메뉴 건너뛰기




Volumn 36, Issue 1, 2015, Pages 21-29

Intersection of mTOR and STAT signaling in immunity

Author keywords

Immunity; MTOR; Signaling; STAT

Indexed keywords

INTERFERON RECEPTOR; MAMMALIAN TARGET OF RAPAMYCIN; STAT PROTEIN; ALPHA BETA INTERFERON RECEPTOR; MULTIPROTEIN COMPLEX; PROTEIN BINDING; TARGET OF RAPAMYCIN KINASE; TOR COMPLEX 2;

EID: 84919873454     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.10.006     Document Type: Review
Times cited : (116)

References (84)
  • 1
    • 84891526383 scopus 로고    scopus 로고
    • Modulation of TSC-mTOR signaling on immune cells in immunity and autoimmunity
    • Yang H., et al. Modulation of TSC-mTOR signaling on immune cells in immunity and autoimmunity. J. Cell. Physiol. 2014, 229:17-26.
    • (2014) J. Cell. Physiol. , vol.229 , pp. 17-26
    • Yang, H.1
  • 2
    • 84878232331 scopus 로고    scopus 로고
    • JAK/STAT signaling in hematological malignancies
    • Vainchenker W., Constantinescu S.N. JAK/STAT signaling in hematological malignancies. Oncogene 2013, 32:2601-2613.
    • (2013) Oncogene , vol.32 , pp. 2601-2613
    • Vainchenker, W.1    Constantinescu, S.N.2
  • 3
    • 84859388578 scopus 로고    scopus 로고
    • Regulation of immune responses by mTOR
    • Powell J.D., et al. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012, 30:39-68.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 39-68
    • Powell, J.D.1
  • 4
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 5
    • 84883146054 scopus 로고    scopus 로고
    • The evolution of the TOR pathway and its role in cancer
    • Beauchamp E.M., Platanias L.C. The evolution of the TOR pathway and its role in cancer. Oncogene 2013, 32:3923-3932.
    • (2013) Oncogene , vol.32 , pp. 3923-3932
    • Beauchamp, E.M.1    Platanias, L.C.2
  • 6
    • 84874271196 scopus 로고    scopus 로고
    • MTOR, linking metabolism and immunity
    • Xu X., et al. mTOR, linking metabolism and immunity. Semin. Immunol. 2012, 24:429-435.
    • (2012) Semin. Immunol. , vol.24 , pp. 429-435
    • Xu, X.1
  • 7
    • 84890093365 scopus 로고    scopus 로고
    • Tuning mTOR activity for immune balance
    • Yang K., Chi H. Tuning mTOR activity for immune balance. J. Clin. Invest. 2013, 123:5001-5004.
    • (2013) J. Clin. Invest. , vol.123 , pp. 5001-5004
    • Yang, K.1    Chi, H.2
  • 8
    • 80155142474 scopus 로고    scopus 로고
    • Rapamycin passes the torch: a new generation of mTOR inhibitors
    • Benjamin D., et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10:868-880.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 868-880
    • Benjamin, D.1
  • 9
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen C.C., et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 2009, 284:8023-8032.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1
  • 10
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • Feldman M.E., et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009, 7:e38.
    • (2009) PLoS Biol. , vol.7 , pp. e38
    • Feldman, M.E.1
  • 11
    • 84878246918 scopus 로고    scopus 로고
    • Next generation of mammalian target of rapamycin inhibitors for the treatment of cancer
    • Nelson V., et al. Next generation of mammalian target of rapamycin inhibitors for the treatment of cancer. Expert Opin. Investig. Drugs 2013, 22:715-722.
    • (2013) Expert Opin. Investig. Drugs , vol.22 , pp. 715-722
    • Nelson, V.1
  • 12
    • 79960289322 scopus 로고    scopus 로고
    • Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors
    • Altman J., et al. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin. Cancer Res. 2011, 17:4378-4388.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 4378-4388
    • Altman, J.1
  • 13
    • 77955443001 scopus 로고    scopus 로고
    • Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells
    • Carayol N., et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12469-12474.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12469-12474
    • Carayol, N.1
  • 14
    • 76349104427 scopus 로고    scopus 로고
    • Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor
    • Janes M.R., et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat. Med. 2010, 16:205-213.
    • (2010) Nat. Med. , vol.16 , pp. 205-213
    • Janes, M.R.1
  • 15
    • 84872065897 scopus 로고    scopus 로고
    • JAKs and STATs in immunity, immunodeficiency, and cancer
    • O'Shea J.J., et al. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 2013, 368:161-170.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 161-170
    • O'Shea, J.J.1
  • 16
    • 84859972127 scopus 로고    scopus 로고
    • JAK and STAT signaling molecules in immunoregulation and immune-mediated disease
    • O'Shea J.J., Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012, 36:542-550.
    • (2012) Immunity , vol.36 , pp. 542-550
    • O'Shea, J.J.1    Plenge, R.2
  • 17
    • 84859992161 scopus 로고    scopus 로고
    • The JAK-STAT pathway at twenty
    • Stark G.R., Darnell J.E. The JAK-STAT pathway at twenty. Immunity 2012, 36:503-514.
    • (2012) Immunity , vol.36 , pp. 503-514
    • Stark, G.R.1    Darnell, J.E.2
  • 18
    • 84896752363 scopus 로고    scopus 로고
    • Critical roles for Rictor/Sin1 complexes in IFN-dependent gene transcription and generation of antiproliferative responses
    • Kaur S., et al. Critical roles for Rictor/Sin1 complexes in IFN-dependent gene transcription and generation of antiproliferative responses. J. Biol. Chem. 2014, 289:6581-6591.
    • (2014) J. Biol. Chem. , vol.289 , pp. 6581-6591
    • Kaur, S.1
  • 19
    • 74649085700 scopus 로고    scopus 로고
    • + T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • + T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010, 32:67-78.
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1
  • 20
    • 78049268109 scopus 로고    scopus 로고
    • Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival
    • Hand T.W., et al. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16601-16606.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 16601-16606
    • Hand, T.W.1
  • 21
    • 84862747046 scopus 로고    scopus 로고
    • JAK-STAT and JAK-PI3K-mTORC1 pathways regulate telomerase transcriptionally and posttranslationally in ATL cells
    • Yamada O., et al. JAK-STAT and JAK-PI3K-mTORC1 pathways regulate telomerase transcriptionally and posttranslationally in ATL cells. Mol. Cancer Ther. 2012, 11:1112-1121.
    • (2012) Mol. Cancer Ther. , vol.11 , pp. 1112-1121
    • Yamada, O.1
  • 22
    • 67650074206 scopus 로고    scopus 로고
    • MTOR regulates memory CD8 T-cell differentiation
    • Araki K., et al. mTOR regulates memory CD8 T-cell differentiation. Nature 2009, 460:108-112.
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1
  • 23
    • 84860237060 scopus 로고    scopus 로고
    • Regulation and function of mTOR signaling in T cell fate decisions
    • Chi H. Regulation and function of mTOR signaling in T cell fate decisions. Nat. Rev. Immunol. 2012, 12:325-338.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 325-338
    • Chi, H.1
  • 24
    • 79953134246 scopus 로고    scopus 로고
    • + T helper cell differentiation
    • + T helper cell differentiation. Nat. Rev. Immunol. 2011, 11:239-250.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 239-250
    • O'Shea, J.J.1
  • 25
    • 82055208627 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Immunity 2011, 35:792-805.
    • (2011) Immunity , vol.35 , pp. 792-805
    • Cui, W.1
  • 26
    • 82055163110 scopus 로고    scopus 로고
    • A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory
    • Siegel A.M., et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 2011, 35:806-818.
    • (2011) Immunity , vol.35 , pp. 806-818
    • Siegel, A.M.1
  • 27
    • 84870027825 scopus 로고    scopus 로고
    • STATs shape the active enhancer landscape of T cell populations
    • Vahedi G., et al. STATs shape the active enhancer landscape of T cell populations. Cell 2012, 151:981-993.
    • (2012) Cell , vol.151 , pp. 981-993
    • Vahedi, G.1
  • 28
    • 72949100401 scopus 로고    scopus 로고
    • Naive T cell homeostasis: from awareness of space to a sense of place
    • Takada K., Jameson S.C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 2009, 9:823-832.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 823-832
    • Takada, K.1    Jameson, S.C.2
  • 29
    • 79954623272 scopus 로고    scopus 로고
    • + T cell memory and tumor immunity
    • + T cell memory and tumor immunity. Immunity 2011, 34:541-553.
    • (2011) Immunity , vol.34 , pp. 541-553
    • Li, Q.1
  • 30
    • 0037218561 scopus 로고    scopus 로고
    • + T cell homeostasis
    • + T cell homeostasis. J. Immunol. 2003, 170:210-217.
    • (2003) J. Immunol. , vol.170 , pp. 210-217
    • Kelly, J.1
  • 31
    • 77956909055 scopus 로고    scopus 로고
    • + T cell responses
    • + T cell responses. J. Immunol. 2010, 185:2116-2124.
    • (2010) J. Immunol. , vol.185 , pp. 2116-2124
    • Tripathi, P.1
  • 32
    • 70349598789 scopus 로고    scopus 로고
    • Intrinsic and extrinsic control of effector T cell survival and memory T cell development
    • Hand T.W., Kaech S.M. Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Immunol. Res. 2009, 45:46-61.
    • (2009) Immunol. Res. , vol.45 , pp. 46-61
    • Hand, T.W.1    Kaech, S.M.2
  • 33
    • 38449103091 scopus 로고    scopus 로고
    • + T cells in humans via recovering the phosphatidylinositol 3-kinase/AKT pathway
    • + T cells in humans via recovering the phosphatidylinositol 3-kinase/AKT pathway. J. Immunol. 2007, 179:6734-6740.
    • (2007) J. Immunol. , vol.179 , pp. 6734-6740
    • Kim, H.R.1
  • 34
    • 33846410668 scopus 로고    scopus 로고
    • + central memory T cells
    • + central memory T cells. J. Exp. Med. 2007, 204:79-91.
    • (2007) J. Exp. Med. , vol.204 , pp. 79-91
    • Riou, C.1
  • 35
    • 69249238113 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Blood 2009, 113:6619-6628.
    • (2009) Blood , vol.113 , pp. 6619-6628
    • Henson, S.M.1
  • 36
    • 41349093966 scopus 로고    scopus 로고
    • IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival
    • Wofford J.A., et al. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 2008, 111:2101-2111.
    • (2008) Blood , vol.111 , pp. 2101-2111
    • Wofford, J.A.1
  • 37
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe G.M., et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009, 30:832-844.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1
  • 38
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe G.M., et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 2011, 12:295-303.
    • (2011) Nat. Immunol. , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 39
    • 84881218296 scopus 로고    scopus 로고
    • Suppression of cytokine signaling: the SOCS perspective
    • Linossi E.M., et al. Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev. 2013, 24:241-248.
    • (2013) Cytokine Growth Factor Rev. , vol.24 , pp. 241-248
    • Linossi, E.M.1
  • 40
    • 34249660614 scopus 로고    scopus 로고
    • SOCS proteins, cytokine signalling and immune regulation
    • Yoshimura A., et al. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 2007, 7:454-465.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 454-465
    • Yoshimura, A.1
  • 41
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K., et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010, 32:743-753.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 42
    • 77957054466 scopus 로고    scopus 로고
    • The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
    • Powell J.D., Delgoffe G.M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010, 33:301-311.
    • (2010) Immunity , vol.33 , pp. 301-311
    • Powell, J.D.1    Delgoffe, G.M.2
  • 43
    • 84890040690 scopus 로고    scopus 로고
    • TSC1 regulates the balance between effector and regulatory T cells
    • Park Y., et al. TSC1 regulates the balance between effector and regulatory T cells. J. Clin. Invest. 2013, 123:5165-5178.
    • (2013) J. Clin. Invest. , vol.123 , pp. 5165-5178
    • Park, Y.1
  • 45
    • 84885101700 scopus 로고    scopus 로고
    • + regulatory T-cell development in mice
    • + regulatory T-cell development in mice. FASEB J. 2013, 27:3979-3990.
    • (2013) FASEB J. , vol.27 , pp. 3979-3990
    • Chen, H.1
  • 46
    • 0033037268 scopus 로고    scopus 로고
    • SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation
    • Cohney S.J., et al. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol. Cell. Biol. 1999, 19:4980-4988.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4980-4988
    • Cohney, S.J.1
  • 47
    • 76249095169 scopus 로고    scopus 로고
    • Development of monocytes, macrophages, and dendritic cells
    • Geissmann F., et al. Development of monocytes, macrophages, and dendritic cells. Science 2010, 327:656-661.
    • (2010) Science , vol.327 , pp. 656-661
    • Geissmann, F.1
  • 48
    • 77953643797 scopus 로고    scopus 로고
    • Human CD34-derived myeloid dendritic cell development requires intact phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin signaling
    • van de Laar L., et al. Human CD34-derived myeloid dendritic cell development requires intact phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin signaling. J. Immunol. 2010, 184:6600-6611.
    • (2010) J. Immunol. , vol.184 , pp. 6600-6611
    • van de Laar, L.1
  • 49
    • 84890288918 scopus 로고    scopus 로고
    • Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells
    • Wang Y., et al. Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E4894-E4903.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E4894-E4903
    • Wang, Y.1
  • 50
    • 78851471039 scopus 로고    scopus 로고
    • PD-L1 expression on tolerogenic APCs is controlled by STAT-3
    • Wölfle S.J., et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur. J. Immunol. 2011, 41:413-424.
    • (2011) Eur. J. Immunol. , vol.41 , pp. 413-424
    • Wölfle, S.J.1
  • 51
    • 70349737858 scopus 로고    scopus 로고
    • Cutting edge: Negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3
    • Sun Y., et al. Cutting edge: Negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. J. Immunol. 2009, 182:5899-5903.
    • (2009) J. Immunol. , vol.182 , pp. 5899-5903
    • Sun, Y.1
  • 52
    • 50949130076 scopus 로고    scopus 로고
    • Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells
    • Ohtani M., et al. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 2008, 112:635-643.
    • (2008) Blood , vol.112 , pp. 635-643
    • Ohtani, M.1
  • 53
    • 77958126087 scopus 로고    scopus 로고
    • A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation
    • Haidinger M., et al. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J. Immunol. 2010, 185:3919-3931.
    • (2010) J. Immunol. , vol.185 , pp. 3919-3931
    • Haidinger, M.1
  • 54
    • 54949109311 scopus 로고    scopus 로고
    • The TSC-mTOR signaling pathway regulates the innate inflammatory response
    • Weichhart T., et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 2008, 29:565-577.
    • (2008) Immunity , vol.29 , pp. 565-577
    • Weichhart, T.1
  • 55
    • 79955548609 scopus 로고    scopus 로고
    • Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response
    • Wang H., et al. Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response. J. Immunol. 2011, 186:5217-5226.
    • (2011) J. Immunol. , vol.186 , pp. 5217-5226
    • Wang, H.1
  • 56
    • 84879316492 scopus 로고    scopus 로고
    • Murine dendritic cell rapamycin-resistant and rictor-independent mTOR controls IL-10, B7-H1, and regulatory T-cell induction
    • Rosborough B.R., et al. Murine dendritic cell rapamycin-resistant and rictor-independent mTOR controls IL-10, B7-H1, and regulatory T-cell induction. Blood 2013, 121:3619-3630.
    • (2013) Blood , vol.121 , pp. 3619-3630
    • Rosborough, B.R.1
  • 57
    • 18844457095 scopus 로고    scopus 로고
    • Mechanisms of type-I- and type-II-interferon-mediated signalling
    • Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5:375-386.
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 375-386
    • Platanias, L.C.1
  • 58
    • 84893075305 scopus 로고    scopus 로고
    • Regulation of type I interferon responses
    • Ivashkiv L.B., Donlin L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14:36-49.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 36-49
    • Ivashkiv, L.B.1    Donlin, L.T.2
  • 59
    • 84919341177 scopus 로고    scopus 로고
    • Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes
    • Published online September 12, 2014
    • Fish E.N., Platanias L.C. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol. Cancer Res. 2014, Published online September 12, 2014, http://dx.doi.org/10.1158/1541-7786.MCR-14-0450.
    • (2014) Mol. Cancer Res.
    • Fish, E.N.1    Platanias, L.C.2
  • 60
    • 84861206467 scopus 로고    scopus 로고
    • Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses
    • Kaur S., et al. Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:7723-7728.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 7723-7728
    • Kaur, S.1
  • 61
    • 33847251137 scopus 로고    scopus 로고
    • Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling
    • Kaur S., et al. Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling. J. Biol. Chem. 2007, 282:1757-1768.
    • (2007) J. Biol. Chem. , vol.282 , pp. 1757-1768
    • Kaur, S.1
  • 62
    • 42449150892 scopus 로고    scopus 로고
    • Role of the Akt pathway in mRNA translation of interferon-stimulated genes
    • Kaur S., et al. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:4808-4813.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 4808-4813
    • Kaur, S.1
  • 63
    • 84864440264 scopus 로고    scopus 로고
    • Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia
    • Tasian S.K., et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 2012, 120:833-842.
    • (2012) Blood , vol.120 , pp. 833-842
    • Tasian, S.K.1
  • 64
    • 84873138749 scopus 로고    scopus 로고
    • MTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms
    • Bogani C., et al. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms. PLoS ONE 2013, 8:e54826.
    • (2013) PLoS ONE , vol.8 , pp. e54826
    • Bogani, C.1
  • 65
    • 84860250827 scopus 로고    scopus 로고
    • An overview of the mTOR pathway as a target in cancer therapy
    • Gentzler R.D., et al. An overview of the mTOR pathway as a target in cancer therapy. Expert Opin. Ther. Targets 2012, 16:481-489.
    • (2012) Expert Opin. Ther. Targets , vol.16 , pp. 481-489
    • Gentzler, R.D.1
  • 66
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 67
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L., et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1
  • 68
    • 84878357685 scopus 로고    scopus 로고
    • A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L., et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340:1100-1106.
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1
  • 69
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun Z.Y., et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 2013, 52:495-505.
    • (2013) Mol. Cell , vol.52 , pp. 495-505
    • Tsun, Z.Y.1
  • 70
    • 84873665112 scopus 로고    scopus 로고
    • Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
    • Efeyan A., et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013, 493:679-683.
    • (2013) Nature , vol.493 , pp. 679-683
    • Efeyan, A.1
  • 71
    • 84865371057 scopus 로고    scopus 로고
    • TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
    • Dibble C.C., et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012, 47:535-546.
    • (2012) Mol. Cell , vol.47 , pp. 535-546
    • Dibble, C.C.1
  • 72
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante M., Sabatini D.M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126:1713-1719.
    • (2013) J. Cell Sci. , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 73
    • 80053955812 scopus 로고    scopus 로고
    • Review series: TOR kinase complexes and cell migration
    • Liu L., Parent C.A. Review series: TOR kinase complexes and cell migration. J. Cell Biol. 2011, 94:815-824.
    • (2011) J. Cell Biol. , vol.94 , pp. 815-824
    • Liu, L.1    Parent, C.A.2
  • 74
    • 79953216041 scopus 로고    scopus 로고
    • Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate
    • Gan X., et al. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 2011, 286:10998-11002.
    • (2011) J. Biol. Chem. , vol.286 , pp. 10998-11002
    • Gan, X.1
  • 75
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V., et al. Activation of mTORC2 by association with the ribosome. Cell 2011, 144:757-768.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1
  • 76
    • 62849111751 scopus 로고    scopus 로고
    • Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin
    • Toschi A., et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol. Cell. Biol. 2009, 29:1411-1420.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 1411-1420
    • Toschi, A.1
  • 77
    • 79953307234 scopus 로고    scopus 로고
    • Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size
    • Saci A., et al. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol. Cell 2011, 42:50-61.
    • (2011) Mol. Cell , vol.42 , pp. 50-61
    • Saci, A.1
  • 78
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009, 10:307-318.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 79
    • 79952119614 scopus 로고    scopus 로고
    • ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor
    • Chen C.H., et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor. Sci. Signal. 2011, 4:ra10.
    • (2011) Sci. Signal. , vol.4 , pp. ra10
    • Chen, C.H.1
  • 80
    • 67349214601 scopus 로고    scopus 로고
    • MTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3
    • Busch S., et al. mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3. Exp. Cell Res. 2009, 315:1724-1733.
    • (2009) Exp. Cell Res. , vol.315 , pp. 1724-1733
    • Busch, S.1
  • 81
    • 72149126863 scopus 로고    scopus 로고
    • Signal transducer and activator of transcription 3 (STAT3) mediates amino acid inhibition of insulin signaling through serine 727 phosphorylation
    • Kim J.H., et al. Signal transducer and activator of transcription 3 (STAT3) mediates amino acid inhibition of insulin signaling through serine 727 phosphorylation. J. Biol. Chem. 2009, 284:35425-35432.
    • (2009) J. Biol. Chem. , vol.284 , pp. 35425-35432
    • Kim, J.H.1
  • 82
    • 84860341356 scopus 로고    scopus 로고
    • Inhibition of mammalian target of rapamycin augments lipopolysaccharide-induced lung injury and apoptosis
    • Fielhaber J.A., et al. Inhibition of mammalian target of rapamycin augments lipopolysaccharide-induced lung injury and apoptosis. J. Immunol. 2012, 188:4535-4542.
    • (2012) J. Immunol. , vol.188 , pp. 4535-4542
    • Fielhaber, J.A.1
  • 83
    • 84858961271 scopus 로고    scopus 로고
    • Biology and significance of the JAK/STAT signaling pathways
    • Kiu H., Nicholson S.E. Biology and significance of the JAK/STAT signaling pathways. Growth Factors 2012, 30:88-106.
    • (2012) Growth Factors , vol.30 , pp. 88-106
    • Kiu, H.1    Nicholson, S.E.2
  • 84
    • 79955509835 scopus 로고    scopus 로고
    • Direct effects of type I interferons on cells of the immune system
    • Hervas-Stubbs S., et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 2011, 17:2619-2627.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 2619-2627
    • Hervas-Stubbs, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.