메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 386-391

Improving semi-supervised support vector machines through unlabeled instances selection

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; GENERALIZATION ABILITY; HIER-ARCHICAL CLUSTERING; LABELED DATA; LEARNING PERFORMANCE; SEMI-SUPERVISED; UNLABELED DATA;

EID: 80055041497     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (47)

References (30)
  • 2
    • 77956501439 scopus 로고    scopus 로고
    • Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning
    • S. Ben-David, T. Lu, and D. Pal. Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning. In COLT, pages 33-44, 2008.
    • (2008) COLT , pp. 33-44
    • Ben-David, S.1    Lu, T.2    Pal, D.3
  • 3
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • K. Bennett and A. Demiriz. Semi-supervised support vector machines. In NIPS 11, pages 368-374. 1999.
    • (1999) NIPS , vol.11 , pp. 368-374
    • Bennett, K.1    Demiriz, A.2
  • 4
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In ICML, pages 19-26, 2001.
    • (2001) ICML , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
    • (1998) COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 6
    • 51949086172 scopus 로고    scopus 로고
    • Semi-supervised learning by low density separation
    • O. Chapelle and A. Zien. Semi-supervised learning by low density separation. In AISTATS, pages 57-64, 2005.
    • (2005) AISTATS , pp. 57-64
    • Chapelle, O.1    Zien, A.2
  • 9
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: An empirical study across techniques and domains
    • N. V. Chawla and G. Karakoulas. Learning from labeled and unlabeled data: An empirical study across techniques and domains. J. Artif. Intell. Res., 23:331-366, 2005. (Pubitemid 41525872)
    • (2005) Journal of Artificial Intelligence Research , vol.23 , pp. 331-366
    • Chawla, N.V.1    Karakoulas, G.2
  • 11
    • 1942452771 scopus 로고    scopus 로고
    • Semi-supervised learning of mixture models
    • F. G. Cozman, I. Cohen, and M. C. Cirelo. Semi-supervised learning of mixture models. In ICML, pages 99-106, 2003.
    • (2003) ICML , pp. 99-106
    • Cozman, F.G.1    Cohen, I.2    Cirelo, M.C.3
  • 12
    • 84899008485 scopus 로고    scopus 로고
    • PAC generalization bounds for co-training
    • S. Dasgupta, M. L. Littman, and D. McAllester. PAC generalization bounds for co-training. In NIPS 14, pages 375-382. 2002.
    • (2002) NIPS , vol.14 , pp. 375-382
    • Dasgupta, S.1    Littman, M.L.2    McAllester, D.3
  • 14
    • 71149102018 scopus 로고    scopus 로고
    • Graph construction and bmatching for semi-supervised learning
    • T. Jebara, J. Wang, and S. F. Chang. Graph construction and bmatching for semi-supervised learning. In ICML, pages 441-448, 2009.
    • (2009) ICML , pp. 441-448
    • Jebara, T.1    Wang, J.2    Chang, S.F.3
  • 15
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209, 1999.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 16
    • 85161990843 scopus 로고    scopus 로고
    • Statistical analysis of semi-supervised regression
    • J. Lafferty and L. Wasserman. Statistical analysis of semi-supervised regression. In NIPS 20, pages 801-808. 2008.
    • (2008) NIPS , vol.20 , pp. 801-808
    • Lafferty, J.1    Wasserman, L.2
  • 17
    • 26944471649 scopus 로고    scopus 로고
    • SETRED: Self-training with editing
    • M. Li and Z. H. Zhou. SETRED: Self-training with editing. In PAKDD, pages 611-621, 2005.
    • (2005) PAKDD , pp. 611-621
    • Li, M.1    Zhou, Z.H.2
  • 18
    • 71149093081 scopus 로고    scopus 로고
    • Semi-supervised learning using label mean
    • Y.-F. Li, J. T. Kwok, and Z.-H. Zhou. Semi-supervised learning using label mean. In ICML, pages 633-640, 2009.
    • (2009) ICML , pp. 633-640
    • Li, Y.-F.1    Kwok, J.T.2    Zhou, Z.-H.3
  • 19
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • D. J. Miller and H. S. Uyar. A mixture of experts classifier with learning based on both labelled and unlabelled data. In NIPS 9, pages 571-577. 1997.
    • (1997) NIPS , vol.9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 20
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Mach. Learn., 39(2):103-134, 2000. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 21
    • 84863338319 scopus 로고    scopus 로고
    • Unlabeled data: Now it helps, now it doesn't
    • A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn't. In NIPS 21, pages 1513-1520. 2009.
    • (2009) NIPS , vol.21 , pp. 1513-1520
    • Singh, A.1    Nowak, R.2    Zhu, X.3
  • 22
    • 38049125937 scopus 로고    scopus 로고
    • Analyzing co-training style algorithms
    • W. Wang and Z.-H. Zhou. Analyzing co-training style algorithms. In ECML, pages 454-465, 2007.
    • (2007) ECML , pp. 454-465
    • Wang, W.1    Zhou, Z.-H.2
  • 23
    • 77956506015 scopus 로고    scopus 로고
    • A new analysis of co-training
    • W. Wang and Z.-H. Zhou. A new analysis of co-training. In ICML, pages 1135-1142, 2010.
    • (2010) ICML , pp. 1135-1142
    • Wang, W.1    Zhou, Z.-H.2
  • 24
    • 56449085512 scopus 로고    scopus 로고
    • Graph transduction via alternating minimization
    • J. Wang, T. Jebara, and S. F. Chang. Graph transduction via alternating minimization. In ICML, pages 1144-1151, 2008.
    • (2008) ICML , pp. 1144-1151
    • Wang, J.1    Jebara, T.2    Chang, S.F.3
  • 25
    • 78149321430 scopus 로고    scopus 로고
    • The value of unlabeled data for classification problems
    • T. Zhang and F. Oles. The value of unlabeled data for classification problems. In ICML, pages 1191-1198, 2000.
    • (2000) ICML , pp. 1191-1198
    • Zhang, T.1    Oles, F.2
  • 26
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • DOI 10.1109/TKDE.2005.186
    • Z.-H. Zhou and M. Li. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng., 17(11):1529-1541, 2005. (Pubitemid 41704840)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 27
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowl. Inf. Syst., 24(3);415-439, 2010.
    • (2010) Knowl. Inf. Syst. , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 28
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf. Learning with local and global consistency. In NIPS 16, pages 595-602. 2004.
    • (2004) NIPS , vol.16 , pp. 595-602
    • Zhou, D.1    Bousquet, O.2    Lal, T.N.3    Weston, J.4    Scholkopf, B.5
  • 29
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, pages 912-919, 2003.
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3
  • 30
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report 1530, Dept. Comp. Sci., Univ. Wisconsin-Madison
    • X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Dept. Comp. Sci., Univ. Wisconsin-Madison, 2006.
    • (2006) Semi-supervised Learning Literature Survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.