-
1
-
-
0141622618
-
Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
-
Baluja, S. (1998). Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data. Neural Information Processing Systems.
-
(1998)
Neural Information Processing Systems
-
-
Baluja, S.1
-
2
-
-
0002269120
-
Limiting behavior of posterior distributions when the model is incorrect
-
Berk, R. H. (1966). Limiting behavior of posterior distributions when the model is incorrect. Annals of Math. Statistics, 51-58.
-
(1966)
Annals of Math. Statistics
, pp. 51-58
-
-
Berk, R.H.1
-
5
-
-
0029195475
-
On the exponential value of labeled samples
-
Castelli, V., & Cover, T. M. (1995). On the exponential value of labeled samples. Pattern Recognition Letters, 16, 105-111.
-
(1995)
Pattern Recognition Letters
, vol.16
, pp. 105-111
-
-
Castelli, V.1
Cover, T.M.2
-
6
-
-
0001662441
-
The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
-
Castelli, V., & Cover, T. M. (1996). The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. IEEE Trans. on Information Theory, 42, 2102-2117.
-
(1996)
IEEE Trans. on Information Theory
, vol.42
, pp. 2102-2117
-
-
Castelli, V.1
Cover, T.M.2
-
7
-
-
5044221368
-
Learning Bayesian network classifiers for facial expression recognition using both labeled and unlabeled data
-
to appear
-
Cohen, I., Sebe, N., Cozman, F. G., Cirelo, M. C., & Huang, T. (2003). Learning Bayesian network classifiers for facial expression recognition using both labeled and unlabeled data. Conf. on Computer Vision and Pattern Recognition (to appear).
-
(2003)
Conf. on Computer Vision and Pattern Recognition
-
-
Cohen, I.1
Sebe, N.2
Cozman, F.G.3
Cirelo, M.C.4
Huang, T.5
-
8
-
-
1942483345
-
Unsupervised models for named entity classification
-
Collins, M., & Singer, Y. (2000). Unsupervised models for named entity classification. Int. Conf. on Machine Learning (pp. 327-334).
-
(2000)
Int. Conf. on Machine Learning
, pp. 327-334
-
-
Collins, M.1
Singer, Y.2
-
9
-
-
84957055189
-
Positive and unlabeled examples help learning
-
Springer-Verlag
-
Comité, F. D., Denis, F., Gilleron, R., & Letouzey, F. (1999). Positive and unlabeled examples help learning. Int. Conf. on Algorithmic Learning Theory (pp. 219-230). Springer-Verlag.
-
(1999)
Int. Conf. on Algorithmic Learning Theory
, pp. 219-230
-
-
Comité, F.D.1
Denis, F.2
Gilleron, R.3
Letouzey, F.4
-
10
-
-
1942483344
-
On the asymptotic improvement in the outcome of supervised learning provided by additional nonsupervised learning
-
Cooper, D. B., & Freeman, J. H. (1970). On the asymptotic improvement in the outcome of supervised learning provided by additional nonsupervised learning. IEEE Trans. on Computers, C-19, 1055-1063.
-
(1970)
IEEE Trans. on Computers
, vol.C-19
, pp. 1055-1063
-
-
Cooper, D.B.1
Freeman, J.H.2
-
15
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
16
-
-
0018128173
-
The efficiency of a linear discriminant function based on unclassified initial samples
-
Ganesalingam, S., & McLachlan, G. J. (1978). The efficiency of a linear discriminant function based on unclassified initial samples. Biometrika, 65.
-
(1978)
Biometrika
, vol.65
-
-
Ganesalingam, S.1
McLachlan, G.J.2
-
18
-
-
18744408629
-
Combining labeled and unlabeled data for text classification with a large number of categories
-
Ghani, R. (2001). Combining labeled and unlabeled data for text classification with a large number of categories. IEEE Int. Conf. on Data Mining.
-
(2001)
IEEE Int. Conf. on Data Mining
-
-
Ghani, R.1
-
22
-
-
0001230939
-
A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample
-
Hosmer Jr., D. W. (1973). A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics, 29, 761-770.
-
(1973)
Biometrics
, vol.29
, pp. 761-770
-
-
Hosmer Jr., D.W.1
-
24
-
-
0000314722
-
Employing EM and pool-based active learning for text classification
-
McCallum, A., & Nigam, K. (1998). Employing EM and pool-based active learning for text classification. Int. Conf. on Machine Learning (pp. 359-367).
-
(1998)
Int. Conf. on Machine Learning
, pp. 359-367
-
-
McCallum, A.1
Nigam, K.2
-
27
-
-
84898980291
-
A mixture of experts classifier with learning based on both labelled and unlabelled data
-
Miller, D. J., & Uyar, H. S. (1996). A mixture of experts classifier with learning based on both labelled and unlabelled data. In Neural Information Processing Systems. 571-577.
-
(1996)
Neural Information Processing Systems
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.S.2
-
28
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39, 103-144.
-
(2000)
Machine Learning
, vol.39
, pp. 103-144
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
29
-
-
0346083482
-
-
Technical Report CMU-CS-01-126. School of Computer Science, Carnegie Mellon University, Pennsylvania
-
Nigam, K. P. (2001). Using unlabeled data to improve text classification (Technical Report CMU-CS-01-126). School of Computer Science, Carnegie Mellon University, Pennsylvania.
-
(2001)
Using Unlabeled Data to Improve Text Classification
-
-
Nigam, K.P.1
-
30
-
-
0000734588
-
Normal discrimination with unclassified observations
-
O'Neill, T. J. (1978). Normal discrimination with unclassified observations. J. of American Statistical Assoc., 75, 821-826.
-
(1978)
J. of American Statistical Assoc.
, vol.75
, pp. 821-826
-
-
O'Neill, T.J.1
-
31
-
-
84947134568
-
Learning from a mixture of labeled and unlabeled examples with parametric side information
-
Ratsaby, J., & Venkatesh, S. S. (1995). Learning from a mixture of labeled and unlabeled examples with parametric side information. COLT (pp. 412-417).
-
(1995)
COLT
, pp. 412-417
-
-
Ratsaby, J.1
Venkatesh, S.S.2
-
32
-
-
0005977840
-
-
Technical Report. Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
-
Seeger, M. (2001). Learning with labeled and unlabeled data (Technical Report). Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom.
-
(2001)
Learning with Labeled and Unlabeled Data
-
-
Seeger, M.1
-
34
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
-
Shahshahani, B. M., & Landgrebe, D. A. (1994b). The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. on Geoscience and Remote Sensing, 32, 1087-1095.
-
(1994)
IEEE Trans. on Geoscience and Remote Sensing
, vol.32
, pp. 1087-1095
-
-
Shahshahani, B.M.1
Landgrebe, D.A.2
-
35
-
-
0002644952
-
Maximum likelihood estimation of misspecified models
-
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1-25.
-
(1982)
Econometrica
, vol.50
, pp. 1-25
-
-
White, H.1
-
36
-
-
0005004572
-
A probability analysis on the value of unlabeled data for classification problems
-
Zhang, T., & Oles, F. (2000). A probability analysis on the value of unlabeled data for classification problems. Int. Joint Conf. on Machine Learning (pp. 1191-1198).
-
(2000)
Int. Joint Conf. on Machine Learning
, pp. 1191-1198
-
-
Zhang, T.1
Oles, F.2
|