메뉴 건너뛰기




Volumn 5, Issue NOV, 2014, Pages

Myeloid colony-stimulating factors as regulators of macrophage polarization

Author keywords

Cytokines; Granulocyte macrophage colony stimulating factor; Inflammation; Macrophage activation; Macrophage colony stimulating factor

Indexed keywords

ARGINASE; B7 ANTIGEN; CD163 ANTIGEN; CD86 ANTIGEN; COLONY STIMULATING FACTOR 1; CXCL1 CHEMOKINE; CXCL9 CHEMOKINE; GAMMA INTERFERON; GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR; INDUCIBLE NITRIC OXIDE SYNTHASE; INTERLEUKIN 10; INTERLEUKIN 12; INTERLEUKIN 1ALPHA; INTERLEUKIN 1BETA; INTERLEUKIN 23; INTERLEUKIN 4; LYMPHOTOXIN; MONOCYTE CHEMOTACTIC PROTEIN 1; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE; TUMOR NECROSIS FACTOR ALPHA; TYROSINE KINASE RECEPTOR;

EID: 84919457870     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2014.00554     Document Type: Article
Times cited : (151)

References (63)
  • 1
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol (2011) 11(11):723-37. doi: 10.1038/nri3073
    • (2011) Nat Rev Immunol , vol.11 , Issue.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 2
    • 84876800337 scopus 로고    scopus 로고
    • Macrophage biology in development, homeostasis and disease
    • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature (2013) 496(7446):445-55. doi:10.1038/nature12034
    • (2013) Nature , vol.496 , Issue.7446 , pp. 445-455
    • Wynn, T.A.1    Chawla, A.2    Pollard, J.W.3
  • 3
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol (2005) 5(12):953-64. doi:10.1038/nri1733
    • (2005) Nat Rev Immunol , vol.5 , Issue.12 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 4
    • 0034659784 scopus 로고    scopus 로고
    • M-1/M-2 macrophages and the Th1/Th2 paradigm
    • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol (2000) 164(12):6166-73. doi:10.4049/jimmunol.164.12.6166
    • (2000) J Immunol , vol.164 , Issue.12 , pp. 6166-6173
    • Mills, C.D.1    Kincaid, K.2    Alt, J.M.3    Heilman, M.J.4    Hill, A.M.5
  • 5
    • 84897556094 scopus 로고    scopus 로고
    • The M1 and M2 paradigm of macrophage activation: time for reassessment
    • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep (2014) 6:13. doi:10.12703/P6-13
    • (2014) F1000Prime Rep , vol.6 , pp. 13
    • Martinez, F.O.1    Gordon, S.2
  • 6
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: in vivo veritas
    • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest (2012) 122(3):787-95. doi:10.1172/JCI59643
    • (2012) J Clin Invest , vol.122 , Issue.3 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 7
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity (2003) 19(1):71-82. doi:10.1016/S1074-7613(03)00174-2
    • (2003) Immunity , vol.19 , Issue.1 , pp. 71-82
    • Geissmann, F.1    Jung, S.2    Littman, D.R.3
  • 8
    • 67649404131 scopus 로고    scopus 로고
    • Blood monocytes: development, heterogeneity, and relationship with dendritic cells
    • Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol (2009) 27:669-92. doi:10.1146/annurev.immunol.021908.132557
    • (2009) Annu Rev Immunol , vol.27 , pp. 669-692
    • Auffray, C.1    Sieweke, M.H.2    Geissmann, F.3
  • 9
    • 76249095169 scopus 로고    scopus 로고
    • Development of monocytes, macrophages, and dendritic cells
    • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science (2010) 327(5966):656-61. doi:10.1126/science.1178331
    • (2010) Science , vol.327 , Issue.5966 , pp. 656-661
    • Geissmann, F.1    Manz, M.G.2    Jung, S.3    Sieweke, M.H.4    Merad, M.5    Ley, K.6
  • 11
    • 84876775203 scopus 로고    scopus 로고
    • Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
    • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity (2013) 38(4):792-804. doi:10.1016/j.immuni.2013.04.004
    • (2013) Immunity , vol.38 , Issue.4 , pp. 792-804
    • Hashimoto, D.1    Chow, A.2    Noizat, C.3    Teo, P.4    Beasley, M.B.5    Leboeuf, M.6
  • 12
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (2010) 330(6005):841-5. doi:10.1126/science.1194637
    • (2010) Science , vol.330 , Issue.6005 , pp. 841-845
    • Ginhoux, F.1    Greter, M.2    Leboeuf, M.3    Nandi, S.4    See, P.5    Gokhan, S.6
  • 13
    • 84863008117 scopus 로고    scopus 로고
    • GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells
    • Greter M, Helft J, Chow A, Hashimoto D, Mortha A, Agudo-Cantero J, et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity (2012) 36(6):1031-46. doi:10.1016/j.immuni.2012.03.027
    • (2012) Immunity , vol.36 , Issue.6 , pp. 1031-1046
    • Greter, M.1    Helft, J.2    Chow, A.3    Hashimoto, D.4    Mortha, A.5    Agudo-Cantero, J.6
  • 14
    • 80355146399 scopus 로고    scopus 로고
    • Transcriptional regulation of macrophage polarization: enabling diversity with identity
    • Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol (2011) 11(11):750-61. doi:10.1038/nri3088
    • (2011) Nat Rev Immunol , vol.11 , Issue.11 , pp. 750-761
    • Lawrence, T.1    Natoli, G.2
  • 15
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity (2014) 41(1):14-20. doi:10.1016/j.immuni.2014.06.008
    • (2014) Immunity , vol.41 , Issue.1 , pp. 14-20
    • Murray, P.J.1    Allen, J.E.2    Biswas, S.K.3    Fisher, E.A.4    Gilroy, D.W.5    Goerdt, S.6
  • 16
    • 0001957847 scopus 로고
    • Molecular basis of macrophage activation: diversity and its origins
    • Lewis CE, O'D McGee J, editors: The Macrophage. New York, NY: Oxford University Press
    • Adams DO, Hamilton TA. Molecular basis of macrophage activation: diversity and its origins. In: Lewis CE, O'D McGee J, editors. The Natural Immune System, Volume II: The Macrophage. New York, NY: Oxford University Press (1992). p. 75-114.
    • (1992) The Natural Immune System , vol.2 , pp. 75-114
    • Adams, D.O.1    Hamilton, T.A.2
  • 17
    • 84885953622 scopus 로고    scopus 로고
    • Changes in macrophage phenotype as the immune response evolves
    • Lichtnekert J, Kawakami T, Parks WC, Duffield JS. Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol (2013) 13(4):555-64. doi:10.1016/j.coph.2013.05.013
    • (2013) Curr Opin Pharmacol , vol.13 , Issue.4 , pp. 555-564
    • Lichtnekert, J.1    Kawakami, T.2    Parks, W.C.3    Duffield, J.S.4
  • 18
    • 84871076444 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization in tissue repair and remodelling
    • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol (2013) 229(2):176-85. doi:10.1002/path.4133
    • (2013) J Pathol , vol.229 , Issue.2 , pp. 176-185
    • Mantovani, A.1    Biswas, S.K.2    Galdiero, M.R.3    Sica, A.4    Locati, M.5
  • 19
    • 57149108312 scopus 로고    scopus 로고
    • Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury
    • Holt MP, Cheng L, Ju C. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol (2008) 84(6):1410-21. doi:10.1189/jlb.0308173
    • (2008) J Leukoc Biol , vol.84 , Issue.6 , pp. 1410-1421
    • Holt, M.P.1    Cheng, L.2    Ju, C.3
  • 20
    • 34248997759 scopus 로고    scopus 로고
    • Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
    • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med (2007) 204(5):1057-69. doi:10.1084/jem.20070075
    • (2007) J Exp Med , vol.204 , Issue.5 , pp. 1057-1069
    • Arnold, L.1    Henry, A.2    Poron, F.3    Baba-Amer, Y.4    van Rooijen, N.5    Plonquet, A.6
  • 21
    • 67650485985 scopus 로고    scopus 로고
    • Alternative activation of macrophages: an immunologic functional perspective
    • Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol (2009) 27:451-83. doi:10.1146/annurev.immunol.021908.132532
    • (2009) Annu Rev Immunol , vol.27 , pp. 451-483
    • Martinez, F.O.1    Helming, L.2    Gordon, S.3
  • 22
    • 79551598939 scopus 로고    scopus 로고
    • The ancestry and cumulative evolution of immune reactions
    • Dzik JM. The ancestry and cumulative evolution of immune reactions. Acta Biochim Pol (2010) 57(4):443-66.
    • (2010) Acta Biochim Pol , vol.57 , Issue.4 , pp. 443-466
    • Dzik, J.M.1
  • 23
    • 84855942903 scopus 로고    scopus 로고
    • Metchnikoff's policemen: macrophages in development, homeostasis and regeneration
    • Stefater JA III, Ren S, Lang RA, Duffield JS. Metchnikoff's policemen: macrophages in development, homeostasis and regeneration. Trends Mol Med (2011) 17(12):743-52. doi:10.1016/j.molmed.2011.07.009
    • (2011) Trends Mol Med , vol.17 , Issue.12 , pp. 743-752
    • Stefater III, J.A.1    Ren, S.2    Lang, R.A.3    Duffield, J.S.4
  • 24
    • 84881474744 scopus 로고    scopus 로고
    • Host genetic background impacts modulation of the TLR4 pathway by RON in tissue-associated macrophages
    • Chaudhuri A, Wilson NS, Yang B, Paler Martinez A, Liu J, Zhu C, et al. Host genetic background impacts modulation of the TLR4 pathway by RON in tissue-associated macrophages. Immunol Cell Biol (2013) 91(7):451-60. doi:10.1038/icb.2013.27
    • (2013) Immunol Cell Biol , vol.91 , Issue.7 , pp. 451-460
    • Chaudhuri, A.1    Wilson, N.S.2    Yang, B.3    Paler Martinez, A.4    Liu, J.5    Zhu, C.6
  • 25
    • 10044296364 scopus 로고    scopus 로고
    • Differential macrophage expression of IL-12 and IL-23 upon innate immune activation defines rat autoimmune susceptibility
    • Andersson A, Kokkola R, Wefer J, Erlandsson-Harris H, Harris RA. Differential macrophage expression of IL-12 and IL-23 upon innate immune activation defines rat autoimmune susceptibility. J Leukoc Biol (2004) 76(6):1118-24. doi:10.1189/jlb.0704385
    • (2004) J Leukoc Biol , vol.76 , Issue.6 , pp. 1118-1124
    • Andersson, A.1    Kokkola, R.2    Wefer, J.3    Erlandsson-Harris, H.4    Harris, R.A.5
  • 26
    • 84873103649 scopus 로고    scopus 로고
    • Colony stimulating factors and myeloid cell biology in health and disease
    • Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol (2013) 34(2):81-9. doi:10.1016/j.it.2012.08.006
    • (2013) Trends Immunol , vol.34 , Issue.2 , pp. 81-89
    • Hamilton, J.A.1    Achuthan, A.2
  • 27
    • 46249090513 scopus 로고    scopus 로고
    • Colony-stimulating factors in inflammation and autoimmunity
    • Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol (2008) 8(7):533-44. doi:10.1038/nri2356
    • (2008) Nat Rev Immunol , vol.8 , Issue.7 , pp. 533-544
    • Hamilton, J.A.1
  • 28
    • 84904016151 scopus 로고    scopus 로고
    • Human macrophage polarization in vitro: maturation and activation methods compared
    • Vogel DY, Glim JE, Stavenuiter AW, Breur M, Heijnen P, Amor S, et al. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology (2014) 219(9):695-703. doi:10.1016/j.imbio.2014.05.002
    • (2014) Immunobiology , vol.219 , Issue.9 , pp. 695-703
    • Vogel, D.Y.1    Glim, J.E.2    Stavenuiter, A.W.3    Breur, M.4    Heijnen, P.5    Amor, S.6
  • 29
    • 80455129199 scopus 로고    scopus 로고
    • Colony-stimulating factors in the prevention and management of infectious diseases
    • Page AV, Liles WC. Colony-stimulating factors in the prevention and management of infectious diseases. Infect Dis Clin North Am (2011) 25(4):803-17. doi:10.1016/j.idc.2011.07.007
    • (2011) Infect Dis Clin North Am , vol.25 , Issue.4 , pp. 803-817
    • Page, A.V.1    Liles, W.C.2
  • 30
    • 0036632007 scopus 로고    scopus 로고
    • Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages
    • Akagawa KS. Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Int J Hematol (2002) 76(1):27-34. doi:10.1007/BF02982715
    • (2002) Int J Hematol , vol.76 , Issue.1 , pp. 27-34
    • Akagawa, K.S.1
  • 31
    • 12144288237 scopus 로고    scopus 로고
    • Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria
    • Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A (2004) 101(13):4560-5. doi:10.1073/pnas.0400983101
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.13 , pp. 4560-4565
    • Verreck, F.A.1    de Boer, T.2    Langenberg, D.M.3    Hoeve, M.A.4    Kramer, M.5    Vaisberg, E.6
  • 32
    • 33646455658 scopus 로고    scopus 로고
    • Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation
    • Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol (2006) 79(2):285-93. doi:10.1189/jlb.0105015
    • (2006) J Leukoc Biol , vol.79 , Issue.2 , pp. 285-293
    • Verreck, F.A.1    de Boer, T.2    Langenberg, D.M.3    van der Zanden, L.4    Ottenhoff, T.H.5
  • 33
    • 34247124840 scopus 로고    scopus 로고
    • Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation
    • Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol (2007) 178(8):5245-52. doi:10.4049/jimmunol.178.8.5245
    • (2007) J Immunol , vol.178 , Issue.8 , pp. 5245-5252
    • Fleetwood, A.J.1    Lawrence, T.2    Hamilton, J.A.3    Cook, A.D.4
  • 34
    • 0026481133 scopus 로고
    • Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor
    • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med (1992) 176(6):1693-702. doi:10.1084/jem.176.6.1693
    • (1992) J Exp Med , vol.176 , Issue.6 , pp. 1693-1702
    • Inaba, K.1    Inaba, M.2    Romani, N.3    Aya, H.4    Deguchi, M.5    Ikehara, S.6
  • 35
    • 84862104611 scopus 로고    scopus 로고
    • Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models
    • Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol (2012) 188(11):5752-65. doi:10.4049/jimmunol.1103426
    • (2012) J Immunol , vol.188 , Issue.11 , pp. 5752-5765
    • Lacey, D.C.1    Achuthan, A.2    Fleetwood, A.J.3    Dinh, H.4    Roiniotis, J.5    Scholz, G.M.6
  • 37
    • 84894102230 scopus 로고    scopus 로고
    • Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
    • Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity (2014) 40(2):274-88. doi:10.1016/j.immuni.2014.01.006
    • (2014) Immunity , vol.40 , Issue.2 , pp. 274-288
    • Xue, J.1    Schmidt, S.V.2    Sander, J.3    Draffehn, A.4    Krebs, W.5    Quester, I.6
  • 38
    • 70350435962 scopus 로고    scopus 로고
    • Epigenetic regulation of the alternatively activated macrophage phenotype
    • Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood (2009) 114(15):3244-54. doi:10.1182/blood-2009-04-217620
    • (2009) Blood , vol.114 , Issue.15 , pp. 3244-3254
    • Ishii, M.1    Wen, H.2    Corsa, C.A.3    Liu, T.4    Coelho, A.L.5    Allen, R.M.6
  • 39
    • 84898897839 scopus 로고    scopus 로고
    • An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-beta yields a dominant immunosuppressive phenotype
    • Mia S, Warnecke A, Zhang XM, Malmstrom V, Harris RA. An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-beta yields a dominant immunosuppressive phenotype. Scand J Immunol (2014) 79(5):305-14. doi:10.1111/sji.12162
    • (2014) Scand J Immunol , vol.79 , Issue.5 , pp. 305-314
    • Mia, S.1    Warnecke, A.2    Zhang, X.M.3    Malmstrom, V.4    Harris, R.A.5
  • 40
    • 84862591151 scopus 로고    scopus 로고
    • Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization
    • Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol (2012) 13(7):642-50. doi:10.1038/ni.2304
    • (2012) Nat Immunol , vol.13 , Issue.7 , pp. 642-650
    • Xu, H.1    Zhu, J.2    Smith, S.3    Foldi, J.4    Zhao, B.5    Chung, A.Y.6
  • 41
    • 84900533241 scopus 로고    scopus 로고
    • C/EBPalpha regulates macrophage activation and systemic metabolism
    • Lee B, Qiao L, Lu M, Yoo HS, Cheung W, Mak R, et al. C/EBPalpha regulates macrophage activation and systemic metabolism. Am J Physiol Endocrinol Metab (2014) 306(10):E1144-54. doi:10.1152/ajpendo.00002.2014
    • (2014) Am J Physiol Endocrinol Metab , vol.306 , Issue.10 , pp. E1144-E1154
    • Lee, B.1    Qiao, L.2    Lu, M.3    Yoo, H.S.4    Cheung, W.5    Mak, R.6
  • 43
    • 84899670376 scopus 로고    scopus 로고
    • Myeloid-specific rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide
    • Festuccia WT, Pouliot P, Bakan I, Sabatini DM, Laplante M. Myeloid-specific rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS One (2014) 9(4):e95432. doi:10.1371/journal.pone.0095432
    • (2014) PLoS One , vol.9 , Issue.4
    • Festuccia, W.T.1    Pouliot, P.2    Bakan, I.3    Sabatini, D.M.4    Laplante, M.5
  • 44
    • 84907087669 scopus 로고    scopus 로고
    • Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis
    • Tao B, Jin W, Xu J, Liang Z, Yao J, Zhang Y, et al. Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis. J Immunol (2014) 193(6):2801-11. doi:10.4049/jimmunol.1303463
    • (2014) J Immunol , vol.193 , Issue.6 , pp. 2801-2811
    • Tao, B.1    Jin, W.2    Xu, J.3    Liang, Z.4    Yao, J.5    Zhang, Y.6
  • 45
    • 77951918926 scopus 로고    scopus 로고
    • Macrophages, inflammation, and insulin resistance
    • Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol (2010) 72:219-46. doi:10.1146/annurev-physiol-021909-135846
    • (2010) Annu Rev Physiol , vol.72 , pp. 219-246
    • Olefsky, J.M.1    Glass, C.K.2
  • 46
    • 34347354309 scopus 로고    scopus 로고
    • Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
    • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature (2007) 447(7148):1116-20. doi:10.1038/nature05894
    • (2007) Nature , vol.447 , Issue.7148 , pp. 1116-1120
    • Odegaard, J.I.1    Ricardo-Gonzalez, R.R.2    Goforth, M.H.3    Morel, C.R.4    Subramanian, V.5    Mukundan, L.6
  • 47
    • 80052657814 scopus 로고    scopus 로고
    • Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase
    • Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, et al. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J Immunol (2011) 187(5):2181-92. doi:10.4049/jimmunol.1003460
    • (2011) J Immunol , vol.187 , Issue.5 , pp. 2181-2192
    • Sharda, D.R.1    Yu, S.2    Ray, M.3    Squadrito, M.L.4    De Palma, M.5    Wynn, T.A.6
  • 48
    • 79960021457 scopus 로고    scopus 로고
    • Kruppel-like factor 4 regulates macrophage polarization
    • Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest (2011) 121(7):2736-49. doi:10.1172/JCI45444
    • (2011) J Clin Invest , vol.121 , Issue.7 , pp. 2736-2749
    • Liao, X.1    Sharma, N.2    Kapadia, F.3    Zhou, G.4    Lu, Y.5    Hong, H.6
  • 49
    • 84908193590 scopus 로고    scopus 로고
    • Btk regulates macrophage polarization in response to lipopolysaccharide
    • Ni Gabhann J, Hams E, Smith S, Wynne C, Byrne JC, Brennan K, et al. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS One (2014) 9(1):e85834. doi:10.1371/journal.pone.0085834
    • (2014) PLoS One , vol.9 , Issue.1
    • Ni Gabhann, J.1    Hams, E.2    Smith, S.3    Wynne, C.4    Byrne, J.C.5    Brennan, K.6
  • 50
    • 77956954197 scopus 로고    scopus 로고
    • The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
    • Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol (2010) 11(10):936-44. doi:10.1038/ni.1920
    • (2010) Nat Immunol , vol.11 , Issue.10 , pp. 936-944
    • Satoh, T.1    Takeuchi, O.2    Vandenbon, A.3    Yasuda, K.4    Tanaka, Y.5    Kumagai, Y.6
  • 51
    • 1642541143 scopus 로고    scopus 로고
    • Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1
    • Dai XM, Zong XH, Sylvestre V, Stanley ER. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood (2004) 103(3):1114-23. doi:10.1182/blood-2003-08-2739
    • (2004) Blood , vol.103 , Issue.3 , pp. 1114-1123
    • Dai, X.M.1    Zong, X.H.2    Sylvestre, V.3    Stanley, E.R.4
  • 52
    • 84870907320 scopus 로고    scopus 로고
    • Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia
    • Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, et al. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity (2012) 37(6):1050-60. doi:10.1016/j.immuni.2012.11.001
    • (2012) Immunity , vol.37 , Issue.6 , pp. 1050-1060
    • Greter, M.1    Lelios, I.2    Pelczar, P.3    Hoeffel, G.4    Price, J.5    Leboeuf, M.6
  • 53
    • 84873659707 scopus 로고    scopus 로고
    • IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages Antagonistic effects of GM-CSF and IFNgamma
    • Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, et al. IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. Antagonistic effects of GM-CSF and IFNgamma. PLoS One (2013) 8(2):e56045. doi:10.1371/journal.pone.0056045
    • (2013) PLoS One , vol.8 , Issue.2
    • Foucher, E.D.1    Blanchard, S.2    Preisser, L.3    Garo, E.4    Ifrah, N.5    Guardiola, P.6
  • 54
    • 32644479365 scopus 로고    scopus 로고
    • Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know
    • Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know. Cell Res (2006) 16(2):126-33. doi:10.1038/sj.cr.7310017
    • (2006) Cell Res , vol.16 , Issue.2 , pp. 126-133
    • Shi, Y.1    Liu, C.H.2    Roberts, A.I.3    Das, J.4    Xu, G.5    Ren, G.6
  • 55
    • 84857618521 scopus 로고    scopus 로고
    • Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling
    • Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood (2012) 119(8):1810-20. doi:10.1182/blood-2011-09-379214
    • (2012) Blood , vol.119 , Issue.8 , pp. 1810-1820
    • Hume, D.A.1    MacDonald, K.P.2
  • 56
    • 84859981936 scopus 로고    scopus 로고
    • Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation
    • Lenzo JC, Turner AL, Cook AD, Vlahos R, Anderson GP, Reynolds EC, et al. Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol (2012) 90(4):429-40. doi:10.1038/icb.2011.58
    • (2012) Immunol Cell Biol , vol.90 , Issue.4 , pp. 429-440
    • Lenzo, J.C.1    Turner, A.L.2    Cook, A.D.3    Vlahos, R.4    Anderson, G.P.5    Reynolds, E.C.6
  • 57
    • 84887481716 scopus 로고    scopus 로고
    • CSF-1R inhibition alters macrophage polarization and blocks glioma progression
    • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med (2013) 19(10):1264-72. doi:10.1038/nm.3337
    • (2013) Nat Med , vol.19 , Issue.10 , pp. 1264-1272
    • Pyonteck, S.M.1    Akkari, L.2    Schuhmacher, A.J.3    Bowman, R.L.4    Sevenich, L.5    Quail, D.F.6
  • 58
    • 84858785703 scopus 로고    scopus 로고
    • Coordinated regulation of myeloid cells by tumours
    • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol (2012) 12(4):253-68. doi:10.1038/nri3175
    • (2012) Nat Rev Immunol , vol.12 , Issue.4 , pp. 253-268
    • Gabrilovich, D.I.1    Ostrand-Rosenberg, S.2    Bronte, V.3
  • 60
    • 79956116032 scopus 로고    scopus 로고
    • RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation
    • Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol (2011) 12(6):560-7. doi:10.1038/ni.2027
    • (2011) Nat Immunol , vol.12 , Issue.6 , pp. 560-567
    • Codarri, L.1    Gyulveszi, G.2    Tosevski, V.3    Hesske, L.4    Fontana, A.5    Magnenat, L.6
  • 61
    • 79956152607 scopus 로고    scopus 로고
    • The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF
    • El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol (2011) 12(6):568-75. doi:10.1038/ni.2031
    • (2011) Nat Immunol , vol.12 , Issue.6 , pp. 568-575
    • El-Behi, M.1    Ciric, B.2    Dai, H.3    Yan, Y.4    Cullimore, M.5    Safavi, F.6
  • 62
    • 79955532341 scopus 로고    scopus 로고
    • Differentiation of inflammatory dendritic cells is mediated by NF-kappaB1-dependent GM-CSF production in CD4 T cells
    • Campbell IK, van Nieuwenhuijze A, Segura E, O'Donnell K, Coghill E, Hommel M, et al. Differentiation of inflammatory dendritic cells is mediated by NF-kappaB1-dependent GM-CSF production in CD4 T cells. J Immunol (2011) 186(9):5468-77. doi:10.4049/jimmunol.1002923
    • (2011) J Immunol , vol.186 , Issue.9 , pp. 5468-5477
    • Campbell, I.K.1    van Nieuwenhuijze, A.2    Segura, E.3    O'Donnell, K.4    Coghill, E.5    Hommel, M.6
  • 63
    • 84865540203 scopus 로고    scopus 로고
    • Reversible differentiation of pro- and anti-inflammatory macrophages
    • Xu W, Zhao X, Daha MR, van Kooten C. Reversible differentiation of pro- and anti-inflammatory macrophages. Mol Immunol (2012) 53(3):179-86. doi:10.1016/j.molimm.2012.07.005
    • (2012) Mol Immunol , vol.53 , Issue.3 , pp. 179-186
    • Xu, W.1    Zhao, X.2    Daha, M.R.3    van Kooten, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.