-
1
-
-
84870751887
-
Nucleotide excision repair in eukaryotes
-
Scharer O.D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 2013, 5(10):a012609.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, Issue.10
, pp. a012609
-
-
Scharer, O.D.1
-
2
-
-
0942268166
-
DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy
-
Lehmann A.R. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003, 85(11):1101-1111.
-
(2003)
Biochimie
, vol.85
, Issue.11
, pp. 1101-1111
-
-
Lehmann, A.R.1
-
3
-
-
24044522541
-
UV-sensitive syndrome
-
Spivak G. UV-sensitive syndrome. Mutat. Res. 2005, 577(1-2):162-169.
-
(2005)
Mutat. Res.
, vol.577
, Issue.1-2
, pp. 162-169
-
-
Spivak, G.1
-
4
-
-
0032134423
-
Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair
-
Sugasawa K., et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 1998, 2(2):223-232.
-
(1998)
Mol. Cell
, vol.2
, Issue.2
, pp. 223-232
-
-
Sugasawa, K.1
-
5
-
-
53349128176
-
Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC
-
Hoogstraten D., et al. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J. Cell Sci. 2008, 121(Pt 17):2850-2859.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2850-2859
-
-
Hoogstraten, D.1
-
6
-
-
0035282109
-
A multistep damage recognition mechanism for global genomic nucleotide excision repair
-
Sugasawa K., et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001, 15(5):507-521.
-
(2001)
Genes Dev.
, vol.15
, Issue.5
, pp. 507-521
-
-
Sugasawa, K.1
-
7
-
-
0037127293
-
DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair
-
Wakasugi M., et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 2002, 277(3):1637-1640.
-
(2002)
J. Biol. Chem.
, vol.277
, Issue.3
, pp. 1637-1640
-
-
Wakasugi, M.1
-
8
-
-
57749198023
-
Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex
-
Scrima A., et al. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 2008, 135(7):1213-1223.
-
(2008)
Cell
, vol.135
, Issue.7
, pp. 1213-1223
-
-
Scrima, A.1
-
9
-
-
84861457511
-
TFIIH: when transcription met DNA repair
-
Compe E., Egly J.M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 2012, 13(6):343-354.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, Issue.6
, pp. 343-354
-
-
Compe, E.1
Egly, J.M.2
-
10
-
-
70449717367
-
Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning
-
Sugasawa K., et al. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 2009, 36(4):642-653.
-
(2009)
Mol. Cell
, vol.36
, Issue.4
, pp. 642-653
-
-
Sugasawa, K.1
-
11
-
-
84873408109
-
DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH
-
Mathieu N., et al. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr. Biol. 2013, 23(3):204-212.
-
(2013)
Curr. Biol.
, vol.23
, Issue.3
, pp. 204-212
-
-
Mathieu, N.1
-
12
-
-
33644812489
-
Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair
-
Camenisch U., et al. Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nat. Struct. Mol. Biol. 2006, 13(3):278-284.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, Issue.3
, pp. 278-284
-
-
Camenisch, U.1
-
13
-
-
0032529167
-
DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair
-
de Laat W.L., et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 1998, 12(16):2598-2609.
-
(1998)
Genes Dev.
, vol.12
, Issue.16
, pp. 2598-2609
-
-
de Laat, W.L.1
-
14
-
-
67349212889
-
Coordination of dual incision and repair synthesis in human nucleotide excision repair
-
Staresincic L., et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 2009, 28(8):1111-1120.
-
(2009)
EMBO J.
, vol.28
, Issue.8
, pp. 1111-1120
-
-
Staresincic, L.1
-
15
-
-
77649242633
-
Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
-
Ogi T., et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 2010, 37(5):714-727.
-
(2010)
Mol. Cell
, vol.37
, Issue.5
, pp. 714-727
-
-
Ogi, T.1
-
16
-
-
34447302016
-
Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner
-
Moser J., et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol. Cell 2007, 27(2):311-323.
-
(2007)
Mol. Cell
, vol.27
, Issue.2
, pp. 311-323
-
-
Moser, J.1
-
18
-
-
84860330462
-
UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair
-
Schwertman P., et al. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat. Genet. 2012, 44(5):598-602.
-
(2012)
Nat. Genet.
, vol.44
, Issue.5
, pp. 598-602
-
-
Schwertman, P.1
-
19
-
-
84860336243
-
Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair
-
Zhang X., et al. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat. Genet. 2012, 44(5):593-597.
-
(2012)
Nat. Genet.
, vol.44
, Issue.5
, pp. 593-597
-
-
Zhang, X.1
-
20
-
-
33747194740
-
Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
-
Fousteri M., et al. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 2006, 23(4):471-482.
-
(2006)
Mol. Cell
, vol.23
, Issue.4
, pp. 471-482
-
-
Fousteri, M.1
-
21
-
-
63649144413
-
Principles of ubiquitin and SUMO modifications in DNA repair
-
Bergink S., Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009, 458(7237):461-467.
-
(2009)
Nature
, vol.458
, Issue.7237
, pp. 461-467
-
-
Bergink, S.1
Jentsch, S.2
-
22
-
-
84876886904
-
Regulation of DNA damage responses by ubiquitin and SUMO
-
Jackson S.P., Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 2013, 49(5):795-807.
-
(2013)
Mol. Cell
, vol.49
, Issue.5
, pp. 795-807
-
-
Jackson, S.P.1
Durocher, D.2
-
24
-
-
84864222562
-
Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
-
Kulathu Y., Komander D. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 2012, 13(8):508-523.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, Issue.8
, pp. 508-523
-
-
Kulathu, Y.1
Komander, D.2
-
25
-
-
84861783400
-
Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions
-
Husnjak K., Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 2012, 81:291-322.
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 291-322
-
-
Husnjak, K.1
Dikic, I.2
-
26
-
-
84883458147
-
Deubiquitylating enzymes and DNA damage response pathways
-
Jacq X., et al. Deubiquitylating enzymes and DNA damage response pathways. Cell. Biochem. Biophys. 2013, 67(1):25-43.
-
(2013)
Cell. Biochem. Biophys.
, vol.67
, Issue.1
, pp. 25-43
-
-
Jacq, X.1
-
27
-
-
84867101049
-
Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass
-
Povlsen L.K., et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat. Cell Biol. 2012, 14(10):1089-1098.
-
(2012)
Nat. Cell Biol.
, vol.14
, Issue.10
, pp. 1089-1098
-
-
Povlsen, L.K.1
-
28
-
-
79955606995
-
Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein
-
Kang T.H., Reardon J.T., Sancar A. Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein. Nucleic Acids Res. 2011, 39(8):3176-3187.
-
(2011)
Nucleic Acids Res.
, vol.39
, Issue.8
, pp. 3176-3187
-
-
Kang, T.H.1
Reardon, J.T.2
Sancar, A.3
-
29
-
-
70349944658
-
Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response
-
Marteijn J.A., et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 2009, 186(6):835-847.
-
(2009)
J. Cell Biol.
, vol.186
, Issue.6
, pp. 835-847
-
-
Marteijn, J.A.1
-
30
-
-
63049106823
-
Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases
-
Hannah J., Zhou P. Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases. DNA Repair 2009, 8(4):536-543.
-
(2009)
DNA Repair
, vol.8
, Issue.4
, pp. 536-543
-
-
Hannah, J.1
Zhou, P.2
-
31
-
-
0037509859
-
The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
-
Groisman R., et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003, 113(3):357-367.
-
(2003)
Cell
, vol.113
, Issue.3
, pp. 357-367
-
-
Groisman, R.1
-
32
-
-
21044442126
-
UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex
-
Sugasawa K., et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 2005, 121(3):387-400.
-
(2005)
Cell
, vol.121
, Issue.3
, pp. 387-400
-
-
Sugasawa, K.1
-
33
-
-
16244373399
-
DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex
-
Matsuda N., et al. DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair 2005, 4(5):537-545.
-
(2005)
DNA Repair
, vol.4
, Issue.5
, pp. 537-545
-
-
Matsuda, N.1
-
34
-
-
33644536070
-
The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites
-
Kapetanaki M.G., et al. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl. Acad. Sci. USA 2006, 103(8):2588-2593.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, Issue.8
, pp. 2588-2593
-
-
Kapetanaki, M.G.1
-
35
-
-
84859485912
-
Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase
-
Lan L., et al. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J. Biol. Chem. 2012, 287(15):12036-12049.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.15
, pp. 12036-12049
-
-
Lan, L.1
-
36
-
-
33744781568
-
Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage
-
Wang H., et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 2006, 22(3):383-394.
-
(2006)
Mol. Cell
, vol.22
, Issue.3
, pp. 383-394
-
-
Wang, H.1
-
37
-
-
0036606551
-
Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation
-
Rapic-Otrin V., et al. Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res. 2002, 30(11):2588-2598.
-
(2002)
Nucleic Acids Res.
, vol.30
, Issue.11
, pp. 2588-2598
-
-
Rapic-Otrin, V.1
-
38
-
-
81855227619
-
The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation
-
Fischer E.S., et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 2011, 147(5):1024-1039.
-
(2011)
Cell
, vol.147
, Issue.5
, pp. 1024-1039
-
-
Fischer, E.S.1
-
39
-
-
84899627951
-
Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity
-
Puumalainen M.R., et al. Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity. Nat. Commun. 2014, 5:3695.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3695
-
-
Puumalainen, M.R.1
-
40
-
-
33744958177
-
Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC
-
El-Mahdy M.A., et al. Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J. Biol. Chem. 2006, 281(19):13404-13411.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.19
, pp. 13404-13411
-
-
El-Mahdy, M.A.1
-
41
-
-
65649105790
-
CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis
-
Liu L., et al. CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol. Cell 2009, 34(4):451-460.
-
(2009)
Mol. Cell
, vol.34
, Issue.4
, pp. 451-460
-
-
Liu, L.1
-
42
-
-
33646685947
-
A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins
-
Chen X., et al. A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins. Mol. Cell 2006, 22(4):489-499.
-
(2006)
Mol. Cell
, vol.22
, Issue.4
, pp. 489-499
-
-
Chen, X.1
-
43
-
-
57349187165
-
Cellular concentrations of DDB2 regulate dynamic binding of DDB1 at UV-induced DNA damage
-
Alekseev S., et al. Cellular concentrations of DDB2 regulate dynamic binding of DDB1 at UV-induced DNA damage. Mol. Cell Biol. 2008, 28(24):7402-7413.
-
(2008)
Mol. Cell Biol.
, vol.28
, Issue.24
, pp. 7402-7413
-
-
Alekseev, S.1
-
44
-
-
84870862277
-
The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability
-
Zhang L., et al. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 2012, 11(23):4378-4384.
-
(2012)
Cell Cycle
, vol.11
, Issue.23
, pp. 4378-4384
-
-
Zhang, L.1
-
45
-
-
84869111403
-
PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1
-
Pines A., et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 2012, 199(2):235-249.
-
(2012)
J. Cell Biol.
, vol.199
, Issue.2
, pp. 235-249
-
-
Pines, A.1
-
46
-
-
0038339144
-
A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein
-
Ng J.M., et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 2003, 17(13):1630-1645.
-
(2003)
Genes Dev.
, vol.17
, Issue.13
, pp. 1630-1645
-
-
Ng, J.M.1
-
47
-
-
11344250554
-
Roles of Rad23 protein in yeast nucleotide excision repair
-
Xie Z., et al. Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res. 2004, 32(20):5981-5990.
-
(2004)
Nucleic Acids Res.
, vol.32
, Issue.20
, pp. 5981-5990
-
-
Xie, Z.1
-
48
-
-
84860339685
-
Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex
-
Bergink S., et al. Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex. J. Cell Biol. 2012, 196(6):681-688.
-
(2012)
J. Cell Biol.
, vol.196
, Issue.6
, pp. 681-688
-
-
Bergink, S.1
-
49
-
-
84880032059
-
RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response
-
Poulsen S.L., et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J. Cell Biol. 2013, 201(6):797-807.
-
(2013)
J. Cell Biol.
, vol.201
, Issue.6
, pp. 797-807
-
-
Poulsen, S.L.1
-
50
-
-
84891107898
-
A human XPC protein interactome-a resource
-
Lubin A., et al. A human XPC protein interactome-a resource. Int. J. Mol. Sci. 2014, 15(1):141-158.
-
(2014)
Int. J. Mol. Sci.
, vol.15
, Issue.1
, pp. 141-158
-
-
Lubin, A.1
-
51
-
-
22244478319
-
DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation
-
Wang Q.E., et al. DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res. 2005, 33(13):4023-4034.
-
(2005)
Nucleic Acids Res.
, vol.33
, Issue.13
, pp. 4023-4034
-
-
Wang, Q.E.1
-
52
-
-
33744795969
-
CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
-
Groisman R., et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006, 20(11):1429-1434.
-
(2006)
Genes Dev.
, vol.20
, Issue.11
, pp. 1429-1434
-
-
Groisman, R.1
-
53
-
-
80053386690
-
BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein
-
Wei L., et al. BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein. Cancer Sci. 2011, 102(10):1840-1847.
-
(2011)
Cancer Sci.
, vol.102
, Issue.10
, pp. 1840-1847
-
-
Wei, L.1
-
54
-
-
77953091336
-
A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair
-
Anindya R., et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 2010, 38(5):637-648.
-
(2010)
Mol. Cell
, vol.38
, Issue.5
, pp. 637-648
-
-
Anindya, R.1
-
55
-
-
84860330507
-
Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair
-
Nakazawa Y., et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 2012, 44(5):586-592.
-
(2012)
Nat. Genet.
, vol.44
, Issue.5
, pp. 586-592
-
-
Nakazawa, Y.1
-
56
-
-
79955938866
-
The multifaceted roles of USP7: new therapeutic opportunities
-
Nicholson B., Kumar K.G. Suresh The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem. Biophys. 2011, 60(1-2):61-68.
-
(2011)
Cell Biochem. Biophys.
, vol.60
, Issue.1-2
, pp. 61-68
-
-
Nicholson, B.1
Kumar, K.G.S.2
-
57
-
-
84872414012
-
Ubiquitylation and degradation of elongating RNA polymerase II: the last resort
-
Wilson M.D., Harreman M., Svejstrup J.Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 2013, 1829(1):151-157.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, Issue.1
, pp. 151-157
-
-
Wilson, M.D.1
Harreman, M.2
Svejstrup, J.Q.3
-
58
-
-
0029859295
-
UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells
-
Bregman D.B., et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. USA 1996, 93(21):11586-11590.
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, Issue.21
, pp. 11586-11590
-
-
Bregman, D.B.1
-
59
-
-
0036682183
-
The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme
-
Chiba N., Parvin J.D. The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res. 2002, 62(15):4222-4228.
-
(2002)
Cancer Res.
, vol.62
, Issue.15
, pp. 4222-4228
-
-
Chiba, N.1
Parvin, J.D.2
-
60
-
-
35748950163
-
Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1
-
Anindya R., Aygun O., Svejstrup J.Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 2007, 28(3):386-397.
-
(2007)
Mol. Cell
, vol.28
, Issue.3
, pp. 386-397
-
-
Anindya, R.1
Aygun, O.2
Svejstrup, J.Q.3
-
61
-
-
21644480208
-
BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II
-
Starita L.M., et al. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J. Biol. Chem. 2005, 280(26):24498-24505.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.26
, pp. 24498-24505
-
-
Starita, L.M.1
-
62
-
-
33847018897
-
BRCA1 ubiquitinates RPB8 in response to DNA damage
-
Wu W., et al. BRCA1 ubiquitinates RPB8 in response to DNA damage. Cancer Res. 2007, 67(3):951-958.
-
(2007)
Cancer Res.
, vol.67
, Issue.3
, pp. 951-958
-
-
Wu, W.1
-
63
-
-
73949101221
-
Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation
-
Harreman M., et al. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc. Natl. Acad. Sci. USA 2009, 106(49):20705-20710.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.49
, pp. 20705-20710
-
-
Harreman, M.1
-
64
-
-
78650733298
-
Cdc48/p97 mediates UV-dependent turnover of RNA Pol II
-
Verma R., et al. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol. Cell 2011, 41(1):82-92.
-
(2011)
Mol. Cell
, vol.41
, Issue.1
, pp. 82-92
-
-
Verma, R.1
-
65
-
-
83755178234
-
Uncovering ubiquitin and ubiquitin-like signaling networks
-
Vertegaal A.C. Uncovering ubiquitin and ubiquitin-like signaling networks. Chem. Rev. 2011, 111(12):7923-7940.
-
(2011)
Chem. Rev.
, vol.111
, Issue.12
, pp. 7923-7940
-
-
Vertegaal, A.C.1
|