 2003, 112:369-377.
    • (2003) Cell , vol.112 , pp. 369-377
    • Axtell, M.J.1    Staskawicz, B.J.2
  • 13
    • 75749110990 scopus 로고    scopus 로고
    • Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition
    • Gutierrez J.R., et al. Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition. Plant J. 2010, 61:507-518.
    • (2010) Plant J. , vol.61 , pp. 507-518
    • Gutierrez, J.R.1
  • 14
    • 84875079085 scopus 로고    scopus 로고
    • The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation
    • Ntoukakis V., et al. The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation. PLoS Pathog. 2013, 9:e1003123.
    • (2013) PLoS Pathog. , vol.9
    • Ntoukakis, V.1
  • 15
    • 38849106202 scopus 로고    scopus 로고
    • Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector
    • Caplan J.L., et al. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 2008, 132:449-462.
    • (2008) Cell , vol.132 , pp. 449-462
    • Caplan, J.L.1
  • 16
    • 77954763024 scopus 로고    scopus 로고
    • Plant immunity: towards an integrated view of plant-pathogen interactions
    • Dodds P.N., Rathjen J.P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11:539-548.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 539-548
    • Dodds, P.N.1    Rathjen, J.P.2
  • 18
    • 59649103157 scopus 로고    scopus 로고
    • Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins
    • Danot O., et al. Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 2009, 17:172-182.
    • (2009) Structure , vol.17 , pp. 172-182
    • Danot, O.1
  • 19
    • 84864511877 scopus 로고    scopus 로고
    • How to build a pathogen detector: structural basis of NB-LRR function
    • Takken F.L.W., Goverse A. How to build a pathogen detector: structural basis of NB-LRR function. Curr. Opin. Plant Biol. 2012, 15:375-384.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 375-384
    • Takken, F.L.W.1    Goverse, A.2
  • 20
    • 33746989767 scopus 로고    scopus 로고
    • Resistance proteins: molecular switches of plant defence
    • Takken F.L., et al. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 2006, 9:383-390.
    • (2006) Curr. Opin. Plant Biol. , vol.9 , pp. 383-390
    • Takken, F.L.1
  • 21
    • 44349171085 scopus 로고    scopus 로고
    • The Nod-like receptor (NLR) family: a tale of similarities and differences
    • Proell M., et al. The Nod-like receptor (NLR) family: a tale of similarities and differences. PloS ONE 2008, 3:e2119.
    • (2008) PloS ONE , vol.3
    • Proell, M.1
  • 22
    • 28444488986 scopus 로고    scopus 로고
    • Update on the domain architectures of NLRs and R proteins
    • Albrecht M., Takken F.L.W. Update on the domain architectures of NLRs and R proteins. Biochem. Biophys. Res. Commun. 2006, 339:459-462.
    • (2006) Biochem. Biophys. Res. Commun. , vol.339 , pp. 459-462
    • Albrecht, M.1    Takken, F.L.W.2
  • 23
    • 0036775380 scopus 로고    scopus 로고
    • Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato
    • Bendahmane A., et al. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J. 2002, 32:195-204.
    • (2002) Plant J. , vol.32 , pp. 195-204
    • Bendahmane, A.1
  • 24
    • 0037009437 scopus 로고    scopus 로고
    • Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death
    • Moffett P., et al. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 2002, 21:4511-4519.
    • (2002) EMBO J. , vol.21 , pp. 4511-4519
    • Moffett, P.1
  • 25
    • 84875542536 scopus 로고    scopus 로고
    • Recognition of bacteria by inflammasomes
    • Moltke J., Von, et al. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 2013, 31:73-106.
    • (2013) Annu. Rev. Immunol. , vol.31 , pp. 73-106
    • Moltke, J.1    Von2
  • 26
    • 80053379974 scopus 로고    scopus 로고
    • Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
    • Kofoed E.M., Vance R.E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011, 477:592-595.
    • (2011) Nature , vol.477 , pp. 592-595
    • Kofoed, E.M.1    Vance, R.E.2
  • 27
    • 80053349020 scopus 로고    scopus 로고
    • The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
    • Zhao Y., et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011, 477:596-600.
    • (2011) Nature , vol.477 , pp. 596-600
    • Zhao, Y.1
  • 28
    • 52549099416 scopus 로고    scopus 로고
    • Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin
    • Lightfield K.L., et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol. 2008, 9:1171-1178.
    • (2008) Nat. Immunol. , vol.9 , pp. 1171-1178
    • Lightfield, K.L.1
  • 29
    • 79953315378 scopus 로고    scopus 로고
    • Differential requirements for NAIP5 in activation of the NLRC4 inflammasome
    • Lightfield K.L., et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect. Immun. 2011, 79:1606-1614.
    • (2011) Infect. Immun. , vol.79 , pp. 1606-1614
    • Lightfield, K.L.1
  • 30
    • 84869044838 scopus 로고    scopus 로고
    • Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin
    • Halff E.F., et al. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. Biol. Chem. 2012, 287:38460-38472.
    • (2012) Biol. Chem. , vol.287 , pp. 38460-38472
    • Halff, E.F.1
  • 31
    • 84898031590 scopus 로고    scopus 로고
    • Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes
    • Tenthorey J.L., et al. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol. Cell 2014, 54:17-29.
    • (2014) Mol. Cell , vol.54 , pp. 17-29
    • Tenthorey, J.L.1
  • 32
    • 84880280093 scopus 로고    scopus 로고
    • Crystal structure of NLRC4 reveals its autoinhibition mechanism
    • Hu Z., et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 2013, 341:172-175.
    • (2013) Science , vol.341 , pp. 172-175
    • Hu, Z.1
  • 33
    • 84901008921 scopus 로고    scopus 로고
    • Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex
    • Man S.M., et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:7403-7408.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 7403-7408
    • Man, S.M.1
  • 34
    • 45549093755 scopus 로고    scopus 로고
    • A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide
    • Hsu L-C., et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7803-7808.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7803-7808
    • Hsu, L.-C.1
  • 35
    • 84858688293 scopus 로고    scopus 로고
    • Regulation of inflammasome signaling
    • Rathinam V.A.K., et al. Regulation of inflammasome signaling. Nat. Immunol. 2012, 13:333-342.
    • (2012) Nat. Immunol. , vol.13 , pp. 333-342
    • Rathinam, V.A.K.1
  • 36
    • 80053620786 scopus 로고    scopus 로고
    • Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
    • Bonardi V., et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16463-16468.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16463-16468
    • Bonardi, V.1
  • 37
    • 77955091927 scopus 로고    scopus 로고
    • NB-LRR proteins: pairs, pieces, perception, partners, and pathways
    • Eitas T.K., Dangl J.L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 2010, 13:472-477.
    • (2010) Curr. Opin. Plant Biol. , vol.13 , pp. 472-477
    • Eitas, T.K.1    Dangl, J.L.2
  • 38
    • 84881610714 scopus 로고    scopus 로고
    • Early signaling network in rice PRR-mediated and R-mediated immunity
    • Kawano Y., Shimamoto K. Early signaling network in rice PRR-mediated and R-mediated immunity. Curr. Opin. Plant Biol. 2013, 16:496-504.
    • (2013) Curr. Opin. Plant Biol. , vol.16 , pp. 496-504
    • Kawano, Y.1    Shimamoto, K.2
  • 39
    • 2942708099 scopus 로고    scopus 로고
    • Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis
    • Sinapidou E., et al. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 2004, 38:898-909.
    • (2004) Plant J. , vol.38 , pp. 898-909
    • Sinapidou, E.1
  • 40
    • 61849179574 scopus 로고    scopus 로고
    • Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance
    • Ashikawa I., et al. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 2008, 180:2267-2276.
    • (2008) Genetics , vol.180 , pp. 2267-2276
    • Ashikawa, I.1
  • 41
    • 84871961578 scopus 로고    scopus 로고
    • Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions
    • Kanzaki H., et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 2012, 72:894-907.
    • (2012) Plant J. , vol.72 , pp. 894-907
    • Kanzaki, H.1
  • 42
    • 78649745552 scopus 로고    scopus 로고
    • The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication
    • Zhai C., et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 2011, 189:321-334.
    • (2011) New Phytol. , vol.189 , pp. 321-334
    • Zhai, C.1
  • 43
    • 84902492789 scopus 로고    scopus 로고
    • Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance
    • Zhai C., et al. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PloS ONE 2014, 9:e98067.
    • (2014) PloS ONE , vol.9
    • Zhai, C.1
  • 44
    • 67650302503 scopus 로고    scopus 로고
    • Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes
    • Lee S-K., et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 2009, 181:1627-1638.
    • (2009) Genetics , vol.181 , pp. 1627-1638
    • Lee, S.-K.1
  • 45
    • 79955402863 scopus 로고    scopus 로고
    • A multifaceted genomics approach allows the isolationof the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes
    • Okuyama Y., et al. A multifaceted genomics approach allows the isolationof the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 2011, 66:467-479.
    • (2011) Plant J. , vol.66 , pp. 467-479
    • Okuyama, Y.1
  • 46
    • 72449183266 scopus 로고    scopus 로고
    • A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions
    • Birker D., et al. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J. 2009, 60:602-613.
    • (2009) Plant J. , vol.60 , pp. 602-613
    • Birker, D.1
  • 47
    • 70349881464 scopus 로고    scopus 로고
    • RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens
    • Narusaka M., et al. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J. 2009, 60:218-226.
    • (2009) Plant J. , vol.60 , pp. 218-226
    • Narusaka, M.1
  • 48
    • 77953286060 scopus 로고    scopus 로고
    • WRKY transcription factors
    • Rushton P.J., et al. WRKY transcription factors. Trends Plant Sci. 2010, 15:247-258.
    • (2010) Trends Plant Sci. , vol.15 , pp. 247-258
    • Rushton, P.J.1
  • 49
    • 44049099252 scopus 로고    scopus 로고
    • Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB
    • Eitas T.K., et al. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:6475-6480.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 6475-6480
    • Eitas, T.K.1
  • 50
    • 33745455354 scopus 로고    scopus 로고
    • Elicitor-mediated oligomerization of the tobacco N disease resistance protein
    • Mestre P., Baulcombe D.C. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 2006, 18:491-501.
    • (2006) Plant Cell , vol.18 , pp. 491-501
    • Mestre, P.1    Baulcombe, D.C.2
  • 51
    • 84901054331 scopus 로고    scopus 로고
    • The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition
    • Ntoukakis V., et al. The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr. Opin. Plant Biol. 2014, 20:69-74.
    • (2014) Curr. Opin. Plant Biol. , vol.20 , pp. 69-74
    • Ntoukakis, V.1
  • 52
    • 33847769886 scopus 로고    scopus 로고
    • Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease
    • Ade J., et al. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:2531-2536.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 2531-2536
    • Ade, J.1
  • 53
    • 79952642803 scopus 로고    scopus 로고
    • Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death
    • Maekawa T., et al. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 2011, 9:187-199.
    • (2011) Cell Host Microbe , vol.9 , pp. 187-199
    • Maekawa, T.1
  • 54
    • 79952643473 scopus 로고    scopus 로고
    • Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation
    • Bernoux M., et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 2011, 9:200-211.
    • (2011) Cell Host Microbe , vol.9 , pp. 200-211
    • Bernoux, M.1
  • 55
    • 1642311105 scopus 로고    scopus 로고
    • Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses
    • Frost D., et al. Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses. Mol. Plant Microbe Interact. 2004, 17:224-232.
    • (2004) Mol. Plant Microbe Interact. , vol.17 , pp. 224-232
    • Frost, D.1
  • 56
    • 59749083228 scopus 로고    scopus 로고
    • The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction
    • Swiderski M.R., et al. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol. Plant Microbe Interact. 2009, 22:157-165.
    • (2009) Mol. Plant Microbe Interact. , vol.22 , pp. 157-165
    • Swiderski, M.R.1
  • 57
    • 33748304125 scopus 로고    scopus 로고
    • The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis
    • Weaver M.L., et al. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant J. 2006, 47:829-840.
    • (2006) Plant J. , vol.47 , pp. 829-840
    • Weaver, M.L.1
  • 58
    • 77956823972 scopus 로고    scopus 로고
    • Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
    • Krasileva K.V., et al. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 2010, 22:2444-2458.
    • (2010) Plant Cell , vol.22 , pp. 2444-2458
    • Krasileva, K.V.1
  • 59
    • 48249140729 scopus 로고    scopus 로고
    • The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling
    • Rairdan G.J., et al. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 2008, 20:739-751.
    • (2008) Plant Cell , vol.20 , pp. 739-751
    • Rairdan, G.J.1
  • 60
    • 0033133572 scopus 로고    scopus 로고
    • The Rx gene from potato controls separate virus resistance and cell death responses
    • Bendahmane A., et al. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 1999, 11:781-792.
    • (1999) Plant Cell , vol.11 , pp. 781-792
    • Bendahmane, A.1
  • 61
    • 78649707971 scopus 로고    scopus 로고
    • Arabidopsis type I metacaspases control cell death
    • Coll N.S., et al. Arabidopsis type I metacaspases control cell death. Science 2010, 330:1393-1397.
    • (2010) Science , vol.330 , pp. 1393-1397
    • Coll, N.S.1
  • 62
    • 83255164814 scopus 로고    scopus 로고
    • Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses
    • Heidrich K., et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 2011, 334:1401-1404.
    • (2011) Science , vol.334 , pp. 1401-1404
    • Heidrich, K.1
  • 63
    • 84864051288 scopus 로고    scopus 로고
    • Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance
    • Bai S., et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog. 2012, 8:e1002752.
    • (2012) PLoS Pathog. , vol.8
    • Bai, S.1
  • 64
    • 84907018144 scopus 로고    scopus 로고
    • Powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3
    • Hurni S., et al. Powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014, 79:904-913.
    • (2014) Plant J. , vol.79 , pp. 904-913
    • Hurni, S.1
  • 65
    • 84907018223 scopus 로고    scopus 로고
    • Suppression among alleles encoding NB-LRR resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants
    • Stirnweis D., et al. Suppression among alleles encoding NB-LRR resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants. Plant J. 2014, 79:893-903.
    • (2014) Plant J. , vol.79 , pp. 893-903
    • Stirnweis, D.1
  • 66
    • 84899491083 scopus 로고    scopus 로고
    • Structural basis for assembly and function of a heterodimeric plant immune receptor
    • Williams S.J., et al. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 2014, 344:299-303.
    • (2014) Science , vol.344 , pp. 299-303
    • Williams, S.J.1
  • 67
    • 36548999830 scopus 로고    scopus 로고
    • Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense
    • Wirthmueller L., et al. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr. Biol. 2007, 17:2023-2029.
    • (2007) Curr. Biol. , vol.17 , pp. 2023-2029
    • Wirthmueller, L.1
  • 68
    • 79251517062 scopus 로고    scopus 로고
    • Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis
    • Tasset C., et al. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog. 2010, 6:e1001202.
    • (2010) PLoS Pathog. , vol.6
    • Tasset, C.1
  • 69
    • 84867063299 scopus 로고    scopus 로고
    • Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity
    • Sohn K.H., et al. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:16371-16376.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 16371-16376
    • Sohn, K.H.1
  • 70
    • 32944465711 scopus 로고    scopus 로고
    • A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death
    • Noutoshi Y., et al. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J. 2005, 43:873-888.
    • (2005) Plant J. , vol.43 , pp. 873-888
    • Noutoshi, Y.1
  • 71
    • 84900801866 scopus 로고    scopus 로고
    • Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity
    • Heidrich K., et al. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Front. Plant Sci. 2013, 4:403.
    • (2013) Front. Plant Sci. , vol.4 , pp. 403
    • Heidrich, K.1
  • 72
    • 84906831049 scopus 로고    scopus 로고
    • The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance
    • Cesari S., et al. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J. 2014, 33:1941-1959.
    • (2014) EMBO J. , vol.33 , pp. 1941-1959
    • Cesari, S.1
  • 74
    • 70350356853 scopus 로고    scopus 로고
    • Activating immunity: lessons from the TLRs and NLRs
    • Monie T.P., et al. Activating immunity: lessons from the TLRs and NLRs. Trends Biochem. Sci. 2009, 34:553-561.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 553-561
    • Monie, T.P.1
  • 75
    • 69949088965 scopus 로고    scopus 로고
    • Innate immune sensing and activation of cell surface Toll-like receptors
    • Tapping R.I. Innate immune sensing and activation of cell surface Toll-like receptors. Semin. Immunol. 2009, 21:175-184.
    • (2009) Semin. Immunol. , vol.21 , pp. 175-184
    • Tapping, R.I.1
  • 76
    • 33947711794 scopus 로고    scopus 로고
    • An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins
    • Gabriëls S.H.E.J., et al. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant J. 2007, 50:14-28.
    • (2007) Plant J. , vol.50 , pp. 14-28
    • Gabriëls, S.H.E.J.1
  • 77
    • 84886020336 scopus 로고    scopus 로고
    • Evolution and conservation of plant NLR functions
    • Jacob F., et al. Evolution and conservation of plant NLR functions. Front. Immunol. 2013, 4:297.
    • (2013) Front. Immunol. , vol.4 , pp. 297
    • Jacob, F.1
  • 78
    • 84882451417 scopus 로고    scopus 로고
    • A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature
    • Zbierzak A.M., et al. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. Plant J. 2013, 75:539-552.
    • (2013) Plant J. , vol.75 , pp. 539-552
    • Zbierzak, A.M.1
  • 79
    • 84882449416 scopus 로고    scopus 로고
    • A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis
    • Wang Y., et al. A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. Plant J. 2013, 75:553-565.
    • (2013) Plant J. , vol.75 , pp. 553-565
    • Wang, Y.1
  • 80
    • 51149088377 scopus 로고    scopus 로고
    • Alternative splicing in plant defense
    • Gassmann W. Alternative splicing in plant defense. Curr. Top. Microbiol. Immunol. 2008, 326:219-233.
    • (2008) Curr. Top. Microbiol. Immunol. , vol.326 , pp. 219-233
    • Gassmann, W.1
  • 81
    • 79961178040 scopus 로고    scopus 로고
    • The role of NDR1 in pathogen perception and plant defense signaling
    • Knepper C., et al. The role of NDR1 in pathogen perception and plant defense signaling. Plant Signal. Behav. 2011, 6:1114-1116.
    • (2011) Plant Signal. Behav. , vol.6 , pp. 1114-1116
    • Knepper, C.1
  • 82
    • 33751005592 scopus 로고    scopus 로고
    • NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis
    • Day B., et al. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 2006, 18:2782-2791.
    • (2006) Plant Cell , vol.18 , pp. 2782-2791
    • Day, B.1
  • 83
    • 20444502968 scopus 로고    scopus 로고
    • Plant immunity: the EDS1 regulatory node
    • Wiermer M., et al. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 2005, 8:383-389.
    • (2005) Curr. Opin. Plant Biol. , vol.8 , pp. 383-389
    • Wiermer, M.1
  • 84
    • 77957662380 scopus 로고    scopus 로고
    • Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response
    • García A.V., et al. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog. 2010, 6:e1000970.
    • (2010) PLoS Pathog. , vol.6
    • García, A.V.1
  • 85
    • 68249095359 scopus 로고    scopus 로고
    • Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling
    • Venugopal S.C., et al. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet. 2009, 5:e1000545.
    • (2009) PLoS Genet. , vol.5
    • Venugopal, S.C.1
  • 86
    • 83255188814 scopus 로고    scopus 로고
    • Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators
    • Bhattacharjee S., et al. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 2011, 334:1405-1408.
    • (2011) Science , vol.334 , pp. 1405-1408
    • Bhattacharjee, S.1
  • 87
    • 84873030001 scopus 로고    scopus 로고
    • Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis
    • Kim T-H., et al. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis. Plant Cell 2012, 24:5177-5192.
    • (2012) Plant Cell , vol.24 , pp. 5177-5192
    • Kim, T.-H.1
  • 88
    • 27944511234 scopus 로고    scopus 로고
    • Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity
    • Feys B.J., et al. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 2005, 17:2601-2613.
    • (2005) Plant Cell , vol.17 , pp. 2601-2613
    • Feys, B.J.1
  • 89
    • 84890296652 scopus 로고    scopus 로고
    • Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity
    • Wagner S., et al. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 2013, 14:619-630.
    • (2013) Cell Host Microbe , vol.14 , pp. 619-630
    • Wagner, S.1
  • 90
    • 79957891263 scopus 로고    scopus 로고
    • Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity
    • Rietz S., et al. Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol. 2011, 191:107-119.
    • (2011) New Phytol. , vol.191 , pp. 107-119
    • Rietz, S.1
  • 91
    • 58149105395 scopus 로고    scopus 로고
    • SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors
    • Kwon S.H., et al. SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. Plant J. 2009, 57:109-119.
    • (2009) Plant J. , vol.57 , pp. 109-119
    • Kwon, S.H.1
  • 92
    • 84902303113 scopus 로고    scopus 로고
    • The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity
    • Kim S.H., et al. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J. 2014, 78:978-989.
    • (2014) Plant J. , vol.78 , pp. 978-989
    • Kim, S.H.1
  • 93
    • 80053598318 scopus 로고    scopus 로고
    • Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis
    • Guo Y-L., et al. Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol. 2011, 157:757-769.
    • (2011) Plant Physiol. , vol.157 , pp. 757-769
    • Guo, Y.-L.1
  • 94
    • 84893420263 scopus 로고    scopus 로고
    • Genomic variability as a driver of plant-pathogen coevolution?
    • Karasov T.L., et al. Genomic variability as a driver of plant-pathogen coevolution?. Curr. Opin. Plant Biol. 2014, 18:24-30.
    • (2014) Curr. Opin. Plant Biol. , vol.18 , pp. 24-30
    • Karasov, T.L.1
  • 95
    • 79955371585 scopus 로고    scopus 로고
    • Defining the origins of the NOD-like receptor system at the base of animal evolution
    • Lange C., et al. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol. Biol. Evol. 2011, 28:1687-1702.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 1687-1702
    • Lange, C.1
  • 96
    • 33751549306 scopus 로고    scopus 로고
    • The immune gene repertoire encoded in the purple sea urchin genome
    • Hibino T., et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 2006, 300:349-365.
    • (2006) Dev. Biol. , vol.300 , pp. 349-365
    • Hibino, T.1
  • 97
    • 79960957705 scopus 로고    scopus 로고
    • Independently evolved virulence effectors converge onto hubs in a plant immune system network
    • Mukhtar M.S., et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 2011, 333:596-601.
    • (2011) Science , vol.333 , pp. 596-601
    • Mukhtar, M.S.1
  • 98
    • 79960505285 scopus 로고    scopus 로고
    • Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein
    • Collier S.M., et al. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant Microbe Interact. 2011, 24:918-931.
    • (2011) Mol. Plant Microbe Interact. , vol.24 , pp. 918-931
    • Collier, S.M.1
  • 99
    • 0036841365 scopus 로고    scopus 로고
    • A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes
    • Akita M., Valkonen J.P.T. A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. J. Mol. Evol. 2002, 55:595-605.
    • (2002) J. Mol. Evol. , vol.55 , pp. 595-605
    • Akita, M.1    Valkonen, J.P.T.2
  • 100
    • 0036916368 scopus 로고    scopus 로고
    • Diversity in nucleotide binding site-leucine-rich repeat genes in cereals
    • Bai J., et al. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 2002, 12:1871-1884.
    • (2002) Genome Res. , vol.12 , pp. 1871-1884
    • Bai, J.1
  • 101
    • 77955805592 scopus 로고    scopus 로고
    • A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens
    • Faris J.D., et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13544-13549.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13544-13549
    • Faris, J.D.1
  • 102
    • 0037390933 scopus 로고    scopus 로고
    • Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis
    • Meyers B.C., et al. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003, 15:809-834.
    • (2003) Plant Cell , vol.15 , pp. 809-834
    • Meyers, B.C.1
  • 103
    • 33748760611 scopus 로고    scopus 로고
    • The genome of black cottonwood Populus trichocarpa
    • Tuskan G.A., et al. The genome of black cottonwood Populus trichocarpa. Science 2006, 313:1596-1604.
    • (2006) Science , vol.313 , pp. 1596-1604
    • Tuskan, G.A.1
  • 104
    • 84866169744 scopus 로고    scopus 로고
    • A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes
    • Xue J-Y., et al. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes. PloS ONE 2012, 7:e36700.
    • (2012) PloS ONE , vol.7
    • Xue, J.-Y.1
  • 105
    • 49749103942 scopus 로고    scopus 로고
    • Recent duplications dominate NBS-encoding gene expansion in two woody species
    • Yang S., et al. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Genet. Genomics 2008, 280:187-198.
    • (2008) Mol. Genet. Genomics , vol.280 , pp. 187-198
    • Yang, S.1
  • 106
    • 75149175757 scopus 로고    scopus 로고
    • The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants
    • Chan S.L., et al. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci. 2010, 19:155-161.
    • (2010) Protein Sci. , vol.19 , pp. 155-161
    • Chan, S.L.1
  • 107
    • 84890319614 scopus 로고    scopus 로고
    • Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2)
    • Hao W., et al. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). Biol. Chem. 2013, 288:35868-35876.
    • (2013) Biol. Chem. , vol.288 , pp. 35868-35876
    • Hao, W.1
  • 108
    • 84870212902 scopus 로고    scopus 로고
    • NLRC5: a key regulator of MHC class I-dependent immune responses
    • Kobayashi K.S., et al. NLRC5: a key regulator of MHC class I-dependent immune responses. Nat. Rev. Immunol. 2012, 12:813-820.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 813-820
    • Kobayashi, K.S.1
  • 109
    • 84860457505 scopus 로고    scopus 로고
    • NLRC5: a newly discovered MHC class I transactivator (CITA)
    • Meissner T.B., et al. NLRC5: a newly discovered MHC class I transactivator (CITA). Microbs Infect. 2012, 14:477-484.
    • (2012) Microbs Infect. , vol.14 , pp. 477-484
    • Meissner, T.B.1
  • 110
    • 11844275242 scopus 로고    scopus 로고
    • Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes
    • Zika E., et al. Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes. Curr. Opin. Immunol. 2005, 17:58-64.
    • (2005) Curr. Opin. Immunol. , vol.17 , pp. 58-64
    • Zika, E.1
  • 111
    • 33745475117 scopus 로고    scopus 로고
    • Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7
    • Bartsch M., et al. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 2006, 18:1038-1051.
    • (2006) Plant Cell , vol.18 , pp. 1038-1051
    • Bartsch, M.1
  • 112
    • 84890226968 scopus 로고    scopus 로고
    • WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana
    • Ando S., et al. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 2014, 85:8-14.
    • (2014) Physiol. Mol. Plant Pathol. , vol.85 , pp. 8-14
    • Ando, S.1
  • 113
    • 84876760280 scopus 로고    scopus 로고
    • Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling
    • Chang C., et al. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 2013, 253:1158-1173.
    • (2013) Plant Cell , vol.253 , pp. 1158-1173
    • Chang, C.1
  • 114
    • 84878677238 scopus 로고    scopus 로고
    • Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction
    • Inoue H., et al. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:9577-9582.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 9577-9582
    • Inoue, H.1
  • 115
    • 84875993687 scopus 로고    scopus 로고
    • Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity
    • Padmanabhan M.S., et al. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog. 2013, 9:e1003235.
    • (2013) PLoS Pathog. , vol.9
    • Padmanabhan, M.S.1
  • 116
    • 84922272553 scopus 로고    scopus 로고
    • NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity
    • Xu F., et al. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog. 2014, 10:e1004312.
    • (2014) PLoS Pathog. , vol.10
    • Xu, F.1
  • 117
    • 77956358955 scopus 로고    scopus 로고
    • Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor
    • Zhu Z., et al. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13960-13965.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13960-13965
    • Zhu, Z.1
  • 118
    • 84900869261 scopus 로고    scopus 로고
    • Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling
    • Chang C., et al. Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling. Front. Plant Sci. 2013, 4:396.
    • (2013) Front. Plant Sci. , vol.4 , pp. 396
    • Chang, C.1
  • 119
    • 84901767766 scopus 로고    scopus 로고
    • The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling
    • Padmanabhan M.S., Dinesh-Kumar S.P. The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling. Curr. Opin. Microbiol. 2014, 20:55-61.
    • (2014) Curr. Opin. Microbiol. , vol.20 , pp. 55-61
    • Padmanabhan, M.S.1    Dinesh-Kumar, S.P.2
  • 120
    • 84987779504 scopus 로고    scopus 로고
    • Recent advances in plant NLR structure, function, localization, and signaling
    • Qi D., Innes R.W. Recent advances in plant NLR structure, function, localization, and signaling. Front. Immunol. 2013, 4:348.
    • (2013) Front. Immunol. , vol.4 , pp. 348
    • Qi, D.1    Innes, R.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.