메뉴 건너뛰기




Volumn 1, Issue , 2003, Pages 99-106

Semi-Supervised Learning of Mixture Models

Author keywords

[No Author keywords available]

Indexed keywords

DEGRADATION PHENOMENA; SEMI SUPERVISED LEARNING;

EID: 1942452771     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (192)

References (36)
  • 1
    • 0141622618 scopus 로고    scopus 로고
    • Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
    • Baluja, S. (1998). Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data. Neural Information Processing Systems.
    • (1998) Neural Information Processing Systems
    • Baluja, S.1
  • 2
    • 0002269120 scopus 로고
    • Limiting behavior of posterior distributions when the model is incorrect
    • Berk, R. H. (1966). Limiting behavior of posterior distributions when the model is incorrect. Annals of Math. Statistics, 51-58.
    • (1966) Annals of Math. Statistics , pp. 51-58
    • Berk, R.H.1
  • 5
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • Castelli, V., & Cover, T. M. (1995). On the exponential value of labeled samples. Pattern Recognition Letters, 16, 105-111.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 105-111
    • Castelli, V.1    Cover, T.M.2
  • 6
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • Castelli, V., & Cover, T. M. (1996). The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. IEEE Trans. on Information Theory, 42, 2102-2117.
    • (1996) IEEE Trans. on Information Theory , vol.42 , pp. 2102-2117
    • Castelli, V.1    Cover, T.M.2
  • 8
    • 1942483345 scopus 로고    scopus 로고
    • Unsupervised models for named entity classification
    • Collins, M., & Singer, Y. (2000). Unsupervised models for named entity classification. Int. Conf. on Machine Learning (pp. 327-334).
    • (2000) Int. Conf. on Machine Learning , pp. 327-334
    • Collins, M.1    Singer, Y.2
  • 10
    • 1942483344 scopus 로고
    • On the asymptotic improvement in the outcome of supervised learning provided by additional nonsupervised learning
    • Cooper, D. B., & Freeman, J. H. (1970). On the asymptotic improvement in the outcome of supervised learning provided by additional nonsupervised learning. IEEE Trans. on Computers, C-19, 1055-1063.
    • (1970) IEEE Trans. on Computers , vol.C-19 , pp. 1055-1063
    • Cooper, D.B.1    Freeman, J.H.2
  • 12
  • 16
    • 0018128173 scopus 로고
    • The efficiency of a linear discriminant function based on unclassified initial samples
    • Ganesalingam, S., & McLachlan, G. J. (1978). The efficiency of a linear discriminant function based on unclassified initial samples. Biometrika, 65.
    • (1978) Biometrika , vol.65
    • Ganesalingam, S.1    McLachlan, G.J.2
  • 18
    • 18744408629 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data for text classification with a large number of categories
    • Ghani, R. (2001). Combining labeled and unlabeled data for text classification with a large number of categories. IEEE Int. Conf. on Data Mining.
    • (2001) IEEE Int. Conf. on Data Mining
    • Ghani, R.1
  • 22
    • 0001230939 scopus 로고
    • A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample
    • Hosmer Jr., D. W. (1973). A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics, 29, 761-770.
    • (1973) Biometrics , vol.29 , pp. 761-770
    • Hosmer Jr., D.W.1
  • 24
    • 0000314722 scopus 로고    scopus 로고
    • Employing EM and pool-based active learning for text classification
    • McCallum, A., & Nigam, K. (1998). Employing EM and pool-based active learning for text classification. Int. Conf. on Machine Learning (pp. 359-367).
    • (1998) Int. Conf. on Machine Learning , pp. 359-367
    • McCallum, A.1    Nigam, K.2
  • 27
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • Miller, D. J., & Uyar, H. S. (1996). A mixture of experts classifier with learning based on both labelled and unlabelled data. In Neural Information Processing Systems. 571-577.
    • (1996) Neural Information Processing Systems , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 28
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39, 103-144.
    • (2000) Machine Learning , vol.39 , pp. 103-144
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 29
    • 0346083482 scopus 로고    scopus 로고
    • Technical Report CMU-CS-01-126. School of Computer Science, Carnegie Mellon University, Pennsylvania
    • Nigam, K. P. (2001). Using unlabeled data to improve text classification (Technical Report CMU-CS-01-126). School of Computer Science, Carnegie Mellon University, Pennsylvania.
    • (2001) Using Unlabeled Data to Improve Text Classification
    • Nigam, K.P.1
  • 30
    • 0000734588 scopus 로고
    • Normal discrimination with unclassified observations
    • O'Neill, T. J. (1978). Normal discrimination with unclassified observations. J. of American Statistical Assoc., 75, 821-826.
    • (1978) J. of American Statistical Assoc. , vol.75 , pp. 821-826
    • O'Neill, T.J.1
  • 31
    • 84947134568 scopus 로고
    • Learning from a mixture of labeled and unlabeled examples with parametric side information
    • Ratsaby, J., & Venkatesh, S. S. (1995). Learning from a mixture of labeled and unlabeled examples with parametric side information. COLT (pp. 412-417).
    • (1995) COLT , pp. 412-417
    • Ratsaby, J.1    Venkatesh, S.S.2
  • 32
    • 0005977840 scopus 로고    scopus 로고
    • Technical Report. Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
    • Seeger, M. (2001). Learning with labeled and unlabeled data (Technical Report). Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom.
    • (2001) Learning with Labeled and Unlabeled Data
    • Seeger, M.1
  • 34
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani, B. M., & Landgrebe, D. A. (1994b). The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. on Geoscience and Remote Sensing, 32, 1087-1095.
    • (1994) IEEE Trans. on Geoscience and Remote Sensing , vol.32 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 35
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1-25.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 36
    • 0005004572 scopus 로고    scopus 로고
    • A probability analysis on the value of unlabeled data for classification problems
    • Zhang, T., & Oles, F. (2000). A probability analysis on the value of unlabeled data for classification problems. Int. Joint Conf. on Machine Learning (pp. 1191-1198).
    • (2000) Int. Joint Conf. on Machine Learning , pp. 1191-1198
    • Zhang, T.1    Oles, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.