-
1
-
-
14944385553
-
Global cancer statistics, 2002
-
Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
-
(2005)
CA Cancer J Clin
, vol.55
, pp. 74-108
-
-
Parkin, D.M.1
Bray, F.2
Ferlay, J.3
-
2
-
-
81055155920
-
Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10, 801 women in 17 randomised trials
-
Darby S, McGale P, Correa C, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10, 801 women in 17 randomised trials. Lancet 2011;378:1707-16.
-
(2011)
Lancet
, vol.378
, pp. 1707-1716
-
-
Darby, S.1
McGale, P.2
Correa, C.3
-
3
-
-
77950512587
-
Breast cancer subtypes and the risk of local and regional relapse
-
Voduc KD, Cheang MC, Tyldesley S, et al. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 2010;28:1684-91.
-
(2010)
J Clin Oncol
, vol.28
, pp. 1684-1691
-
-
Voduc, K.D.1
Cheang, M.C.2
Tyldesley, S.3
-
4
-
-
44249114098
-
Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy
-
Nguyen PL, Taghian AG, Katz MS, et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol 2008;26:2373-8.
-
(2008)
J Clin Oncol
, vol.26
, pp. 2373-2378
-
-
Nguyen, P.L.1
Taghian, A.G.2
Katz, M.S.3
-
5
-
-
41149125468
-
Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in highrisk breast cancer: The Danish Breast Cancer Cooperative Group
-
Kyndi M, Sorensen FB, Knudsen H, et al. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in highrisk breast cancer: the Danish Breast Cancer Cooperative Group. J Clin Oncol 2008;26:1419-26.
-
(2008)
J Clin Oncol
, vol.26
, pp. 1419-1426
-
-
Kyndi, M.1
Sorensen, F.B.2
Knudsen, H.3
-
6
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069-75.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
-
8
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
9
-
-
78149475088
-
Regulation of mammalian autophagy in physiology and pathophysiology
-
Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010;90:1383-435.
-
(2010)
Physiol Rev
, vol.90
, pp. 1383-1435
-
-
Ravikumar, B.1
Sarkar, S.2
Davies, J.E.3
-
10
-
-
84886789682
-
MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells
-
Wang P, Zhang J, Zhang L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 2013;145:1133-43.
-
(2013)
Gastroenterology
, vol.145
, pp. 1133-1143
-
-
Wang, P.1
Zhang, J.2
Zhang, L.3
-
11
-
-
84862750365
-
MiR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions
-
Chang Y, Yan W, He X, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 2012;143:177-87.
-
(2012)
Gastroenterology
, vol.143
, pp. 177-187
-
-
Chang, Y.1
Yan, W.2
He, X.3
-
12
-
-
84877323647
-
Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2
-
McAlpine F, Williamson LE, Tooze SA, et al. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 2013;9:361-73.
-
(2013)
Autophagy
, vol.9
, pp. 361-373
-
-
McAlpine, F.1
Williamson, L.E.2
Tooze, S.A.3
-
13
-
-
84864884448
-
Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells
-
Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 2012;26:1752-60.
-
(2012)
Leukemia
, vol.26
, pp. 1752-1760
-
-
Yu, Y.1
Yang, L.2
Zhao, M.3
-
14
-
-
70349320158
-
Causes and consequences of micro-RNA dysregulation in cancer
-
Croce CM. Causes and consequences of micro-RNA dysregulation in cancer. Nat Rev Genet 2009;10:704-14.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 704-714
-
-
Croce, C.M.1
-
15
-
-
73349125465
-
MicroRNAs in cancer: Small molecules with a huge impact
-
Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009;27:5848-56.
-
(2009)
J Clin Oncol
, vol.27
, pp. 5848-5856
-
-
Iorio, M.V.1
Croce, C.M.2
-
16
-
-
33750370444
-
MicroRNA signatures in human cancers
-
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 857-866
-
-
Calin, G.A.1
Croce, C.M.2
-
17
-
-
84877344944
-
MIR181A regulates starvation- and rapamycininduced autophagy through targeting of ATG5
-
Tekirdag KA, Korkmaz G, Ozturk DG, et al. MIR181A regulates starvation- and rapamycininduced autophagy through targeting of ATG5. Autophagy 2013;9:374-85.
-
(2013)
Autophagy
, vol.9
, pp. 374-385
-
-
Tekirdag, K.A.1
Korkmaz, G.2
Ozturk, D.G.3
-
18
-
-
68049114782
-
Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells
-
Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009;138:592-603.
-
(2009)
Cell
, vol.138
, pp. 592-603
-
-
Shimono, Y.1
Zabala, M.2
Cho, R.W.3
-
19
-
-
84863012099
-
MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F
-
Jurmeister S, Baumann M, Balwierz A, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol 2012;32:633-51.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 633-651
-
-
Jurmeister, S.1
Baumann, M.2
Balwierz, A.3
-
20
-
-
43049103824
-
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 593-601
-
-
Gregory, P.A.1
Bert, A.G.2
Paterson, E.L.3
-
21
-
-
77954863985
-
Loss of miR-200c: A marker of aggressiveness and chemoresistance in female reproductive cancers
-
Cochrane DR, Howe EN, Spoelstra NS, et al. Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J Oncol 2010;2010:821717.
-
(2010)
J Oncol
, vol.2010
, pp. 821717
-
-
Cochrane, D.R.1
Howe, E.N.2
Spoelstra, N.S.3
-
22
-
-
41649091906
-
The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
-
Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.
-
(2008)
Genes Dev
, vol.22
, pp. 894-907
-
-
Park, S.M.1
Gaur, A.B.2
Lengyel, E.3
-
23
-
-
67650561891
-
Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression
-
Hurteau GJ, Carlson JA, Roos E, et al. Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression. Cell Cycle 2009;8:2064-9.
-
(2009)
Cell Cycle
, vol.8
, pp. 2064-2069
-
-
Hurteau, G.J.1
Carlson, J.A.2
Roos, E.3
-
24
-
-
84872815212
-
MiR-200c enhances radiosensitivity of human breast cancer cells
-
Lin J, Liu C, Gao F, et al. miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem 2013;114:606-15.
-
(2013)
J Cell Biochem
, vol.114
, pp. 606-615
-
-
Lin, J.1
Liu, C.2
Gao, F.3
-
25
-
-
84889661365
-
MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway
-
Shi L, Zhang S, Wu H, et al. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. PLoS One 2013;8:e78344.
-
(2013)
PLoS One
, vol.8
, pp. e78344
-
-
Shi, L.1
Zhang, S.2
Wu, H.3
-
26
-
-
84855342315
-
Mammosphere cells from high-passage MCF7 cell line show variable loss of tumorigenicity and radioresistance
-
Xie G, Zhan J, Tian Y, et al. Mammosphere cells from high-passage MCF7 cell line show variable loss of tumorigenicity and radioresistance. Cancer Lett 2012;316:53-61.
-
(2012)
Cancer Lett
, vol.316
, pp. 53-61
-
-
Xie, G.1
Zhan, J.2
Tian, Y.3
-
27
-
-
56449089812
-
Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptoractivating mutations
-
Yano S, Wang W, Li Q, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptoractivating mutations. Cancer Res 2008;68:9479-87.
-
(2008)
Cancer Res
, vol.68
, pp. 9479-9487
-
-
Yano, S.1
Wang, W.2
Li, Q.3
-
28
-
-
66849140943
-
MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents
-
Cochrane DR, Spoelstra NS, Howe EN, et al. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 2009;8:1055-66.
-
(2009)
Mol Cancer Ther
, vol.8
, pp. 1055-1066
-
-
Cochrane, D.R.1
Spoelstra, N.S.2
Howe, E.N.3
-
29
-
-
84862603409
-
Dual functions of autophagy in the response of breast tumor cells to radiation: Cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D 3
-
Bristol ML, Di X, Beckman MJ, et al. Dual functions of autophagy in the response of breast tumor cells to radiation: cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D 3. Autophagy 2012;8:739-53.
-
(2012)
Autophagy
, vol.8
, pp. 739-753
-
-
Bristol, M.L.1
Di, X.2
Beckman, M.J.3
-
30
-
-
77951228508
-
Hypoxia-induced autophagy: Cell death or cell survival?
-
Mazure NM, Pouyssegur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 2010;22:177-80.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 177-180
-
-
Mazure, N.M.1
Pouyssegur, J.2
-
31
-
-
40449086885
-
Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy
-
Apel A, Herr I, Schwarz H, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008;68:1485-94.
-
(2008)
Cancer Res
, vol.68
, pp. 1485-1494
-
-
Apel, A.1
Herr, I.2
Schwarz, H.3
-
32
-
-
0037069938
-
Downregulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance
-
Devarajan E, Sahin AA, Chen JS, et al. Downregulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 2002;21:8843-51.
-
(2002)
Oncogene
, vol.21
, pp. 8843-8851
-
-
Devarajan, E.1
Sahin, A.A.2
Chen, J.S.3
-
33
-
-
77955023765
-
Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy
-
Rothenberg C, Srinivasan D, Mah L, et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 2010;19:3219-32.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3219-3232
-
-
Rothenberg, C.1
Srinivasan, D.2
Mah, L.3
-
34
-
-
84856391412
-
Ubiquitination, localization, and stability of an antiapoptotic BCL2-like protein, BCL2L10/BCLb, are regulated by Ubiquilin1
-
Beverly LJ, Lockwood WW, Shah PP, et al. Ubiquitination, localization, and stability of an antiapoptotic BCL2-like protein, BCL2L10/BCLb, are regulated by Ubiquilin1. Proc Natl Acad Sci USA 2012;109:E119-E126.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E119-E126
-
-
Beverly, L.J.1
Lockwood, W.W.2
Shah, P.P.3
-
35
-
-
33750284176
-
Autophagy in cancer: Good, bad, or both?
-
Hippert MM, O'Toole PS, Thorburn A. Autophagy in cancer: good, bad, or both? Cancer Res 2006;66:9349-51.
-
(2006)
Cancer Res
, vol.66
, pp. 9349-9351
-
-
Hippert, M.M.1
O'Toole, P.S.2
Thorburn, A.3
-
37
-
-
75149112670
-
AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
-
Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010;70:288-98.
-
(2010)
Cancer Res
, vol.70
, pp. 288-298
-
-
Chresta, C.M.1
Davies, B.R.2
Hickson, I.3
-
38
-
-
79960356284
-
Autophagy contributes to resistance of tumor cells to ionizing radiation
-
Chaachouay H, Ohneseit P, Toulany M, et al. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 2011;99:287-92.
-
(2011)
Radiother Oncol
, vol.99
, pp. 287-292
-
-
Chaachouay, H.1
Ohneseit, P.2
Toulany, M.3
-
39
-
-
4644309196
-
The functions of animal microRNAs
-
Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5.
-
(2004)
Nature
, vol.431
, pp. 350-355
-
-
Ambros, V.1
-
40
-
-
84890285272
-
MiRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1
-
Huang X, Taeb S, Jahangiri S, et al. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res 2013;73:6972-86.
-
(2013)
Cancer Res
, vol.73
, pp. 6972-6986
-
-
Huang, X.1
Taeb, S.2
Jahangiri, S.3
-
41
-
-
84871359778
-
Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel
-
Cittelly DM, Dimitrova I, Howe EN, et al. Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel. Mol Cancer Ther 2012;11:2556-65.
-
(2012)
Mol Cancer Ther
, vol.11
, pp. 2556-2565
-
-
Cittelly, D.M.1
Dimitrova, I.2
Howe, E.N.3
-
42
-
-
77955507555
-
MiR-200c regulates induction of apoptosis through CD95 by targeting FAP-1
-
Schickel R, Park SM, Murmann AE, et al. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 2010;38:908-15.
-
(2010)
Mol Cell
, vol.38
, pp. 908-915
-
-
Schickel, R.1
Park, S.M.2
Murmann, A.E.3
-
43
-
-
0033978633
-
Distinct classes of phosphatidylinositol 30-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells
-
Petiot A, Ogier-Denis E, Blommaart EF, et al. Distinct classes of phosphatidylinositol 30-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000;275:992-8.
-
(2000)
J Biol Chem
, vol.275
, pp. 992-998
-
-
Petiot, A.1
Ogier-Denis, E.2
Blommaart, E.F.3
-
44
-
-
33847026354
-
Autophagy delays apoptotic death in breast cancer cells following DNA damage
-
Abedin MJ, Wang D, McDonnell MA, et al. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 2007;14:500-10.
-
(2007)
Cell Death Differ
, vol.14
, pp. 500-510
-
-
Abedin, M.J.1
Wang, D.2
McDonnell, M.A.3
-
45
-
-
80051706047
-
Autophagy inhibition contributes to radiation sensitization of esophageal squamous carcinoma cells
-
Chen YS, Song HX, Lu Y, et al. Autophagy inhibition contributes to radiation sensitization of esophageal squamous carcinoma cells. Dis Esophagus 2011;24:437-43.
-
(2011)
Dis Esophagus
, vol.24
, pp. 437-443
-
-
Chen, Y.S.1
Song, H.X.2
Lu, Y.3
-
46
-
-
84907421890
-
Down regulation of miR200c promotes radiation-induced thymic lymphoma by targeting BMI1
-
Cui J, Cheng Y, Zhang P, et al. Down regulation of miR200c promotes radiation-induced thymic lymphoma by targeting BMI1. J Cell Biochem 2014;115:1033-42.
-
(2014)
J Cell Biochem
, vol.115
, pp. 1033-1042
-
-
Cui, J.1
Cheng, Y.2
Zhang, P.3
-
47
-
-
84886413312
-
MiR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression
-
Tang H, Deng M, Tang Y, et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression. Clin Cancer Res 2013;19:5602-12.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 5602-5612
-
-
Tang, H.1
Deng, M.2
Tang, Y.3
|