메뉴 건너뛰기




Volumn 19, Issue 12, 2014, Pages 798-808

Machine learning for Big Data analytics in plants

Author keywords

Big Data; Large scale datasets; Machine learning; Plants

Indexed keywords


EID: 84915785146     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2014.08.004     Document Type: Review
Times cited : (212)

References (89)
  • 2
    • 84878979335 scopus 로고    scopus 로고
    • Biology: the big challenges of big data
    • Marx V. Biology: the big challenges of big data. Nature 2013, 498:255-260.
    • (2013) Nature , vol.498 , pp. 255-260
    • Marx, V.1
  • 3
    • 84892452068 scopus 로고    scopus 로고
    • Next-generation plant science: putting big data to work
    • Brauer E.K., et al. Next-generation plant science: putting big data to work. Genome Bio. 2014, 15:301.
    • (2014) Genome Bio. , vol.15 , pp. 301
    • Brauer, E.K.1
  • 4
    • 84870067037 scopus 로고    scopus 로고
    • Computational thinking in the era of big data biology
    • Schatz M.C. Computational thinking in the era of big data biology. Genome Bio. 2012, 13:177.
    • (2012) Genome Bio. , vol.13 , pp. 177
    • Schatz, M.C.1
  • 5
    • 84891355779 scopus 로고    scopus 로고
    • SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop
    • Schumacher A., et al. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop. Bioinformatics 2014, 30:119-120.
    • (2014) Bioinformatics , vol.30 , pp. 119-120
    • Schumacher, A.1
  • 6
    • 84890045371 scopus 로고    scopus 로고
    • BioPig: a Hadoop-based analytic toolkit for large-scale sequence data
    • Nordberg H., et al. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data. Bioinformatics 2013, 29:3014-3019.
    • (2013) Bioinformatics , vol.29 , pp. 3014-3019
    • Nordberg, H.1
  • 7
    • 72849149423 scopus 로고    scopus 로고
    • Searching for SNPs with cloud computing
    • Langmead B., et al. Searching for SNPs with cloud computing. Genome Bio. 2009, 10:R134.
    • (2009) Genome Bio. , vol.10 , pp. R134
    • Langmead, B.1
  • 8
    • 84859075799 scopus 로고    scopus 로고
    • Hadoop-BAM: directly manipulating next generation sequencing data in the cloud
    • Niemenmaa M., et al. Hadoop-BAM: directly manipulating next generation sequencing data in the cloud. Bioinformatics 2012, 28:876-877.
    • (2012) Bioinformatics , vol.28 , pp. 876-877
    • Niemenmaa, M.1
  • 9
    • 84904725831 scopus 로고    scopus 로고
    • Survey of MapReduce frame operation in bioinformatics
    • Zou Q., et al. Survey of MapReduce frame operation in bioinformatics. Brief. Bioinform. 2013, 10.1093/bib/bbs088.
    • (2013) Brief. Bioinform.
    • Zou, Q.1
  • 11
    • 84870724279 scopus 로고    scopus 로고
    • Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks
    • Bassel G.W., et al. Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. Plant Cell 2012, 24:3859-3875.
    • (2012) Plant Cell , vol.24 , pp. 3859-3875
    • Bassel, G.W.1
  • 12
    • 80054969308 scopus 로고    scopus 로고
    • Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets
    • Bassel G.W., et al. Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets. Plant Cell 2011, 23:3101-3116.
    • (2011) Plant Cell , vol.23 , pp. 3101-3116
    • Bassel, G.W.1
  • 13
    • 78650331647 scopus 로고    scopus 로고
    • Identification of functional elements and regulatory circuits by Drosophila modENCODE
    • Roy S., et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 2010, 330:1787-1797.
    • (2010) Science , vol.330 , pp. 1787-1797
    • Roy, S.1
  • 14
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Bernstein B.E., et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
    • Bernstein, B.E.1
  • 15
    • 84863537088 scopus 로고    scopus 로고
    • Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks
    • Marbach D., et al. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res. 2012, 22:1334-1349.
    • (2012) Genome Res. , vol.22 , pp. 1334-1349
    • Marbach, D.1
  • 16
    • 84897076534 scopus 로고    scopus 로고
    • Machine learning-based differential network analysis: a study of stress-responsive transcriptiomes in Arabidopsis
    • Ma C., et al. Machine learning-based differential network analysis: a study of stress-responsive transcriptiomes in Arabidopsis. Plant Cell 2014, 26:520-537.
    • (2014) Plant Cell , vol.26 , pp. 520-537
    • Ma, C.1
  • 17
    • 84876760070 scopus 로고    scopus 로고
    • The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis
    • Van Landeghem S., et al. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis. Plant Cell 2013, 25:794-807.
    • (2013) Plant Cell , vol.25 , pp. 794-807
    • Van Landeghem, S.1
  • 18
    • 84858593012 scopus 로고    scopus 로고
    • The iPlant collaborative: cyber infrastructure for plant biology
    • Goff S.A., et al. The iPlant collaborative: cyber infrastructure for plant biology. Front. Plant Sci. 2011, 2:34.
    • (2011) Front. Plant Sci. , vol.2 , pp. 34
    • Goff, S.A.1
  • 19
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for science: state of the art and future prospects
    • Mjolsness E., DeCoste D. Machine learning for science: state of the art and future prospects. Science 2001, 293:2051-2055.
    • (2001) Science , vol.293 , pp. 2051-2055
    • Mjolsness, E.1    DeCoste, D.2
  • 20
    • 33748849648 scopus 로고    scopus 로고
    • Machine learning in bioinformatics
    • Larranaga P., et al. Machine learning in bioinformatics. Brief. Bioinform. 2006, 7:86-112.
    • (2006) Brief. Bioinform. , vol.7 , pp. 86-112
    • Larranaga, P.1
  • 21
    • 84872256757 scopus 로고    scopus 로고
    • Machine learning and its applications to biology
    • Tarca A.L., et al. Machine learning and its applications to biology. PLoS Comput. Bio. 2007, 3:e116.
    • (2007) PLoS Comput. Bio. , vol.3 , pp. e116
    • Tarca, A.L.1
  • 22
    • 84901649746 scopus 로고    scopus 로고
    • Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning
    • Zhao N., et al. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning. PLoS Comput. Bio. 2014, 10:e1003592.
    • (2014) PLoS Comput. Bio. , vol.10 , pp. e1003592
    • Zhao, N.1
  • 23
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Bordes A., et al. Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 2005, 6:1579-1619.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1579-1619
    • Bordes, A.1
  • 26
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall P., et al. Geometric representation of high dimension, low sample size data. J. R. Stat. Soc. B 2005, 67:427-444.
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 427-444
    • Hall, P.1
  • 27
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., et al. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1
  • 28
    • 84879471136 scopus 로고    scopus 로고
    • Principal component analysis based feature extraction approach to identify circulating microRNA biomarkers
    • Taguchi Y.H., Murakami Y. Principal component analysis based feature extraction approach to identify circulating microRNA biomarkers. PloS ONE 2013, 8:e66714.
    • (2013) PloS ONE , vol.8 , pp. e66714
    • Taguchi, Y.H.1    Murakami, Y.2
  • 29
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901, 2:559-572.
    • (1901) Philos. Mag. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 30
    • 77953457001 scopus 로고    scopus 로고
    • John Wiley and Sons, R.A. Little, D.B. Rubin (Eds.)
    • Statistical Analysis with Missing Data 2002, John Wiley and Sons. 2nd edn. R.A. Little, D.B. Rubin (Eds.).
    • (2002) Statistical Analysis with Missing Data
  • 31
    • 80053185923 scopus 로고    scopus 로고
    • Missing value imputation for gene expression data: computational techniques to recover missing data from available information
    • Liew A.W., et al. Missing value imputation for gene expression data: computational techniques to recover missing data from available information. Brief. Bioinform. 2011, 12:498-513.
    • (2011) Brief. Bioinform. , vol.12 , pp. 498-513
    • Liew, A.W.1
  • 32
    • 77950949307 scopus 로고    scopus 로고
    • Dealing with missing values in large-scale studies: microarray data imputation and beyond
    • Aittokallio T. Dealing with missing values in large-scale studies: microarray data imputation and beyond. Brief. Bioinform. 2010, 11:253-264.
    • (2010) Brief. Bioinform. , vol.11 , pp. 253-264
    • Aittokallio, T.1
  • 33
    • 34250689552 scopus 로고    scopus 로고
    • Advanced statistics: missing data in clinical research - part 1: an introduction and conceptual framework
    • Haukoos J.S., Newgard C.D. Advanced statistics: missing data in clinical research - part 1: an introduction and conceptual framework. Acad. Emerg. Med. 2007, 14:662-668.
    • (2007) Acad. Emerg. Med. , vol.14 , pp. 662-668
    • Haukoos, J.S.1    Newgard, C.D.2
  • 34
    • 78649828754 scopus 로고    scopus 로고
    • Issues in bioinformatics benchmarking: the case study of multiple sequence alignment
    • Aniba M.R., et al. Issues in bioinformatics benchmarking: the case study of multiple sequence alignment. Nucleic Acids Res. 2010, 38:7353-7363.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 7353-7363
    • Aniba, M.R.1
  • 35
    • 66349129975 scopus 로고    scopus 로고
    • Toward a gold standard for promoter prediction evaluation
    • Abeel T., et al. Toward a gold standard for promoter prediction evaluation. Bioinformatics 2009, 25:i313-i320.
    • (2009) Bioinformatics , vol.25 , pp. i313-i320
    • Abeel, T.1
  • 36
    • 84902194040 scopus 로고    scopus 로고
    • Benchmarking protein-protein interface predictions: why you should care about protein size
    • Martin J. Benchmarking protein-protein interface predictions: why you should care about protein size. Proteins 2014, 82:1444-1452.
    • (2014) Proteins , vol.82 , pp. 1444-1452
    • Martin, J.1
  • 37
    • 77957944014 scopus 로고    scopus 로고
    • Protein-protein docking benchmark version 4.0
    • Hwang H., et al. Protein-protein docking benchmark version 4.0. Proteins 2010, 78:3111-3114.
    • (2010) Proteins , vol.78 , pp. 3111-3114
    • Hwang, H.1
  • 38
    • 33748091067 scopus 로고    scopus 로고
    • The knowledge integration perspective on learning and instruction
    • Cambridge University Press, R.K. Sawyer (Ed.)
    • Linn M.C. The knowledge integration perspective on learning and instruction. The Cambridge Handbook of the Learning Sciences 2006, 243-264. Cambridge University Press. R.K. Sawyer (Ed.).
    • (2006) The Cambridge Handbook of the Learning Sciences , pp. 243-264
    • Linn, M.C.1
  • 39
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Blagus R., Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010, 11:523.
    • (2010) BMC Bioinformatics , vol.11 , pp. 523
    • Blagus, R.1    Lusa, L.2
  • 40
    • 39749147033 scopus 로고    scopus 로고
    • Protein classification with imbalanced data
    • Zhao X.M., et al. Protein classification with imbalanced data. Proteins 2008, 70:1125-1132.
    • (2008) Proteins , vol.70 , pp. 1125-1132
    • Zhao, X.M.1
  • 41
    • 84874465120 scopus 로고    scopus 로고
    • HuntMi: an efficient and taxon-specific approach in pre-miRNA identification
    • Gudys A., et al. HuntMi: an efficient and taxon-specific approach in pre-miRNA identification. BMC Bioinformatics 2013, 14:83.
    • (2013) BMC Bioinformatics , vol.14 , pp. 83
    • Gudys, A.1
  • 42
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla N.V., et al. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 2004, 1-6.
    • (2004) SIGKDD Explorations , pp. 1-6
    • Chawla, N.V.1
  • 43
    • 84896504827 scopus 로고    scopus 로고
    • Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods
    • Zang Q., et al. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. J. Chem. Inf. Model. 2013, 53:3244-3261.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3244-3261
    • Zang, Q.1
  • 44
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1
  • 45
    • 84897757611 scopus 로고    scopus 로고
    • An ensemble method for prediction of conformational B-cell epitopes from antigen sequences
    • Zheng W., et al. An ensemble method for prediction of conformational B-cell epitopes from antigen sequences. Comput. Biol. Chem. 2014, 49:51-58.
    • (2014) Comput. Biol. Chem. , vol.49 , pp. 51-58
    • Zheng, W.1
  • 47
    • 43949125230 scopus 로고    scopus 로고
    • Learning from positive examples when the negative class is undetermined - microRNA gene identification
    • Yousef M., et al. Learning from positive examples when the negative class is undetermined - microRNA gene identification. Algorithms Mol. Bio. 2008, 3:2.
    • (2008) Algorithms Mol. Bio. , vol.3 , pp. 2
    • Yousef, M.1
  • 49
    • 84871736532 scopus 로고    scopus 로고
    • Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification
    • Lertampaiporn S., et al. Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification. Nucleic Acids Res. 2013, 41:e21.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e21
    • Lertampaiporn, S.1
  • 50
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27:861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 51
    • 80052576152 scopus 로고    scopus 로고
    • Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana
    • Zou C., et al. Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14992-14997.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14992-14997
    • Zou, C.1
  • 52
    • 84896693880 scopus 로고    scopus 로고
    • Machine learning applications in proteomics research: how the past can boost the future
    • Kelchtermans P., et al. Machine learning applications in proteomics research: how the past can boost the future. Proteomics 2014, 14:353-366.
    • (2014) Proteomics , vol.14 , pp. 353-366
    • Kelchtermans, P.1
  • 53
    • 27544459288 scopus 로고    scopus 로고
    • A protocol for building and evaluating predictors of disease state based on microarray data
    • Wessels L.F., et al. A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics 2005, 21:3755-3762.
    • (2005) Bioinformatics , vol.21 , pp. 3755-3762
    • Wessels, L.F.1
  • 54
    • 84866461485 scopus 로고    scopus 로고
    • Accurate estimation of short read mapping quality for next-generation genome sequencing
    • Ruffalo M., et al. Accurate estimation of short read mapping quality for next-generation genome sequencing. Bioinformatics 2012, 28:i349-i355.
    • (2012) Bioinformatics , vol.28 , pp. i349-i355
    • Ruffalo, M.1
  • 55
    • 84883746688 scopus 로고    scopus 로고
    • Machine learning and genome annotation: a match meant to be?
    • Yip K.Y., et al. Machine learning and genome annotation: a match meant to be?. Genome Bio. 2013, 14:205.
    • (2013) Genome Bio. , vol.14 , pp. 205
    • Yip, K.Y.1
  • 56
    • 79955483667 scopus 로고    scopus 로고
    • A framework for variation discovery and genotyping using next-generation DNA sequencing data
    • DePristo M.A., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43:491-498.
    • (2011) Nat. Genet. , vol.43 , pp. 491-498
    • DePristo, M.A.1
  • 57
    • 84859898660 scopus 로고    scopus 로고
    • A beginner's guide to eukaryotic genome annotation
    • Yandell M., Ence D. A beginner's guide to eukaryotic genome annotation. Nat. Rev. Genet. 2012, 13:329-342.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 329-342
    • Yandell, M.1    Ence, D.2
  • 58
    • 84883477922 scopus 로고    scopus 로고
    • Computational prediction of the localization of microRNAs within their pre-miRNA
    • Leclercq M., et al. Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res. 2013, 41:7200-7211.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7200-7211
    • Leclercq, M.1
  • 59
    • 84893863046 scopus 로고    scopus 로고
    • Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape
    • Sherwood R.I., et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol. 2014, 32:171-178.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 171-178
    • Sherwood, R.I.1
  • 60
    • 84887476291 scopus 로고    scopus 로고
    • Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila
    • St Laurent G., et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat. Struct. Mol. Biol. 2013, 20:1333-1339.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1333-1339
    • St Laurent, G.1
  • 61
    • 84899450857 scopus 로고    scopus 로고
    • Transcriptional enhancers: from properties to genome-wide predictions
    • Shlyueva D., et al. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 2014, 15:272-286.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 272-286
    • Shlyueva, D.1
  • 62
    • 40749116115 scopus 로고    scopus 로고
    • A machine-learning approach to combined evidence validation of genome assemblies
    • Choi J.H., et al. A machine-learning approach to combined evidence validation of genome assemblies. Bioinformatics 2008, 24:744-750.
    • (2008) Bioinformatics , vol.24 , pp. 744-750
    • Choi, J.H.1
  • 63
    • 77349097604 scopus 로고    scopus 로고
    • Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction
    • Palmer L.E., et al. Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction. BMC Bioinformatics 2010, 11:33.
    • (2010) BMC Bioinformatics , vol.11 , pp. 33
    • Palmer, L.E.1
  • 64
    • 84876388379 scopus 로고    scopus 로고
    • TrueSight: a new algorithm for splice junction detection using RNA-seq
    • Li Y., et al. TrueSight: a new algorithm for splice junction detection using RNA-seq. Nucleic Acids Res. 2013, 41:e51.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e51
    • Li, Y.1
  • 65
    • 84870260198 scopus 로고    scopus 로고
    • Analysis of the bread wheat genome using whole-genome shotgun sequencing
    • Brenchley R., et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491:705-710.
    • (2012) Nature , vol.491 , pp. 705-710
    • Brenchley, R.1
  • 66
    • 84870705693 scopus 로고    scopus 로고
    • Modeling regulatory networks to understand plant development: small is beautiful
    • Middleton A.M., et al. Modeling regulatory networks to understand plant development: small is beautiful. Plant Cell 2012, 24:3876-3891.
    • (2012) Plant Cell , vol.24 , pp. 3876-3891
    • Middleton, A.M.1
  • 67
    • 84865856641 scopus 로고    scopus 로고
    • Sequence and chromatin determinants of cell-type-specific transcription factor binding
    • Arvey A., et al. Sequence and chromatin determinants of cell-type-specific transcription factor binding. Genome Res. 2012, 22:1723-1734.
    • (2012) Genome Res. , vol.22 , pp. 1723-1734
    • Arvey, A.1
  • 68
    • 84873392956 scopus 로고    scopus 로고
    • Linking the signaling cascades and dynamic regulatory networks controlling stress responses
    • Gitter A., et al. Linking the signaling cascades and dynamic regulatory networks controlling stress responses. Genome Res. 2013, 23:365-376.
    • (2013) Genome Res. , vol.23 , pp. 365-376
    • Gitter, A.1
  • 69
    • 84901979488 scopus 로고    scopus 로고
    • Structural bioinformatics of the interactome
    • Petrey D., Honig B. Structural bioinformatics of the interactome. Annu. Rev. Biophys. 2014, 43:193-210.
    • (2014) Annu. Rev. Biophys. , vol.43 , pp. 193-210
    • Petrey, D.1    Honig, B.2
  • 70
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach D., et al. Wisdom of crowds for robust gene network inference. Nat. Methods 2012, 9:796-804.
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 72
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from gene data
    • Lee W.P., Tzou W.S. Computational methods for discovering gene networks from gene data. Brief. Bioinform. 2009, 10:408-423.
    • (2009) Brief. Bioinform. , vol.10 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 73
    • 84862234802 scopus 로고    scopus 로고
    • The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools
    • Lamesch P., et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012, 40:D1202-D1210.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D1202-D1210
    • Lamesch, P.1
  • 74
    • 84897374792 scopus 로고    scopus 로고
    • Towards revealing the functions of all genes in plants
    • Rhee S.Y., Mutwil M. Towards revealing the functions of all genes in plants. Trends Plant Sci. 2014, 19:212-221.
    • (2014) Trends Plant Sci. , vol.19 , pp. 212-221
    • Rhee, S.Y.1    Mutwil, M.2
  • 75
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • Radivojac P., et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 2013, 10:221-227.
    • (2013) Nat. Methods , vol.10 , pp. 221-227
    • Radivojac, P.1
  • 76
    • 84904418029 scopus 로고    scopus 로고
    • PredictProtein - an open resource for online prediction of protein structural and functional features
    • Yachdav G., et al. PredictProtein - an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014, 42:W337-W343.
    • (2014) Nucleic Acids Res. , vol.42 , pp. W337-W343
    • Yachdav, G.1
  • 77
    • 84879976691 scopus 로고    scopus 로고
    • Predicting protein contact map using evolutionary and physical constraints by integer programming
    • Wang Z., Xu J. Predicting protein contact map using evolutionary and physical constraints by integer programming. Bioinformatics 2013, 29:i266-i273.
    • (2013) Bioinformatics , vol.29 , pp. i266-i273
    • Wang, Z.1    Xu, J.2
  • 78
    • 84898025233 scopus 로고    scopus 로고
    • A global machine learning based scoring function for protein structure prediction
    • Faraggi E., Kloczkowski A. A global machine learning based scoring function for protein structure prediction. Proteins 2014, 82:752-759.
    • (2014) Proteins , vol.82 , pp. 752-759
    • Faraggi, E.1    Kloczkowski, A.2
  • 79
    • 76449090623 scopus 로고    scopus 로고
    • GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data
    • Bradford J.R., et al. GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data. Plant J. 2010, 61:713-721.
    • (2010) Plant J. , vol.61 , pp. 713-721
    • Bradford, J.R.1
  • 80
    • 77956684350 scopus 로고    scopus 로고
    • Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis
    • Kaundal R., et al. Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol. 2010, 154:36-54.
    • (2010) Plant Physiol. , vol.154 , pp. 36-54
    • Kaundal, R.1
  • 81
    • 84879502532 scopus 로고    scopus 로고
    • PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins
    • Reumann S., et al. PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins. Front. Plant Sci. 2012, 3:194.
    • (2012) Front. Plant Sci. , vol.3 , pp. 194
    • Reumann, S.1
  • 82
    • 79957693449 scopus 로고    scopus 로고
    • Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses
    • Lingner T., et al. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 2011, 23:1556-1572.
    • (2011) Plant Cell , vol.23 , pp. 1556-1572
    • Lingner, T.1
  • 83
    • 77149131806 scopus 로고    scopus 로고
    • Plant secretome: unlocking secrets of the secreted proteins
    • Agrawal G.K., et al. Plant secretome: unlocking secrets of the secreted proteins. Proteomics 2010, 10:799-827.
    • (2010) Proteomics , vol.10 , pp. 799-827
    • Agrawal, G.K.1
  • 84
    • 80054923089 scopus 로고    scopus 로고
    • Revisiting the negative example sampling problem for predicting protein-protein interactions
    • Park Y., Marcotte E.M. Revisiting the negative example sampling problem for predicting protein-protein interactions. Bioinformatics 2011, 27:3024-3028.
    • (2011) Bioinformatics , vol.27 , pp. 3024-3028
    • Park, Y.1    Marcotte, E.M.2
  • 85
    • 84901049318 scopus 로고    scopus 로고
    • Genomic-enable prediction with classification algorithm
    • Ornella L., et al. Genomic-enable prediction with classification algorithm. Heredity 2014, 112:616-626.
    • (2014) Heredity , vol.112 , pp. 616-626
    • Ornella, L.1
  • 86
    • 80053384587 scopus 로고    scopus 로고
    • Neural network modeling of greenhouse tomato yield, growth and water use from automated crop monitoring data
    • Ehret D.L., et al. Neural network modeling of greenhouse tomato yield, growth and water use from automated crop monitoring data. Comput. Electron. Agric. 2011, 79:82-89.
    • (2011) Comput. Electron. Agric. , vol.79 , pp. 82-89
    • Ehret, D.L.1
  • 87
    • 84877037441 scopus 로고    scopus 로고
    • A support vector machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins
    • Verma R., Melcher U. A support vector machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins. BMC Bioinformatics 2012, 13:S9.
    • (2012) BMC Bioinformatics , vol.13 , pp. S9
    • Verma, R.1    Melcher, U.2
  • 88
    • 77949497074 scopus 로고    scopus 로고
    • Bioinformatics challenges for genome-wide association studies
    • Moore J.H., et al. Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010, 26:445-455.
    • (2010) Bioinformatics , vol.26 , pp. 445-455
    • Moore, J.H.1
  • 89
    • 84863208608 scopus 로고    scopus 로고
    • Biological imaging software tools
    • Eliceiri K.W., et al. Biological imaging software tools. Nat. Methods 2012, 9:697-710.
    • (2012) Nat. Methods , vol.9 , pp. 697-710
    • Eliceiri, K.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.