-
1
-
-
84875422919
-
Effector-triggered versus pattern-triggered immunity: how animals sense pathogens
-
Stuart L.M., et al. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 2013, 13:199-206.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 199-206
-
-
Stuart, L.M.1
-
2
-
-
84881413993
-
Pivoting the plant immune system from dissection to deployment
-
Dangl J.L., et al. Pivoting the plant immune system from dissection to deployment. Science 2013, 341:746-751.
-
(2013)
Science
, vol.341
, pp. 746-751
-
-
Dangl, J.L.1
-
3
-
-
84903535147
-
Plant pattern-recognition receptors
-
Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014, 35:345-351.
-
(2014)
Trends Immunol.
, vol.35
, pp. 345-351
-
-
Zipfel, C.1
-
4
-
-
80051967147
-
NLR functions in plant and animal immune systems: so far and yet so close
-
Maekawa T., et al. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 2011, 12:817-826.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 817-826
-
-
Maekawa, T.1
-
5
-
-
33751100626
-
The plant immune system
-
Jones J.D.G., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
-
(2006)
Nature
, vol.444
, pp. 323-329
-
-
Jones, J.D.G.1
Dangl, J.L.2
-
6
-
-
3042537244
-
Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance
-
Eulgem T., et al. Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol. 2004, 135:1129-1144.
-
(2004)
Plant Physiol.
, vol.135
, pp. 1129-1144
-
-
Eulgem, T.1
-
7
-
-
0037324536
-
Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae
-
Tao Y. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 2003, 15:317-330.
-
(2003)
Plant Cell
, vol.15
, pp. 317-330
-
-
Tao, Y.1
-
8
-
-
0001119910
-
Current status of the gene-for-gene concept
-
Flor H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9:275-296.
-
(1971)
Annu. Rev. Phytopathol.
, vol.9
, pp. 275-296
-
-
Flor, H.H.1
-
9
-
-
33745015480
-
Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes
-
Dodds P.N., et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:8888-8893.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 8888-8893
-
-
Dodds, P.N.1
-
10
-
-
84878228493
-
The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding
-
Cesari S., et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 2013, 25:1463-1481.
-
(2013)
Plant Cell
, vol.25
, pp. 1463-1481
-
-
Cesari, S.1
-
11
-
-
0037155687
-
RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
-
Mackey D., et al. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 2002, 108:743-754.
-
(2002)
Cell
, vol.108
, pp. 743-754
-
-
Mackey, D.1
-
12
-
-
0037423390
-
Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4
-
Axtell M.J., Staskawicz B.J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 2003, 112:369-377.
-
(2003)
Cell
, vol.112
, pp. 369-377
-
-
Axtell, M.J.1
Staskawicz, B.J.2
-
13
-
-
75749110990
-
Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition
-
Gutierrez J.R., et al. Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition. Plant J. 2010, 61:507-518.
-
(2010)
Plant J.
, vol.61
, pp. 507-518
-
-
Gutierrez, J.R.1
-
14
-
-
84875079085
-
The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation
-
Ntoukakis V., et al. The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation. PLoS Pathog. 2013, 9:e1003123.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Ntoukakis, V.1
-
15
-
-
38849106202
-
Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector
-
Caplan J.L., et al. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 2008, 132:449-462.
-
(2008)
Cell
, vol.132
, pp. 449-462
-
-
Caplan, J.L.1
-
16
-
-
77954763024
-
Plant immunity: towards an integrated view of plant-pathogen interactions
-
Dodds P.N., Rathjen J.P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11:539-548.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 539-548
-
-
Dodds, P.N.1
Rathjen, J.P.2
-
18
-
-
59649103157
-
Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins
-
Danot O., et al. Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 2009, 17:172-182.
-
(2009)
Structure
, vol.17
, pp. 172-182
-
-
Danot, O.1
-
19
-
-
84864511877
-
How to build a pathogen detector: structural basis of NB-LRR function
-
Takken F.L.W., Goverse A. How to build a pathogen detector: structural basis of NB-LRR function. Curr. Opin. Plant Biol. 2012, 15:375-384.
-
(2012)
Curr. Opin. Plant Biol.
, vol.15
, pp. 375-384
-
-
Takken, F.L.W.1
Goverse, A.2
-
20
-
-
33746989767
-
Resistance proteins: molecular switches of plant defence
-
Takken F.L., et al. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 2006, 9:383-390.
-
(2006)
Curr. Opin. Plant Biol.
, vol.9
, pp. 383-390
-
-
Takken, F.L.1
-
21
-
-
44349171085
-
The Nod-like receptor (NLR) family: a tale of similarities and differences
-
Proell M., et al. The Nod-like receptor (NLR) family: a tale of similarities and differences. PloS ONE 2008, 3:e2119.
-
(2008)
PloS ONE
, vol.3
-
-
Proell, M.1
-
22
-
-
28444488986
-
Update on the domain architectures of NLRs and R proteins
-
Albrecht M., Takken F.L.W. Update on the domain architectures of NLRs and R proteins. Biochem. Biophys. Res. Commun. 2006, 339:459-462.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.339
, pp. 459-462
-
-
Albrecht, M.1
Takken, F.L.W.2
-
23
-
-
0036775380
-
Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato
-
Bendahmane A., et al. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J. 2002, 32:195-204.
-
(2002)
Plant J.
, vol.32
, pp. 195-204
-
-
Bendahmane, A.1
-
24
-
-
0037009437
-
Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death
-
Moffett P., et al. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 2002, 21:4511-4519.
-
(2002)
EMBO J.
, vol.21
, pp. 4511-4519
-
-
Moffett, P.1
-
25
-
-
84875542536
-
Recognition of bacteria by inflammasomes
-
Moltke J., Von, et al. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 2013, 31:73-106.
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 73-106
-
-
Moltke, J.1
Von2
-
26
-
-
80053379974
-
Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
-
Kofoed E.M., Vance R.E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011, 477:592-595.
-
(2011)
Nature
, vol.477
, pp. 592-595
-
-
Kofoed, E.M.1
Vance, R.E.2
-
27
-
-
80053349020
-
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
-
Zhao Y., et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011, 477:596-600.
-
(2011)
Nature
, vol.477
, pp. 596-600
-
-
Zhao, Y.1
-
28
-
-
52549099416
-
Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin
-
Lightfield K.L., et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol. 2008, 9:1171-1178.
-
(2008)
Nat. Immunol.
, vol.9
, pp. 1171-1178
-
-
Lightfield, K.L.1
-
29
-
-
79953315378
-
Differential requirements for NAIP5 in activation of the NLRC4 inflammasome
-
Lightfield K.L., et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect. Immun. 2011, 79:1606-1614.
-
(2011)
Infect. Immun.
, vol.79
, pp. 1606-1614
-
-
Lightfield, K.L.1
-
30
-
-
84869044838
-
Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin
-
Halff E.F., et al. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. Biol. Chem. 2012, 287:38460-38472.
-
(2012)
Biol. Chem.
, vol.287
, pp. 38460-38472
-
-
Halff, E.F.1
-
31
-
-
84898031590
-
Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes
-
Tenthorey J.L., et al. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol. Cell 2014, 54:17-29.
-
(2014)
Mol. Cell
, vol.54
, pp. 17-29
-
-
Tenthorey, J.L.1
-
32
-
-
84880280093
-
Crystal structure of NLRC4 reveals its autoinhibition mechanism
-
Hu Z., et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 2013, 341:172-175.
-
(2013)
Science
, vol.341
, pp. 172-175
-
-
Hu, Z.1
-
33
-
-
84901008921
-
Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex
-
Man S.M., et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:7403-7408.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 7403-7408
-
-
Man, S.M.1
-
34
-
-
45549093755
-
A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide
-
Hsu L-C., et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7803-7808.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7803-7808
-
-
Hsu, L.-C.1
-
35
-
-
84858688293
-
Regulation of inflammasome signaling
-
Rathinam V.A.K., et al. Regulation of inflammasome signaling. Nat. Immunol. 2012, 13:333-342.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 333-342
-
-
Rathinam, V.A.K.1
-
36
-
-
80053620786
-
Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
-
Bonardi V., et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16463-16468.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16463-16468
-
-
Bonardi, V.1
-
37
-
-
77955091927
-
NB-LRR proteins: pairs, pieces, perception, partners, and pathways
-
Eitas T.K., Dangl J.L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 2010, 13:472-477.
-
(2010)
Curr. Opin. Plant Biol.
, vol.13
, pp. 472-477
-
-
Eitas, T.K.1
Dangl, J.L.2
-
38
-
-
84881610714
-
Early signaling network in rice PRR-mediated and R-mediated immunity
-
Kawano Y., Shimamoto K. Early signaling network in rice PRR-mediated and R-mediated immunity. Curr. Opin. Plant Biol. 2013, 16:496-504.
-
(2013)
Curr. Opin. Plant Biol.
, vol.16
, pp. 496-504
-
-
Kawano, Y.1
Shimamoto, K.2
-
39
-
-
2942708099
-
Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis
-
Sinapidou E., et al. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 2004, 38:898-909.
-
(2004)
Plant J.
, vol.38
, pp. 898-909
-
-
Sinapidou, E.1
-
40
-
-
61849179574
-
Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance
-
Ashikawa I., et al. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 2008, 180:2267-2276.
-
(2008)
Genetics
, vol.180
, pp. 2267-2276
-
-
Ashikawa, I.1
-
41
-
-
84871961578
-
Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions
-
Kanzaki H., et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 2012, 72:894-907.
-
(2012)
Plant J.
, vol.72
, pp. 894-907
-
-
Kanzaki, H.1
-
42
-
-
78649745552
-
The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication
-
Zhai C., et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 2011, 189:321-334.
-
(2011)
New Phytol.
, vol.189
, pp. 321-334
-
-
Zhai, C.1
-
43
-
-
84902492789
-
Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance
-
Zhai C., et al. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PloS ONE 2014, 9:e98067.
-
(2014)
PloS ONE
, vol.9
-
-
Zhai, C.1
-
44
-
-
67650302503
-
Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes
-
Lee S-K., et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 2009, 181:1627-1638.
-
(2009)
Genetics
, vol.181
, pp. 1627-1638
-
-
Lee, S.-K.1
-
45
-
-
79955402863
-
A multifaceted genomics approach allows the isolationof the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes
-
Okuyama Y., et al. A multifaceted genomics approach allows the isolationof the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 2011, 66:467-479.
-
(2011)
Plant J.
, vol.66
, pp. 467-479
-
-
Okuyama, Y.1
-
46
-
-
72449183266
-
A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions
-
Birker D., et al. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J. 2009, 60:602-613.
-
(2009)
Plant J.
, vol.60
, pp. 602-613
-
-
Birker, D.1
-
47
-
-
70349881464
-
RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens
-
Narusaka M., et al. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J. 2009, 60:218-226.
-
(2009)
Plant J.
, vol.60
, pp. 218-226
-
-
Narusaka, M.1
-
48
-
-
77953286060
-
WRKY transcription factors
-
Rushton P.J., et al. WRKY transcription factors. Trends Plant Sci. 2010, 15:247-258.
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 247-258
-
-
Rushton, P.J.1
-
49
-
-
44049099252
-
Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB
-
Eitas T.K., et al. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:6475-6480.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 6475-6480
-
-
Eitas, T.K.1
-
50
-
-
33745455354
-
Elicitor-mediated oligomerization of the tobacco N disease resistance protein
-
Mestre P., Baulcombe D.C. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 2006, 18:491-501.
-
(2006)
Plant Cell
, vol.18
, pp. 491-501
-
-
Mestre, P.1
Baulcombe, D.C.2
-
51
-
-
84901054331
-
The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition
-
Ntoukakis V., et al. The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr. Opin. Plant Biol. 2014, 20:69-74.
-
(2014)
Curr. Opin. Plant Biol.
, vol.20
, pp. 69-74
-
-
Ntoukakis, V.1
-
52
-
-
33847769886
-
Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease
-
Ade J., et al. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:2531-2536.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 2531-2536
-
-
Ade, J.1
-
53
-
-
79952642803
-
Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death
-
Maekawa T., et al. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 2011, 9:187-199.
-
(2011)
Cell Host Microbe
, vol.9
, pp. 187-199
-
-
Maekawa, T.1
-
54
-
-
79952643473
-
Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation
-
Bernoux M., et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 2011, 9:200-211.
-
(2011)
Cell Host Microbe
, vol.9
, pp. 200-211
-
-
Bernoux, M.1
-
55
-
-
1642311105
-
Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses
-
Frost D., et al. Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses. Mol. Plant Microbe Interact. 2004, 17:224-232.
-
(2004)
Mol. Plant Microbe Interact.
, vol.17
, pp. 224-232
-
-
Frost, D.1
-
56
-
-
59749083228
-
The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction
-
Swiderski M.R., et al. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol. Plant Microbe Interact. 2009, 22:157-165.
-
(2009)
Mol. Plant Microbe Interact.
, vol.22
, pp. 157-165
-
-
Swiderski, M.R.1
-
57
-
-
33748304125
-
The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis
-
Weaver M.L., et al. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant J. 2006, 47:829-840.
-
(2006)
Plant J.
, vol.47
, pp. 829-840
-
-
Weaver, M.L.1
-
58
-
-
77956823972
-
Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
-
Krasileva K.V., et al. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 2010, 22:2444-2458.
-
(2010)
Plant Cell
, vol.22
, pp. 2444-2458
-
-
Krasileva, K.V.1
-
59
-
-
48249140729
-
The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling
-
Rairdan G.J., et al. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 2008, 20:739-751.
-
(2008)
Plant Cell
, vol.20
, pp. 739-751
-
-
Rairdan, G.J.1
-
60
-
-
0033133572
-
The Rx gene from potato controls separate virus resistance and cell death responses
-
Bendahmane A., et al. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 1999, 11:781-792.
-
(1999)
Plant Cell
, vol.11
, pp. 781-792
-
-
Bendahmane, A.1
-
61
-
-
78649707971
-
Arabidopsis type I metacaspases control cell death
-
Coll N.S., et al. Arabidopsis type I metacaspases control cell death. Science 2010, 330:1393-1397.
-
(2010)
Science
, vol.330
, pp. 1393-1397
-
-
Coll, N.S.1
-
62
-
-
83255164814
-
Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses
-
Heidrich K., et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 2011, 334:1401-1404.
-
(2011)
Science
, vol.334
, pp. 1401-1404
-
-
Heidrich, K.1
-
63
-
-
84864051288
-
Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance
-
Bai S., et al. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog. 2012, 8:e1002752.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Bai, S.1
-
64
-
-
84907018144
-
Powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3
-
Hurni S., et al. Powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014, 79:904-913.
-
(2014)
Plant J.
, vol.79
, pp. 904-913
-
-
Hurni, S.1
-
65
-
-
84907018223
-
Suppression among alleles encoding NB-LRR resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants
-
Stirnweis D., et al. Suppression among alleles encoding NB-LRR resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants. Plant J. 2014, 79:893-903.
-
(2014)
Plant J.
, vol.79
, pp. 893-903
-
-
Stirnweis, D.1
-
66
-
-
84899491083
-
Structural basis for assembly and function of a heterodimeric plant immune receptor
-
Williams S.J., et al. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 2014, 344:299-303.
-
(2014)
Science
, vol.344
, pp. 299-303
-
-
Williams, S.J.1
-
67
-
-
36548999830
-
Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense
-
Wirthmueller L., et al. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr. Biol. 2007, 17:2023-2029.
-
(2007)
Curr. Biol.
, vol.17
, pp. 2023-2029
-
-
Wirthmueller, L.1
-
68
-
-
79251517062
-
Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis
-
Tasset C., et al. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog. 2010, 6:e1001202.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Tasset, C.1
-
69
-
-
84867063299
-
Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity
-
Sohn K.H., et al. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:16371-16376.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 16371-16376
-
-
Sohn, K.H.1
-
70
-
-
32944465711
-
A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death
-
Noutoshi Y., et al. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J. 2005, 43:873-888.
-
(2005)
Plant J.
, vol.43
, pp. 873-888
-
-
Noutoshi, Y.1
-
71
-
-
84900801866
-
Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity
-
Heidrich K., et al. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Front. Plant Sci. 2013, 4:403.
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 403
-
-
Heidrich, K.1
-
72
-
-
84906831049
-
The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance
-
Cesari S., et al. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J. 2014, 33:1941-1959.
-
(2014)
EMBO J.
, vol.33
, pp. 1941-1959
-
-
Cesari, S.1
-
74
-
-
70350356853
-
Activating immunity: lessons from the TLRs and NLRs
-
Monie T.P., et al. Activating immunity: lessons from the TLRs and NLRs. Trends Biochem. Sci. 2009, 34:553-561.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 553-561
-
-
Monie, T.P.1
-
75
-
-
69949088965
-
Innate immune sensing and activation of cell surface Toll-like receptors
-
Tapping R.I. Innate immune sensing and activation of cell surface Toll-like receptors. Semin. Immunol. 2009, 21:175-184.
-
(2009)
Semin. Immunol.
, vol.21
, pp. 175-184
-
-
Tapping, R.I.1
-
76
-
-
33947711794
-
An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins
-
Gabriëls S.H.E.J., et al. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant J. 2007, 50:14-28.
-
(2007)
Plant J.
, vol.50
, pp. 14-28
-
-
Gabriëls, S.H.E.J.1
-
77
-
-
84886020336
-
Evolution and conservation of plant NLR functions
-
Jacob F., et al. Evolution and conservation of plant NLR functions. Front. Immunol. 2013, 4:297.
-
(2013)
Front. Immunol.
, vol.4
, pp. 297
-
-
Jacob, F.1
-
78
-
-
84882451417
-
A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature
-
Zbierzak A.M., et al. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. Plant J. 2013, 75:539-552.
-
(2013)
Plant J.
, vol.75
, pp. 539-552
-
-
Zbierzak, A.M.1
-
79
-
-
84882449416
-
A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis
-
Wang Y., et al. A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. Plant J. 2013, 75:553-565.
-
(2013)
Plant J.
, vol.75
, pp. 553-565
-
-
Wang, Y.1
-
80
-
-
51149088377
-
Alternative splicing in plant defense
-
Gassmann W. Alternative splicing in plant defense. Curr. Top. Microbiol. Immunol. 2008, 326:219-233.
-
(2008)
Curr. Top. Microbiol. Immunol.
, vol.326
, pp. 219-233
-
-
Gassmann, W.1
-
81
-
-
79961178040
-
The role of NDR1 in pathogen perception and plant defense signaling
-
Knepper C., et al. The role of NDR1 in pathogen perception and plant defense signaling. Plant Signal. Behav. 2011, 6:1114-1116.
-
(2011)
Plant Signal. Behav.
, vol.6
, pp. 1114-1116
-
-
Knepper, C.1
-
82
-
-
33751005592
-
NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis
-
Day B., et al. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 2006, 18:2782-2791.
-
(2006)
Plant Cell
, vol.18
, pp. 2782-2791
-
-
Day, B.1
-
83
-
-
20444502968
-
Plant immunity: the EDS1 regulatory node
-
Wiermer M., et al. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 2005, 8:383-389.
-
(2005)
Curr. Opin. Plant Biol.
, vol.8
, pp. 383-389
-
-
Wiermer, M.1
-
84
-
-
77957662380
-
Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response
-
García A.V., et al. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog. 2010, 6:e1000970.
-
(2010)
PLoS Pathog.
, vol.6
-
-
García, A.V.1
-
85
-
-
68249095359
-
Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling
-
Venugopal S.C., et al. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet. 2009, 5:e1000545.
-
(2009)
PLoS Genet.
, vol.5
-
-
Venugopal, S.C.1
-
86
-
-
83255188814
-
Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators
-
Bhattacharjee S., et al. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 2011, 334:1405-1408.
-
(2011)
Science
, vol.334
, pp. 1405-1408
-
-
Bhattacharjee, S.1
-
87
-
-
84873030001
-
Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis
-
Kim T-H., et al. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis. Plant Cell 2012, 24:5177-5192.
-
(2012)
Plant Cell
, vol.24
, pp. 5177-5192
-
-
Kim, T.-H.1
-
88
-
-
27944511234
-
Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity
-
Feys B.J., et al. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 2005, 17:2601-2613.
-
(2005)
Plant Cell
, vol.17
, pp. 2601-2613
-
-
Feys, B.J.1
-
89
-
-
84890296652
-
Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity
-
Wagner S., et al. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 2013, 14:619-630.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 619-630
-
-
Wagner, S.1
-
90
-
-
79957891263
-
Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity
-
Rietz S., et al. Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol. 2011, 191:107-119.
-
(2011)
New Phytol.
, vol.191
, pp. 107-119
-
-
Rietz, S.1
-
91
-
-
58149105395
-
SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors
-
Kwon S.H., et al. SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. Plant J. 2009, 57:109-119.
-
(2009)
Plant J.
, vol.57
, pp. 109-119
-
-
Kwon, S.H.1
-
92
-
-
84902303113
-
The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity
-
Kim S.H., et al. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J. 2014, 78:978-989.
-
(2014)
Plant J.
, vol.78
, pp. 978-989
-
-
Kim, S.H.1
-
93
-
-
80053598318
-
Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis
-
Guo Y-L., et al. Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol. 2011, 157:757-769.
-
(2011)
Plant Physiol.
, vol.157
, pp. 757-769
-
-
Guo, Y.-L.1
-
94
-
-
84893420263
-
Genomic variability as a driver of plant-pathogen coevolution?
-
Karasov T.L., et al. Genomic variability as a driver of plant-pathogen coevolution?. Curr. Opin. Plant Biol. 2014, 18:24-30.
-
(2014)
Curr. Opin. Plant Biol.
, vol.18
, pp. 24-30
-
-
Karasov, T.L.1
-
95
-
-
79955371585
-
Defining the origins of the NOD-like receptor system at the base of animal evolution
-
Lange C., et al. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol. Biol. Evol. 2011, 28:1687-1702.
-
(2011)
Mol. Biol. Evol.
, vol.28
, pp. 1687-1702
-
-
Lange, C.1
-
96
-
-
33751549306
-
The immune gene repertoire encoded in the purple sea urchin genome
-
Hibino T., et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 2006, 300:349-365.
-
(2006)
Dev. Biol.
, vol.300
, pp. 349-365
-
-
Hibino, T.1
-
97
-
-
79960957705
-
Independently evolved virulence effectors converge onto hubs in a plant immune system network
-
Mukhtar M.S., et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 2011, 333:596-601.
-
(2011)
Science
, vol.333
, pp. 596-601
-
-
Mukhtar, M.S.1
-
98
-
-
79960505285
-
Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein
-
Collier S.M., et al. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant Microbe Interact. 2011, 24:918-931.
-
(2011)
Mol. Plant Microbe Interact.
, vol.24
, pp. 918-931
-
-
Collier, S.M.1
-
99
-
-
0036841365
-
A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes
-
Akita M., Valkonen J.P.T. A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. J. Mol. Evol. 2002, 55:595-605.
-
(2002)
J. Mol. Evol.
, vol.55
, pp. 595-605
-
-
Akita, M.1
Valkonen, J.P.T.2
-
100
-
-
0036916368
-
Diversity in nucleotide binding site-leucine-rich repeat genes in cereals
-
Bai J., et al. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 2002, 12:1871-1884.
-
(2002)
Genome Res.
, vol.12
, pp. 1871-1884
-
-
Bai, J.1
-
101
-
-
77955805592
-
A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens
-
Faris J.D., et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13544-13549.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 13544-13549
-
-
Faris, J.D.1
-
102
-
-
0037390933
-
Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis
-
Meyers B.C., et al. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003, 15:809-834.
-
(2003)
Plant Cell
, vol.15
, pp. 809-834
-
-
Meyers, B.C.1
-
103
-
-
33748760611
-
The genome of black cottonwood Populus trichocarpa
-
Tuskan G.A., et al. The genome of black cottonwood Populus trichocarpa. Science 2006, 313:1596-1604.
-
(2006)
Science
, vol.313
, pp. 1596-1604
-
-
Tuskan, G.A.1
-
104
-
-
84866169744
-
A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes
-
Xue J-Y., et al. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes. PloS ONE 2012, 7:e36700.
-
(2012)
PloS ONE
, vol.7
-
-
Xue, J.-Y.1
-
105
-
-
49749103942
-
Recent duplications dominate NBS-encoding gene expansion in two woody species
-
Yang S., et al. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Genet. Genomics 2008, 280:187-198.
-
(2008)
Mol. Genet. Genomics
, vol.280
, pp. 187-198
-
-
Yang, S.1
-
106
-
-
75149175757
-
The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants
-
Chan S.L., et al. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci. 2010, 19:155-161.
-
(2010)
Protein Sci.
, vol.19
, pp. 155-161
-
-
Chan, S.L.1
-
107
-
-
84890319614
-
Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2)
-
Hao W., et al. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). Biol. Chem. 2013, 288:35868-35876.
-
(2013)
Biol. Chem.
, vol.288
, pp. 35868-35876
-
-
Hao, W.1
-
108
-
-
84870212902
-
NLRC5: a key regulator of MHC class I-dependent immune responses
-
Kobayashi K.S., et al. NLRC5: a key regulator of MHC class I-dependent immune responses. Nat. Rev. Immunol. 2012, 12:813-820.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 813-820
-
-
Kobayashi, K.S.1
-
109
-
-
84860457505
-
NLRC5: a newly discovered MHC class I transactivator (CITA)
-
Meissner T.B., et al. NLRC5: a newly discovered MHC class I transactivator (CITA). Microbs Infect. 2012, 14:477-484.
-
(2012)
Microbs Infect.
, vol.14
, pp. 477-484
-
-
Meissner, T.B.1
-
110
-
-
11844275242
-
Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes
-
Zika E., et al. Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes. Curr. Opin. Immunol. 2005, 17:58-64.
-
(2005)
Curr. Opin. Immunol.
, vol.17
, pp. 58-64
-
-
Zika, E.1
-
111
-
-
33745475117
-
Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7
-
Bartsch M., et al. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 2006, 18:1038-1051.
-
(2006)
Plant Cell
, vol.18
, pp. 1038-1051
-
-
Bartsch, M.1
-
112
-
-
84890226968
-
WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana
-
Ando S., et al. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 2014, 85:8-14.
-
(2014)
Physiol. Mol. Plant Pathol.
, vol.85
, pp. 8-14
-
-
Ando, S.1
-
113
-
-
84876760280
-
Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling
-
Chang C., et al. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 2013, 253:1158-1173.
-
(2013)
Plant Cell
, vol.253
, pp. 1158-1173
-
-
Chang, C.1
-
114
-
-
84878677238
-
Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction
-
Inoue H., et al. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:9577-9582.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 9577-9582
-
-
Inoue, H.1
-
115
-
-
84875993687
-
Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity
-
Padmanabhan M.S., et al. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog. 2013, 9:e1003235.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Padmanabhan, M.S.1
-
116
-
-
84922272553
-
NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity
-
Xu F., et al. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog. 2014, 10:e1004312.
-
(2014)
PLoS Pathog.
, vol.10
-
-
Xu, F.1
-
117
-
-
77956358955
-
Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor
-
Zhu Z., et al. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13960-13965.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 13960-13965
-
-
Zhu, Z.1
-
118
-
-
84900869261
-
Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling
-
Chang C., et al. Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling. Front. Plant Sci. 2013, 4:396.
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 396
-
-
Chang, C.1
-
119
-
-
84901767766
-
The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling
-
Padmanabhan M.S., Dinesh-Kumar S.P. The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling. Curr. Opin. Microbiol. 2014, 20:55-61.
-
(2014)
Curr. Opin. Microbiol.
, vol.20
, pp. 55-61
-
-
Padmanabhan, M.S.1
Dinesh-Kumar, S.P.2
-
120
-
-
84987779504
-
Recent advances in plant NLR structure, function, localization, and signaling
-
Qi D., Innes R.W. Recent advances in plant NLR structure, function, localization, and signaling. Front. Immunol. 2013, 4:348.
-
(2013)
Front. Immunol.
, vol.4
, pp. 348
-
-
Qi, D.1
Innes, R.W.2
|