-
2
-
-
84878979335
-
Biology: the big challenges of big data
-
Marx V. Biology: the big challenges of big data. Nature 2013, 498:255-260.
-
(2013)
Nature
, vol.498
, pp. 255-260
-
-
Marx, V.1
-
3
-
-
84892452068
-
Next-generation plant science: putting big data to work
-
Brauer E.K., et al. Next-generation plant science: putting big data to work. Genome Bio. 2014, 15:301.
-
(2014)
Genome Bio.
, vol.15
, pp. 301
-
-
Brauer, E.K.1
-
4
-
-
84870067037
-
Computational thinking in the era of big data biology
-
Schatz M.C. Computational thinking in the era of big data biology. Genome Bio. 2012, 13:177.
-
(2012)
Genome Bio.
, vol.13
, pp. 177
-
-
Schatz, M.C.1
-
5
-
-
84891355779
-
SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop
-
Schumacher A., et al. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop. Bioinformatics 2014, 30:119-120.
-
(2014)
Bioinformatics
, vol.30
, pp. 119-120
-
-
Schumacher, A.1
-
6
-
-
84890045371
-
BioPig: a Hadoop-based analytic toolkit for large-scale sequence data
-
Nordberg H., et al. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data. Bioinformatics 2013, 29:3014-3019.
-
(2013)
Bioinformatics
, vol.29
, pp. 3014-3019
-
-
Nordberg, H.1
-
7
-
-
72849149423
-
Searching for SNPs with cloud computing
-
Langmead B., et al. Searching for SNPs with cloud computing. Genome Bio. 2009, 10:R134.
-
(2009)
Genome Bio.
, vol.10
, pp. R134
-
-
Langmead, B.1
-
8
-
-
84859075799
-
Hadoop-BAM: directly manipulating next generation sequencing data in the cloud
-
Niemenmaa M., et al. Hadoop-BAM: directly manipulating next generation sequencing data in the cloud. Bioinformatics 2012, 28:876-877.
-
(2012)
Bioinformatics
, vol.28
, pp. 876-877
-
-
Niemenmaa, M.1
-
9
-
-
84904725831
-
Survey of MapReduce frame operation in bioinformatics
-
Zou Q., et al. Survey of MapReduce frame operation in bioinformatics. Brief. Bioinform. 2013, 10.1093/bib/bbs088.
-
(2013)
Brief. Bioinform.
-
-
Zou, Q.1
-
11
-
-
84870724279
-
Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks
-
Bassel G.W., et al. Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. Plant Cell 2012, 24:3859-3875.
-
(2012)
Plant Cell
, vol.24
, pp. 3859-3875
-
-
Bassel, G.W.1
-
12
-
-
80054969308
-
Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets
-
Bassel G.W., et al. Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets. Plant Cell 2011, 23:3101-3116.
-
(2011)
Plant Cell
, vol.23
, pp. 3101-3116
-
-
Bassel, G.W.1
-
13
-
-
78650331647
-
Identification of functional elements and regulatory circuits by Drosophila modENCODE
-
Roy S., et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 2010, 330:1787-1797.
-
(2010)
Science
, vol.330
, pp. 1787-1797
-
-
Roy, S.1
-
14
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
Bernstein B.E., et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
Bernstein, B.E.1
-
15
-
-
84863537088
-
Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks
-
Marbach D., et al. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res. 2012, 22:1334-1349.
-
(2012)
Genome Res.
, vol.22
, pp. 1334-1349
-
-
Marbach, D.1
-
16
-
-
84897076534
-
Machine learning-based differential network analysis: a study of stress-responsive transcriptiomes in Arabidopsis
-
Ma C., et al. Machine learning-based differential network analysis: a study of stress-responsive transcriptiomes in Arabidopsis. Plant Cell 2014, 26:520-537.
-
(2014)
Plant Cell
, vol.26
, pp. 520-537
-
-
Ma, C.1
-
17
-
-
84876760070
-
The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis
-
Van Landeghem S., et al. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis. Plant Cell 2013, 25:794-807.
-
(2013)
Plant Cell
, vol.25
, pp. 794-807
-
-
Van Landeghem, S.1
-
18
-
-
84858593012
-
The iPlant collaborative: cyber infrastructure for plant biology
-
Goff S.A., et al. The iPlant collaborative: cyber infrastructure for plant biology. Front. Plant Sci. 2011, 2:34.
-
(2011)
Front. Plant Sci.
, vol.2
, pp. 34
-
-
Goff, S.A.1
-
19
-
-
0035860537
-
Machine learning for science: state of the art and future prospects
-
Mjolsness E., DeCoste D. Machine learning for science: state of the art and future prospects. Science 2001, 293:2051-2055.
-
(2001)
Science
, vol.293
, pp. 2051-2055
-
-
Mjolsness, E.1
DeCoste, D.2
-
20
-
-
33748849648
-
Machine learning in bioinformatics
-
Larranaga P., et al. Machine learning in bioinformatics. Brief. Bioinform. 2006, 7:86-112.
-
(2006)
Brief. Bioinform.
, vol.7
, pp. 86-112
-
-
Larranaga, P.1
-
21
-
-
84872256757
-
Machine learning and its applications to biology
-
Tarca A.L., et al. Machine learning and its applications to biology. PLoS Comput. Bio. 2007, 3:e116.
-
(2007)
PLoS Comput. Bio.
, vol.3
, pp. e116
-
-
Tarca, A.L.1
-
22
-
-
84901649746
-
Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning
-
Zhao N., et al. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning. PLoS Comput. Bio. 2014, 10:e1003592.
-
(2014)
PLoS Comput. Bio.
, vol.10
, pp. e1003592
-
-
Zhao, N.1
-
23
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
Bordes A., et al. Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 2005, 6:1579-1619.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
-
26
-
-
20744451888
-
Geometric representation of high dimension, low sample size data
-
Hall P., et al. Geometric representation of high dimension, low sample size data. J. R. Stat. Soc. B 2005, 67:427-444.
-
(2005)
J. R. Stat. Soc. B
, vol.67
, pp. 427-444
-
-
Hall, P.1
-
27
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y., et al. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
-
28
-
-
84879471136
-
Principal component analysis based feature extraction approach to identify circulating microRNA biomarkers
-
Taguchi Y.H., Murakami Y. Principal component analysis based feature extraction approach to identify circulating microRNA biomarkers. PloS ONE 2013, 8:e66714.
-
(2013)
PloS ONE
, vol.8
, pp. e66714
-
-
Taguchi, Y.H.1
Murakami, Y.2
-
29
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901, 2:559-572.
-
(1901)
Philos. Mag.
, vol.2
, pp. 559-572
-
-
Pearson, K.1
-
30
-
-
77953457001
-
-
John Wiley and Sons, R.A. Little, D.B. Rubin (Eds.)
-
Statistical Analysis with Missing Data 2002, John Wiley and Sons. 2nd edn. R.A. Little, D.B. Rubin (Eds.).
-
(2002)
Statistical Analysis with Missing Data
-
-
-
31
-
-
80053185923
-
Missing value imputation for gene expression data: computational techniques to recover missing data from available information
-
Liew A.W., et al. Missing value imputation for gene expression data: computational techniques to recover missing data from available information. Brief. Bioinform. 2011, 12:498-513.
-
(2011)
Brief. Bioinform.
, vol.12
, pp. 498-513
-
-
Liew, A.W.1
-
32
-
-
77950949307
-
Dealing with missing values in large-scale studies: microarray data imputation and beyond
-
Aittokallio T. Dealing with missing values in large-scale studies: microarray data imputation and beyond. Brief. Bioinform. 2010, 11:253-264.
-
(2010)
Brief. Bioinform.
, vol.11
, pp. 253-264
-
-
Aittokallio, T.1
-
33
-
-
34250689552
-
Advanced statistics: missing data in clinical research - part 1: an introduction and conceptual framework
-
Haukoos J.S., Newgard C.D. Advanced statistics: missing data in clinical research - part 1: an introduction and conceptual framework. Acad. Emerg. Med. 2007, 14:662-668.
-
(2007)
Acad. Emerg. Med.
, vol.14
, pp. 662-668
-
-
Haukoos, J.S.1
Newgard, C.D.2
-
34
-
-
78649828754
-
Issues in bioinformatics benchmarking: the case study of multiple sequence alignment
-
Aniba M.R., et al. Issues in bioinformatics benchmarking: the case study of multiple sequence alignment. Nucleic Acids Res. 2010, 38:7353-7363.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7353-7363
-
-
Aniba, M.R.1
-
35
-
-
66349129975
-
Toward a gold standard for promoter prediction evaluation
-
Abeel T., et al. Toward a gold standard for promoter prediction evaluation. Bioinformatics 2009, 25:i313-i320.
-
(2009)
Bioinformatics
, vol.25
, pp. i313-i320
-
-
Abeel, T.1
-
36
-
-
84902194040
-
Benchmarking protein-protein interface predictions: why you should care about protein size
-
Martin J. Benchmarking protein-protein interface predictions: why you should care about protein size. Proteins 2014, 82:1444-1452.
-
(2014)
Proteins
, vol.82
, pp. 1444-1452
-
-
Martin, J.1
-
37
-
-
77957944014
-
Protein-protein docking benchmark version 4.0
-
Hwang H., et al. Protein-protein docking benchmark version 4.0. Proteins 2010, 78:3111-3114.
-
(2010)
Proteins
, vol.78
, pp. 3111-3114
-
-
Hwang, H.1
-
38
-
-
33748091067
-
The knowledge integration perspective on learning and instruction
-
Cambridge University Press, R.K. Sawyer (Ed.)
-
Linn M.C. The knowledge integration perspective on learning and instruction. The Cambridge Handbook of the Learning Sciences 2006, 243-264. Cambridge University Press. R.K. Sawyer (Ed.).
-
(2006)
The Cambridge Handbook of the Learning Sciences
, pp. 243-264
-
-
Linn, M.C.1
-
39
-
-
77957988489
-
Class prediction for high-dimensional class-imbalanced data
-
Blagus R., Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010, 11:523.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 523
-
-
Blagus, R.1
Lusa, L.2
-
40
-
-
39749147033
-
Protein classification with imbalanced data
-
Zhao X.M., et al. Protein classification with imbalanced data. Proteins 2008, 70:1125-1132.
-
(2008)
Proteins
, vol.70
, pp. 1125-1132
-
-
Zhao, X.M.1
-
41
-
-
84874465120
-
HuntMi: an efficient and taxon-specific approach in pre-miRNA identification
-
Gudys A., et al. HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinformatics 2013, 14:83.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 83
-
-
Gudys, A.1
-
42
-
-
27144549260
-
Editorial: special issue on learning from imbalanced data sets
-
Chawla N.V., et al. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 2004, 1-6.
-
(2004)
SIGKDD Explorations
, pp. 1-6
-
-
Chawla, N.V.1
-
43
-
-
84896504827
-
Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods
-
Zang Q., et al. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. J. Chem. Inf. Model. 2013, 53:3244-3261.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3244-3261
-
-
Zang, Q.1
-
44
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey T.S., et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
-
45
-
-
84897757611
-
An ensemble method for prediction of conformational B-cell epitopes from antigen sequences
-
Zheng W., et al. An ensemble method for prediction of conformational B-cell epitopes from antigen sequences. Comput. Biol. Chem. 2014, 49:51-58.
-
(2014)
Comput. Biol. Chem.
, vol.49
, pp. 51-58
-
-
Zheng, W.1
-
47
-
-
43949125230
-
Learning from positive examples when the negative class is undetermined - microRNA gene identification
-
Yousef M., et al. Learning from positive examples when the negative class is undetermined - microRNA gene identification. Algorithms Mol. Bio. 2008, 3:2.
-
(2008)
Algorithms Mol. Bio.
, vol.3
, pp. 2
-
-
Yousef, M.1
-
49
-
-
84871736532
-
Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification
-
Lertampaiporn S., et al. Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification. Nucleic Acids Res. 2013, 41:e21.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. e21
-
-
Lertampaiporn, S.1
-
50
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27:861-874.
-
(2006)
Pattern Recogn. Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
51
-
-
80052576152
-
Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana
-
Zou C., et al. Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14992-14997.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14992-14997
-
-
Zou, C.1
-
52
-
-
84896693880
-
Machine learning applications in proteomics research: how the past can boost the future
-
Kelchtermans P., et al. Machine learning applications in proteomics research: how the past can boost the future. Proteomics 2014, 14:353-366.
-
(2014)
Proteomics
, vol.14
, pp. 353-366
-
-
Kelchtermans, P.1
-
53
-
-
27544459288
-
A protocol for building and evaluating predictors of disease state based on microarray data
-
Wessels L.F., et al. A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics 2005, 21:3755-3762.
-
(2005)
Bioinformatics
, vol.21
, pp. 3755-3762
-
-
Wessels, L.F.1
-
54
-
-
84866461485
-
Accurate estimation of short read mapping quality for next-generation genome sequencing
-
Ruffalo M., et al. Accurate estimation of short read mapping quality for next-generation genome sequencing. Bioinformatics 2012, 28:i349-i355.
-
(2012)
Bioinformatics
, vol.28
, pp. i349-i355
-
-
Ruffalo, M.1
-
55
-
-
84883746688
-
Machine learning and genome annotation: a match meant to be?
-
Yip K.Y., et al. Machine learning and genome annotation: a match meant to be?. Genome Bio. 2013, 14:205.
-
(2013)
Genome Bio.
, vol.14
, pp. 205
-
-
Yip, K.Y.1
-
56
-
-
79955483667
-
A framework for variation discovery and genotyping using next-generation DNA sequencing data
-
DePristo M.A., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43:491-498.
-
(2011)
Nat. Genet.
, vol.43
, pp. 491-498
-
-
DePristo, M.A.1
-
57
-
-
84859898660
-
A beginner's guide to eukaryotic genome annotation
-
Yandell M., Ence D. A beginner's guide to eukaryotic genome annotation. Nat. Rev. Genet. 2012, 13:329-342.
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 329-342
-
-
Yandell, M.1
Ence, D.2
-
58
-
-
84883477922
-
Computational prediction of the localization of microRNAs within their pre-miRNA
-
Leclercq M., et al. Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res. 2013, 41:7200-7211.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7200-7211
-
-
Leclercq, M.1
-
59
-
-
84893863046
-
Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape
-
Sherwood R.I., et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol. 2014, 32:171-178.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 171-178
-
-
Sherwood, R.I.1
-
60
-
-
84887476291
-
Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila
-
St Laurent G., et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat. Struct. Mol. Biol. 2013, 20:1333-1339.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1333-1339
-
-
St Laurent, G.1
-
61
-
-
84899450857
-
Transcriptional enhancers: from properties to genome-wide predictions
-
Shlyueva D., et al. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 2014, 15:272-286.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 272-286
-
-
Shlyueva, D.1
-
62
-
-
40749116115
-
A machine-learning approach to combined evidence validation of genome assemblies
-
Choi J.H., et al. A machine-learning approach to combined evidence validation of genome assemblies. Bioinformatics 2008, 24:744-750.
-
(2008)
Bioinformatics
, vol.24
, pp. 744-750
-
-
Choi, J.H.1
-
63
-
-
77349097604
-
Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction
-
Palmer L.E., et al. Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction. BMC Bioinformatics 2010, 11:33.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 33
-
-
Palmer, L.E.1
-
64
-
-
84876388379
-
TrueSight: a new algorithm for splice junction detection using RNA-seq
-
Li Y., et al. TrueSight: a new algorithm for splice junction detection using RNA-seq. Nucleic Acids Res. 2013, 41:e51.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. e51
-
-
Li, Y.1
-
65
-
-
84870260198
-
Analysis of the bread wheat genome using whole-genome shotgun sequencing
-
Brenchley R., et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491:705-710.
-
(2012)
Nature
, vol.491
, pp. 705-710
-
-
Brenchley, R.1
-
66
-
-
84870705693
-
Modeling regulatory networks to understand plant development: small is beautiful
-
Middleton A.M., et al. Modeling regulatory networks to understand plant development: small is beautiful. Plant Cell 2012, 24:3876-3891.
-
(2012)
Plant Cell
, vol.24
, pp. 3876-3891
-
-
Middleton, A.M.1
-
67
-
-
84865856641
-
Sequence and chromatin determinants of cell-type-specific transcription factor binding
-
Arvey A., et al. Sequence and chromatin determinants of cell-type-specific transcription factor binding. Genome Res. 2012, 22:1723-1734.
-
(2012)
Genome Res.
, vol.22
, pp. 1723-1734
-
-
Arvey, A.1
-
68
-
-
84873392956
-
Linking the signaling cascades and dynamic regulatory networks controlling stress responses
-
Gitter A., et al. Linking the signaling cascades and dynamic regulatory networks controlling stress responses. Genome Res. 2013, 23:365-376.
-
(2013)
Genome Res.
, vol.23
, pp. 365-376
-
-
Gitter, A.1
-
69
-
-
84901979488
-
Structural bioinformatics of the interactome
-
Petrey D., Honig B. Structural bioinformatics of the interactome. Annu. Rev. Biophys. 2014, 43:193-210.
-
(2014)
Annu. Rev. Biophys.
, vol.43
, pp. 193-210
-
-
Petrey, D.1
Honig, B.2
-
70
-
-
84870305264
-
Wisdom of crowds for robust gene network inference
-
Marbach D., et al. Wisdom of crowds for robust gene network inference. Nat. Methods 2012, 9:796-804.
-
(2012)
Nat. Methods
, vol.9
, pp. 796-804
-
-
Marbach, D.1
-
72
-
-
67449095889
-
Computational methods for discovering gene networks from gene data
-
Lee W.P., Tzou W.S. Computational methods for discovering gene networks from gene data. Brief. Bioinform. 2009, 10:408-423.
-
(2009)
Brief. Bioinform.
, vol.10
, pp. 408-423
-
-
Lee, W.P.1
Tzou, W.S.2
-
73
-
-
84862234802
-
The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools
-
Lamesch P., et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012, 40:D1202-D1210.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. D1202-D1210
-
-
Lamesch, P.1
-
74
-
-
84897374792
-
Towards revealing the functions of all genes in plants
-
Rhee S.Y., Mutwil M. Towards revealing the functions of all genes in plants. Trends Plant Sci. 2014, 19:212-221.
-
(2014)
Trends Plant Sci.
, vol.19
, pp. 212-221
-
-
Rhee, S.Y.1
Mutwil, M.2
-
75
-
-
84874663959
-
A large-scale evaluation of computational protein function prediction
-
Radivojac P., et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 2013, 10:221-227.
-
(2013)
Nat. Methods
, vol.10
, pp. 221-227
-
-
Radivojac, P.1
-
76
-
-
84904418029
-
PredictProtein - an open resource for online prediction of protein structural and functional features
-
Yachdav G., et al. PredictProtein - an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014, 42:W337-W343.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. W337-W343
-
-
Yachdav, G.1
-
77
-
-
84879976691
-
Predicting protein contact map using evolutionary and physical constraints by integer programming
-
Wang Z., Xu J. Predicting protein contact map using evolutionary and physical constraints by integer programming. Bioinformatics 2013, 29:i266-i273.
-
(2013)
Bioinformatics
, vol.29
, pp. i266-i273
-
-
Wang, Z.1
Xu, J.2
-
78
-
-
84898025233
-
A global machine learning based scoring function for protein structure prediction
-
Faraggi E., Kloczkowski A. A global machine learning based scoring function for protein structure prediction. Proteins 2014, 82:752-759.
-
(2014)
Proteins
, vol.82
, pp. 752-759
-
-
Faraggi, E.1
Kloczkowski, A.2
-
79
-
-
76449090623
-
GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data
-
Bradford J.R., et al. GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data. Plant J. 2010, 61:713-721.
-
(2010)
Plant J.
, vol.61
, pp. 713-721
-
-
Bradford, J.R.1
-
80
-
-
77956684350
-
Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis
-
Kaundal R., et al. Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol. 2010, 154:36-54.
-
(2010)
Plant Physiol.
, vol.154
, pp. 36-54
-
-
Kaundal, R.1
-
81
-
-
84879502532
-
PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins
-
Reumann S., et al. PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins. Front. Plant Sci. 2012, 3:194.
-
(2012)
Front. Plant Sci.
, vol.3
, pp. 194
-
-
Reumann, S.1
-
82
-
-
79957693449
-
Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses
-
Lingner T., et al. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 2011, 23:1556-1572.
-
(2011)
Plant Cell
, vol.23
, pp. 1556-1572
-
-
Lingner, T.1
-
83
-
-
77149131806
-
Plant secretome: unlocking secrets of the secreted proteins
-
Agrawal G.K., et al. Plant secretome: unlocking secrets of the secreted proteins. Proteomics 2010, 10:799-827.
-
(2010)
Proteomics
, vol.10
, pp. 799-827
-
-
Agrawal, G.K.1
-
84
-
-
80054923089
-
Revisiting the negative example sampling problem for predicting protein-protein interactions
-
Park Y., Marcotte E.M. Revisiting the negative example sampling problem for predicting protein-protein interactions. Bioinformatics 2011, 27:3024-3028.
-
(2011)
Bioinformatics
, vol.27
, pp. 3024-3028
-
-
Park, Y.1
Marcotte, E.M.2
-
85
-
-
84901049318
-
Genomic-enable prediction with classification algorithm
-
Ornella L., et al. Genomic-enable prediction with classification algorithm. Heredity 2014, 112:616-626.
-
(2014)
Heredity
, vol.112
, pp. 616-626
-
-
Ornella, L.1
-
86
-
-
80053384587
-
Neural network modeling of greenhouse tomato yield, growth and water use from automated crop monitoring data
-
Ehret D.L., et al. Neural network modeling of greenhouse tomato yield, growth and water use from automated crop monitoring data. Comput. Electron. Agric. 2011, 79:82-89.
-
(2011)
Comput. Electron. Agric.
, vol.79
, pp. 82-89
-
-
Ehret, D.L.1
-
87
-
-
84877037441
-
A support vector machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins
-
Verma R., Melcher U. A support vector machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins. BMC Bioinformatics 2012, 13:S9.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. S9
-
-
Verma, R.1
Melcher, U.2
-
88
-
-
77949497074
-
Bioinformatics challenges for genome-wide association studies
-
Moore J.H., et al. Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010, 26:445-455.
-
(2010)
Bioinformatics
, vol.26
, pp. 445-455
-
-
Moore, J.H.1
-
89
-
-
84863208608
-
Biological imaging software tools
-
Eliceiri K.W., et al. Biological imaging software tools. Nat. Methods 2012, 9:697-710.
-
(2012)
Nat. Methods
, vol.9
, pp. 697-710
-
-
Eliceiri, K.W.1
|