메뉴 건너뛰기




Volumn 329, Issue 1, 2014, Pages 101-109

Ubiquitin at work: The ubiquitous regulation of the damage recognition step of NER

Author keywords

Damage recognition; K48 ubiquitin chains; K63 ubiquitin chains; Nucleotide excision repair (NER); Post translational modification (PTM); Ubiquitin

Indexed keywords

CSA PROTEIN; CSB PROTEIN; DDB1 PROTEIN; DDB2 PROTEIN; PROTEASOME; PROTEIN; RNA POLYMERASE II; UBIQUITIN; UNCLASSIFIED DRUG; UVSSA PROTEIN; XERODERMA PIGMENTOSUM GROUP C PROTEIN;

EID: 84919420749     PISSN: 00144827     EISSN: 10902422     Source Type: Journal    
DOI: 10.1016/j.yexcr.2014.07.018     Document Type: Review
Times cited : (24)

References (65)
  • 1
    • 84870751887 scopus 로고    scopus 로고
    • Nucleotide excision repair in eukaryotes
    • Scharer O.D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 2013, 5(10):a012609.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , Issue.10 , pp. a012609
    • Scharer, O.D.1
  • 2
    • 0942268166 scopus 로고    scopus 로고
    • DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy
    • Lehmann A.R. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003, 85(11):1101-1111.
    • (2003) Biochimie , vol.85 , Issue.11 , pp. 1101-1111
    • Lehmann, A.R.1
  • 3
    • 24044522541 scopus 로고    scopus 로고
    • UV-sensitive syndrome
    • Spivak G. UV-sensitive syndrome. Mutat. Res. 2005, 577(1-2):162-169.
    • (2005) Mutat. Res. , vol.577 , Issue.1-2 , pp. 162-169
    • Spivak, G.1
  • 4
    • 0032134423 scopus 로고    scopus 로고
    • Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair
    • Sugasawa K., et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 1998, 2(2):223-232.
    • (1998) Mol. Cell , vol.2 , Issue.2 , pp. 223-232
    • Sugasawa, K.1
  • 5
    • 53349128176 scopus 로고    scopus 로고
    • Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC
    • Hoogstraten D., et al. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J. Cell Sci. 2008, 121(Pt 17):2850-2859.
    • (2008) J. Cell Sci. , vol.121 , pp. 2850-2859
    • Hoogstraten, D.1
  • 6
    • 0035282109 scopus 로고    scopus 로고
    • A multistep damage recognition mechanism for global genomic nucleotide excision repair
    • Sugasawa K., et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001, 15(5):507-521.
    • (2001) Genes Dev. , vol.15 , Issue.5 , pp. 507-521
    • Sugasawa, K.1
  • 7
    • 0037127293 scopus 로고    scopus 로고
    • DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair
    • Wakasugi M., et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 2002, 277(3):1637-1640.
    • (2002) J. Biol. Chem. , vol.277 , Issue.3 , pp. 1637-1640
    • Wakasugi, M.1
  • 8
    • 57749198023 scopus 로고    scopus 로고
    • Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex
    • Scrima A., et al. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 2008, 135(7):1213-1223.
    • (2008) Cell , vol.135 , Issue.7 , pp. 1213-1223
    • Scrima, A.1
  • 9
    • 84861457511 scopus 로고    scopus 로고
    • TFIIH: when transcription met DNA repair
    • Compe E., Egly J.M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 2012, 13(6):343-354.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , Issue.6 , pp. 343-354
    • Compe, E.1    Egly, J.M.2
  • 10
    • 70449717367 scopus 로고    scopus 로고
    • Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning
    • Sugasawa K., et al. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 2009, 36(4):642-653.
    • (2009) Mol. Cell , vol.36 , Issue.4 , pp. 642-653
    • Sugasawa, K.1
  • 11
    • 84873408109 scopus 로고    scopus 로고
    • DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH
    • Mathieu N., et al. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr. Biol. 2013, 23(3):204-212.
    • (2013) Curr. Biol. , vol.23 , Issue.3 , pp. 204-212
    • Mathieu, N.1
  • 12
    • 33644812489 scopus 로고    scopus 로고
    • Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair
    • Camenisch U., et al. Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nat. Struct. Mol. Biol. 2006, 13(3):278-284.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , Issue.3 , pp. 278-284
    • Camenisch, U.1
  • 13
    • 0032529167 scopus 로고    scopus 로고
    • DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair
    • de Laat W.L., et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 1998, 12(16):2598-2609.
    • (1998) Genes Dev. , vol.12 , Issue.16 , pp. 2598-2609
    • de Laat, W.L.1
  • 14
    • 67349212889 scopus 로고    scopus 로고
    • Coordination of dual incision and repair synthesis in human nucleotide excision repair
    • Staresincic L., et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 2009, 28(8):1111-1120.
    • (2009) EMBO J. , vol.28 , Issue.8 , pp. 1111-1120
    • Staresincic, L.1
  • 15
    • 77649242633 scopus 로고    scopus 로고
    • Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
    • Ogi T., et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 2010, 37(5):714-727.
    • (2010) Mol. Cell , vol.37 , Issue.5 , pp. 714-727
    • Ogi, T.1
  • 16
    • 34447302016 scopus 로고    scopus 로고
    • Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner
    • Moser J., et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol. Cell 2007, 27(2):311-323.
    • (2007) Mol. Cell , vol.27 , Issue.2 , pp. 311-323
    • Moser, J.1
  • 18
    • 84860330462 scopus 로고    scopus 로고
    • UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair
    • Schwertman P., et al. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat. Genet. 2012, 44(5):598-602.
    • (2012) Nat. Genet. , vol.44 , Issue.5 , pp. 598-602
    • Schwertman, P.1
  • 19
    • 84860336243 scopus 로고    scopus 로고
    • Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair
    • Zhang X., et al. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat. Genet. 2012, 44(5):593-597.
    • (2012) Nat. Genet. , vol.44 , Issue.5 , pp. 593-597
    • Zhang, X.1
  • 20
    • 33747194740 scopus 로고    scopus 로고
    • Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
    • Fousteri M., et al. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 2006, 23(4):471-482.
    • (2006) Mol. Cell , vol.23 , Issue.4 , pp. 471-482
    • Fousteri, M.1
  • 21
    • 63649144413 scopus 로고    scopus 로고
    • Principles of ubiquitin and SUMO modifications in DNA repair
    • Bergink S., Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009, 458(7237):461-467.
    • (2009) Nature , vol.458 , Issue.7237 , pp. 461-467
    • Bergink, S.1    Jentsch, S.2
  • 22
    • 84876886904 scopus 로고    scopus 로고
    • Regulation of DNA damage responses by ubiquitin and SUMO
    • Jackson S.P., Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 2013, 49(5):795-807.
    • (2013) Mol. Cell , vol.49 , Issue.5 , pp. 795-807
    • Jackson, S.P.1    Durocher, D.2
  • 24
    • 84864222562 scopus 로고    scopus 로고
    • Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
    • Kulathu Y., Komander D. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 2012, 13(8):508-523.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , Issue.8 , pp. 508-523
    • Kulathu, Y.1    Komander, D.2
  • 25
    • 84861783400 scopus 로고    scopus 로고
    • Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions
    • Husnjak K., Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 2012, 81:291-322.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 291-322
    • Husnjak, K.1    Dikic, I.2
  • 26
    • 84883458147 scopus 로고    scopus 로고
    • Deubiquitylating enzymes and DNA damage response pathways
    • Jacq X., et al. Deubiquitylating enzymes and DNA damage response pathways. Cell. Biochem. Biophys. 2013, 67(1):25-43.
    • (2013) Cell. Biochem. Biophys. , vol.67 , Issue.1 , pp. 25-43
    • Jacq, X.1
  • 27
    • 84867101049 scopus 로고    scopus 로고
    • Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass
    • Povlsen L.K., et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat. Cell Biol. 2012, 14(10):1089-1098.
    • (2012) Nat. Cell Biol. , vol.14 , Issue.10 , pp. 1089-1098
    • Povlsen, L.K.1
  • 28
    • 79955606995 scopus 로고    scopus 로고
    • Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein
    • Kang T.H., Reardon J.T., Sancar A. Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein. Nucleic Acids Res. 2011, 39(8):3176-3187.
    • (2011) Nucleic Acids Res. , vol.39 , Issue.8 , pp. 3176-3187
    • Kang, T.H.1    Reardon, J.T.2    Sancar, A.3
  • 29
    • 70349944658 scopus 로고    scopus 로고
    • Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response
    • Marteijn J.A., et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 2009, 186(6):835-847.
    • (2009) J. Cell Biol. , vol.186 , Issue.6 , pp. 835-847
    • Marteijn, J.A.1
  • 30
    • 63049106823 scopus 로고    scopus 로고
    • Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases
    • Hannah J., Zhou P. Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases. DNA Repair 2009, 8(4):536-543.
    • (2009) DNA Repair , vol.8 , Issue.4 , pp. 536-543
    • Hannah, J.1    Zhou, P.2
  • 31
    • 0037509859 scopus 로고    scopus 로고
    • The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
    • Groisman R., et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003, 113(3):357-367.
    • (2003) Cell , vol.113 , Issue.3 , pp. 357-367
    • Groisman, R.1
  • 32
    • 21044442126 scopus 로고    scopus 로고
    • UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex
    • Sugasawa K., et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 2005, 121(3):387-400.
    • (2005) Cell , vol.121 , Issue.3 , pp. 387-400
    • Sugasawa, K.1
  • 33
    • 16244373399 scopus 로고    scopus 로고
    • DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex
    • Matsuda N., et al. DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair 2005, 4(5):537-545.
    • (2005) DNA Repair , vol.4 , Issue.5 , pp. 537-545
    • Matsuda, N.1
  • 34
    • 33644536070 scopus 로고    scopus 로고
    • The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites
    • Kapetanaki M.G., et al. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl. Acad. Sci. USA 2006, 103(8):2588-2593.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , Issue.8 , pp. 2588-2593
    • Kapetanaki, M.G.1
  • 35
    • 84859485912 scopus 로고    scopus 로고
    • Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase
    • Lan L., et al. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J. Biol. Chem. 2012, 287(15):12036-12049.
    • (2012) J. Biol. Chem. , vol.287 , Issue.15 , pp. 12036-12049
    • Lan, L.1
  • 36
    • 33744781568 scopus 로고    scopus 로고
    • Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage
    • Wang H., et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 2006, 22(3):383-394.
    • (2006) Mol. Cell , vol.22 , Issue.3 , pp. 383-394
    • Wang, H.1
  • 37
    • 0036606551 scopus 로고    scopus 로고
    • Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation
    • Rapic-Otrin V., et al. Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res. 2002, 30(11):2588-2598.
    • (2002) Nucleic Acids Res. , vol.30 , Issue.11 , pp. 2588-2598
    • Rapic-Otrin, V.1
  • 38
    • 81855227619 scopus 로고    scopus 로고
    • The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation
    • Fischer E.S., et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 2011, 147(5):1024-1039.
    • (2011) Cell , vol.147 , Issue.5 , pp. 1024-1039
    • Fischer, E.S.1
  • 39
    • 84899627951 scopus 로고    scopus 로고
    • Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity
    • Puumalainen M.R., et al. Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity. Nat. Commun. 2014, 5:3695.
    • (2014) Nat. Commun. , vol.5 , pp. 3695
    • Puumalainen, M.R.1
  • 40
    • 33744958177 scopus 로고    scopus 로고
    • Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC
    • El-Mahdy M.A., et al. Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J. Biol. Chem. 2006, 281(19):13404-13411.
    • (2006) J. Biol. Chem. , vol.281 , Issue.19 , pp. 13404-13411
    • El-Mahdy, M.A.1
  • 41
    • 65649105790 scopus 로고    scopus 로고
    • CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis
    • Liu L., et al. CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol. Cell 2009, 34(4):451-460.
    • (2009) Mol. Cell , vol.34 , Issue.4 , pp. 451-460
    • Liu, L.1
  • 42
    • 33646685947 scopus 로고    scopus 로고
    • A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins
    • Chen X., et al. A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins. Mol. Cell 2006, 22(4):489-499.
    • (2006) Mol. Cell , vol.22 , Issue.4 , pp. 489-499
    • Chen, X.1
  • 43
    • 57349187165 scopus 로고    scopus 로고
    • Cellular concentrations of DDB2 regulate dynamic binding of DDB1 at UV-induced DNA damage
    • Alekseev S., et al. Cellular concentrations of DDB2 regulate dynamic binding of DDB1 at UV-induced DNA damage. Mol. Cell Biol. 2008, 28(24):7402-7413.
    • (2008) Mol. Cell Biol. , vol.28 , Issue.24 , pp. 7402-7413
    • Alekseev, S.1
  • 44
    • 84870862277 scopus 로고    scopus 로고
    • The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability
    • Zhang L., et al. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 2012, 11(23):4378-4384.
    • (2012) Cell Cycle , vol.11 , Issue.23 , pp. 4378-4384
    • Zhang, L.1
  • 45
    • 84869111403 scopus 로고    scopus 로고
    • PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1
    • Pines A., et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 2012, 199(2):235-249.
    • (2012) J. Cell Biol. , vol.199 , Issue.2 , pp. 235-249
    • Pines, A.1
  • 46
    • 0038339144 scopus 로고    scopus 로고
    • A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein
    • Ng J.M., et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 2003, 17(13):1630-1645.
    • (2003) Genes Dev. , vol.17 , Issue.13 , pp. 1630-1645
    • Ng, J.M.1
  • 47
    • 11344250554 scopus 로고    scopus 로고
    • Roles of Rad23 protein in yeast nucleotide excision repair
    • Xie Z., et al. Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res. 2004, 32(20):5981-5990.
    • (2004) Nucleic Acids Res. , vol.32 , Issue.20 , pp. 5981-5990
    • Xie, Z.1
  • 48
    • 84860339685 scopus 로고    scopus 로고
    • Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex
    • Bergink S., et al. Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex. J. Cell Biol. 2012, 196(6):681-688.
    • (2012) J. Cell Biol. , vol.196 , Issue.6 , pp. 681-688
    • Bergink, S.1
  • 49
    • 84880032059 scopus 로고    scopus 로고
    • RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response
    • Poulsen S.L., et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J. Cell Biol. 2013, 201(6):797-807.
    • (2013) J. Cell Biol. , vol.201 , Issue.6 , pp. 797-807
    • Poulsen, S.L.1
  • 50
    • 84891107898 scopus 로고    scopus 로고
    • A human XPC protein interactome-a resource
    • Lubin A., et al. A human XPC protein interactome-a resource. Int. J. Mol. Sci. 2014, 15(1):141-158.
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.1 , pp. 141-158
    • Lubin, A.1
  • 51
    • 22244478319 scopus 로고    scopus 로고
    • DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation
    • Wang Q.E., et al. DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res. 2005, 33(13):4023-4034.
    • (2005) Nucleic Acids Res. , vol.33 , Issue.13 , pp. 4023-4034
    • Wang, Q.E.1
  • 52
    • 33744795969 scopus 로고    scopus 로고
    • CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
    • Groisman R., et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006, 20(11):1429-1434.
    • (2006) Genes Dev. , vol.20 , Issue.11 , pp. 1429-1434
    • Groisman, R.1
  • 53
    • 80053386690 scopus 로고    scopus 로고
    • BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein
    • Wei L., et al. BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein. Cancer Sci. 2011, 102(10):1840-1847.
    • (2011) Cancer Sci. , vol.102 , Issue.10 , pp. 1840-1847
    • Wei, L.1
  • 54
    • 77953091336 scopus 로고    scopus 로고
    • A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair
    • Anindya R., et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 2010, 38(5):637-648.
    • (2010) Mol. Cell , vol.38 , Issue.5 , pp. 637-648
    • Anindya, R.1
  • 55
    • 84860330507 scopus 로고    scopus 로고
    • Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair
    • Nakazawa Y., et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 2012, 44(5):586-592.
    • (2012) Nat. Genet. , vol.44 , Issue.5 , pp. 586-592
    • Nakazawa, Y.1
  • 56
    • 79955938866 scopus 로고    scopus 로고
    • The multifaceted roles of USP7: new therapeutic opportunities
    • Nicholson B., Kumar K.G. Suresh The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem. Biophys. 2011, 60(1-2):61-68.
    • (2011) Cell Biochem. Biophys. , vol.60 , Issue.1-2 , pp. 61-68
    • Nicholson, B.1    Kumar, K.G.S.2
  • 57
    • 84872414012 scopus 로고    scopus 로고
    • Ubiquitylation and degradation of elongating RNA polymerase II: the last resort
    • Wilson M.D., Harreman M., Svejstrup J.Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 2013, 1829(1):151-157.
    • (2013) Biochim. Biophys. Acta , vol.1829 , Issue.1 , pp. 151-157
    • Wilson, M.D.1    Harreman, M.2    Svejstrup, J.Q.3
  • 58
    • 0029859295 scopus 로고    scopus 로고
    • UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells
    • Bregman D.B., et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. USA 1996, 93(21):11586-11590.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , Issue.21 , pp. 11586-11590
    • Bregman, D.B.1
  • 59
    • 0036682183 scopus 로고    scopus 로고
    • The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme
    • Chiba N., Parvin J.D. The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res. 2002, 62(15):4222-4228.
    • (2002) Cancer Res. , vol.62 , Issue.15 , pp. 4222-4228
    • Chiba, N.1    Parvin, J.D.2
  • 60
    • 35748950163 scopus 로고    scopus 로고
    • Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1
    • Anindya R., Aygun O., Svejstrup J.Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 2007, 28(3):386-397.
    • (2007) Mol. Cell , vol.28 , Issue.3 , pp. 386-397
    • Anindya, R.1    Aygun, O.2    Svejstrup, J.Q.3
  • 61
    • 21644480208 scopus 로고    scopus 로고
    • BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II
    • Starita L.M., et al. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J. Biol. Chem. 2005, 280(26):24498-24505.
    • (2005) J. Biol. Chem. , vol.280 , Issue.26 , pp. 24498-24505
    • Starita, L.M.1
  • 62
    • 33847018897 scopus 로고    scopus 로고
    • BRCA1 ubiquitinates RPB8 in response to DNA damage
    • Wu W., et al. BRCA1 ubiquitinates RPB8 in response to DNA damage. Cancer Res. 2007, 67(3):951-958.
    • (2007) Cancer Res. , vol.67 , Issue.3 , pp. 951-958
    • Wu, W.1
  • 63
    • 73949101221 scopus 로고    scopus 로고
    • Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation
    • Harreman M., et al. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc. Natl. Acad. Sci. USA 2009, 106(49):20705-20710.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.49 , pp. 20705-20710
    • Harreman, M.1
  • 64
    • 78650733298 scopus 로고    scopus 로고
    • Cdc48/p97 mediates UV-dependent turnover of RNA Pol II
    • Verma R., et al. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol. Cell 2011, 41(1):82-92.
    • (2011) Mol. Cell , vol.41 , Issue.1 , pp. 82-92
    • Verma, R.1
  • 65
    • 83755178234 scopus 로고    scopus 로고
    • Uncovering ubiquitin and ubiquitin-like signaling networks
    • Vertegaal A.C. Uncovering ubiquitin and ubiquitin-like signaling networks. Chem. Rev. 2011, 111(12):7923-7940.
    • (2011) Chem. Rev. , vol.111 , Issue.12 , pp. 7923-7940
    • Vertegaal, A.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.