메뉴 건너뛰기




Volumn 82, Issue 3, 2014, Pages 329-348

Fifty years of classification and regression trees

Author keywords

Classification trees; Machine learning; Prediction; Regression trees

Indexed keywords


EID: 84912521725     PISSN: 03067734     EISSN: 17515823     Source Type: Journal    
DOI: 10.1111/insr.12016     Document Type: Article
Times cited : (515)

References (144)
  • 1
    • 0000047140 scopus 로고
    • Nonparametric inference for a family of counting processes
    • Aalen O.O. (1978). Nonparametric inference for a family of counting processes. Ann. Stat., 6, 701-726.
    • (1978) Ann. Stat. , vol.6 , pp. 701-726
    • Aalen, O.1
  • 2
    • 0037202573 scopus 로고    scopus 로고
    • Binary partitioning for continuous longitudinal data: categorizing a prognostic variable
    • Abdolell M., LeBlanc M., Stephens D. & Harrison R.V. (2002). Binary partitioning for continuous longitudinal data: categorizing a prognostic variable. Stat. Med., 21, 3395-3409.
    • (2002) Stat. Med. , vol.21 , pp. 3395-3409
    • Abdolell, M.1    LeBlanc, M.2    Stephens, D.3    Harrison, R.4
  • 3
    • 84985667625 scopus 로고
    • Tree-structured exponential regression modeling
    • Ahn H. (1994a). Tree-structured exponential regression modeling. Biometrical J., 36, 43-61.
    • (1994) Biometrical J. , vol.36 , pp. 43-61
    • Ahn, H.1
  • 4
    • 84972809344 scopus 로고
    • Tree-structured extreme value model regression
    • Ahn H. (1994b). Tree-structured extreme value model regression. Commun. Stat.-Theor. M., 23, 153-174.
    • (1994) Commun. Stat.-Theor. M. , vol.23 , pp. 153-174
    • Ahn, H.1
  • 5
    • 11444252441 scopus 로고    scopus 로고
    • Log-gamma regression modeling through regression trees
    • Ahn H. (1996a). Log-gamma regression modeling through regression trees. Commun. Stat.-Theor. M., 25, 295-311.
    • (1996) Commun. Stat.-Theor. M. , vol.25 , pp. 295-311
    • Ahn, H.1
  • 6
    • 0043126829 scopus 로고    scopus 로고
    • Log-normal regression modeling through recursive partitioning
    • Ahn H. (1996b). Log-normal regression modeling through recursive partitioning. Comput. Stat. Data Anal., 21, 381-398.
    • (1996) Comput. Stat. Data Anal. , vol.21 , pp. 381-398
    • Ahn, H.1
  • 7
    • 0030901779 scopus 로고    scopus 로고
    • Tree-structured logistic model for over-dispersed binomial data with application to modeling developmental effects
    • Ahn H. & Chen J. (1997). Tree-structured logistic model for over-dispersed binomial data with application to modeling developmental effects. Biometrics, 53, 435-455.
    • (1997) Biometrics , vol.53 , pp. 435-455
    • Ahn, H.1    Chen, J.2
  • 8
    • 0028244077 scopus 로고
    • Tree-structured proportional hazards regression modeling
    • Ahn H. & Loh W.-Y. (1994). Tree-structured proportional hazards regression modeling. Biometrics, 50, 471-485.
    • (1994) Biometrics , vol.50 , pp. 471-485
    • Ahn, H.1    Loh, W.-Y.2
  • 11
    • 0029420361 scopus 로고
    • Survival trees with time-dependent covariates: application to estimating changes in the incubation period of AIDS
    • Bacchetti P. & Segal M.R. (1995). Survival trees with time-dependent covariates: application to estimating changes in the incubation period of AIDS. Lifetime Data Anal., 1, 35-47.
    • (1995) Lifetime Data Anal. , vol.1 , pp. 35-47
    • Bacchetti, P.1    Segal, M.2
  • 14
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. (1996). Bagging predictors. Mach. Learn., 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. (2001). Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 16
    • 0030166516 scopus 로고    scopus 로고
    • Classification trees with optimal multivariate decision nodes
    • Brown D.E., Pittard C.L. & Park H (1996). Classification trees with optimal multivariate decision nodes. Pattern. Recogn. Lett., 17, 699-703.
    • (1996) Pattern. Recogn. Lett. , vol.17 , pp. 699-703
    • Brown, D.1    Pittard, C.2    Park, H.3
  • 17
    • 0018668029 scopus 로고
    • Linear regression with censored data
    • Buckley J.J. & James I.R. (1979). Linear regression with censored data. Biometrika, 66, 429-436.
    • (1979) Biometrika , vol.66 , pp. 429-436
    • Buckley, J.1    James, I.2
  • 18
    • 0037189765 scopus 로고    scopus 로고
    • Using k-nearest-neighbor classification in the leaves of a tree
    • Buttrey S.E. & Karo C. (2002). Using k-nearest-neighbor classification in the leaves of a tree. Comput. Stat. Data Anal., 40, 27-37.
    • (2002) Comput. Stat. Data Anal. , vol.40 , pp. 27-37
    • Buttrey, S.1    Karo, C.2
  • 19
    • 11244354640 scopus 로고    scopus 로고
    • LOTUS: an algorithm for building accurate and comprehensible logistic regression trees
    • Chan K.-Y. & Loh W.-Y. (2004). LOTUS: an algorithm for building accurate and comprehensible logistic regression trees. J. Comput. Graph. Stat., 13, 826-852.
    • (2004) J. Comput. Graph. Stat. , vol.13 , pp. 826-852
    • Chan, K.-Y.1    Loh, W.-Y.2
  • 22
    • 2442479272 scopus 로고    scopus 로고
    • Nonparametric estimation of conditional quantiles using quantile regression trees
    • Chaudhuri P. & Loh W.-Y. (2002). Nonparametric estimation of conditional quantiles using quantile regression trees. Bernoulli, 8, 561-576.
    • (2002) Bernoulli , vol.8 , pp. 561-576
    • Chaudhuri, P.1    Loh, W.-Y.2
  • 25
    • 43249109611 scopus 로고    scopus 로고
    • Median regression tree for analysis of censored survival data
    • Cho H.J. & Hong S.-M. (2008). Median regression tree for analysis of censored survival data. IEEE T. Syst. Man Cy. A., 38, 715-726.
    • (2008) IEEE T. Syst. Man Cy. A. , vol.38 , pp. 715-726
    • Cho, H.1    Hong, S.-M.2
  • 26
    • 18744386102 scopus 로고    scopus 로고
    • Regression trees for analysis of count data with extra Poisson variation
    • Choi Y., Ahn H. & Chen J. (2005). Regression trees for analysis of count data with extra Poisson variation. Comput. Stat. Data Anal., 49, 893-915.
    • (2005) Comput. Stat. Data Anal. , vol.49 , pp. 893-915
    • Choi, Y.1    Ahn, H.2    Chen, J.3
  • 27
    • 0026135919 scopus 로고
    • Optimal partitioning for classification and regression trees
    • Chou P.A. (1991). Optimal partitioning for classification and regression trees. IEEE T. Pattern. Anal., 13, 340-354.
    • (1991) IEEE T. Pattern. Anal. , vol.13 , pp. 340-354
    • Chou, P.1
  • 28
    • 0002965760 scopus 로고
    • Generalized regression trees
    • Ciampi A. (1991). Generalized regression trees. Comput. Stat. Data. Anal., 12, 57-78.
    • (1991) Comput. Stat. Data. Anal. , vol.12 , pp. 57-78
    • Ciampi, A.1
  • 29
    • 0037197634 scopus 로고    scopus 로고
    • Prediction trees with soft nodes for binary outcomes
    • Ciampi A., Couturier A. & Li S.L. (2002). Prediction trees with soft nodes for binary outcomes. Stat. Med., 21, 1145-1165.
    • (2002) Stat. Med. , vol.21 , pp. 1145-1165
    • Ciampi, A.1    Couturier, A.2    Li, S.3
  • 30
    • 0023905660 scopus 로고
    • RECPAM: A computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics
    • Ciampi A., Hogg S.A., McKinney S. & Thiffault J. (1988). RECPAM: A computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. Comput. Meth. Prog. Bio., 26, 239-256.
    • (1988) Comput. Meth. Prog. Bio. , vol.26 , pp. 239-256
    • Ciampi, A.1    Hogg, S.2    McKinney, S.3    Thiffault, J.4
  • 31
    • 46149132001 scopus 로고
    • Stratification by stepwise regression, correspondence analysis and recursive partition: A comparison of three methods of analysis for survival data with covariates
    • Ciampi A., Thiffault J., Nakache J-P. & Asselain B. (1986). Stratification by stepwise regression, correspondence analysis and recursive partition: A comparison of three methods of analysis for survival data with covariates. Comput. Stat. Data Anal., 4, 185-204.
    • (1986) Comput. Stat. Data Anal. , vol.4 , pp. 185-204
    • Ciampi, A.1    Thiffault, J.2    Nakache, J.-P.3    Asselain, B.4
  • 32
    • 41949128553 scopus 로고    scopus 로고
    • Bayesian Weibull tree models for survival analysis of clinico-genomic data
    • Clarke J. & West M. (2008). Bayesian Weibull tree models for survival analysis of clinico-genomic data. Stat. Meth., 5, 238-262.
    • (2008) Stat. Meth. , vol.5 , pp. 238-262
    • Clarke, J.1    West, M.2
  • 33
    • 0002247546 scopus 로고
    • Exploratory methods in survival analysis
    • Eds. H.L. Koul & J.V. Deshpande -. Institute of Mathematical Statistics, IMS Lecture Notes-Monograph Series: Hayward, CA.
    • Crowley J., LeBlanc M., Gentleman R. & Salmon S. (1995). Exploratory methods in survival analysis. In Analysis of Censored Data, vol.27, Eds. H.L. Koul & J.V. Deshpande, pp. 55-77. Institute of Mathematical Statistics, IMS Lecture Notes-Monograph Series: Hayward, CA.
    • (1995) Analysis of Censored Data , vol.27 , pp. 55-77
    • Crowley, J.1    LeBlanc, M.2    Gentleman, R.3    Salmon, S.4
  • 34
    • 0024357519 scopus 로고
    • Exponential survival trees
    • Davis R.B. & Anderson J.R. (1989). Exponential survival trees. Stat. Med., 8, 947-961.
    • (1989) Stat. Med. , vol.8 , pp. 947-961
    • Davis, R.1    Anderson, J.2
  • 35
    • 0011153447 scopus 로고    scopus 로고
    • Multivariate regression trees: a new technique for modeling species-environment relationships
    • De'ath G. (2002). Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83, 1105-1117.
    • (2002) Ecology , vol.83 , pp. 1105-1117
    • De'ath, G.1
  • 36
    • 0033749212 scopus 로고    scopus 로고
    • Classification and regression trees: A powerful yet simple technique for ecological data analysis
    • De'ath G. & Fabricius K.E. (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81, 3178-3192.
    • (2000) Ecology , vol.81 , pp. 3178-3192
    • De'ath, G.1    Fabricius, K.2
  • 37
    • 0000228535 scopus 로고    scopus 로고
    • A Bayesian CART algorithm
    • Denison D.G.T., Mallick B.K. & Smith A.F.M. (1998). A Bayesian CART algorithm. Biometrika, 85, 363-377.
    • (1998) Biometrika , vol.85 , pp. 363-377
    • Denison, D.1    Mallick, B.2    Smith, A.3
  • 38
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • New York: Springer.
    • Dietterich T.G. (2000). Ensemble methods in machine learning. In Multiple Classifier Systems, LBCS-1857, pp. 1-15. New York: Springer.
    • (2000) Multiple Classifier Systems, LBCS-1857 , pp. 1-15
    • Dietterich, T.1
  • 39
    • 76749117619 scopus 로고    scopus 로고
    • An investigation of missing data methods for classification trees applied to binary response data
    • Ding Y. & Simonoff J.S. (2010). An investigation of missing data methods for classification trees applied to binary response data. J. Mach. Learn. Res., 11, 131-170.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 131-170
    • Ding, Y.1    Simonoff, J.2
  • 41
    • 0012625154 scopus 로고
    • The use of automatic interaction detector and similar search procedures
    • Doyle P. (1973). The use of automatic interaction detector and similar search procedures. Oper. Res. Quart., 24, 465-467.
    • (1973) Oper. Res. Quart. , vol.24 , pp. 465-467
    • Doyle, P.1
  • 42
    • 77956661141 scopus 로고    scopus 로고
    • Combining an additive and tree-based regression model simultaneously: STIMA
    • Dusseldorp E., Conversano C. & VanOs B.J. (2010). Combining an additive and tree-based regression model simultaneously: STIMA. J. Comput. Graph. Stat., 19, 514-530.
    • (2010) J. Comput. Graph. Stat. , vol.19 , pp. 514-530
    • Dusseldorp, E.1    Conversano, C.2    VanOs, B.3
  • 43
    • 12344290273 scopus 로고    scopus 로고
    • The regression trunk approach to discover treatment covariate interaction
    • Dusseldorp E. & Meulman J.J. (2004). The regression trunk approach to discover treatment covariate interaction. Psychometrika, 69, 355-374.
    • (2004) Psychometrika , vol.69 , pp. 355-374
    • Dusseldorp, E.1    Meulman, J.2
  • 44
    • 0041779664 scopus 로고
    • Alchemy in the behavioural sciences
    • Einhorn H.J. (1972). Alchemy in the behavioural sciences. Public Opin. Quart., 36, 367-378.
    • (1972) Public Opin. Quart. , vol.36 , pp. 367-378
    • Einhorn, H.1
  • 45
    • 15944366924 scopus 로고    scopus 로고
    • Regression tree analysis using TARGET
    • Fan G. & Gray J.B. (2005). Regression tree analysis using TARGET. J. Comput. Graph. Stat., 14, 1-13.
    • (2005) J. Comput. Graph. Stat. , vol.14 , pp. 1-13
    • Fan, G.1    Gray, J.2
  • 46
    • 33748861409 scopus 로고    scopus 로고
    • Trees for correlated survival data by goodness of split, with applications to tooth prognosis
    • Fan J., Su X., Levine R.A., Nunn M.E. & LeBlanc M. (2006). Trees for correlated survival data by goodness of split, with applications to tooth prognosis. J. Amer. Statist. Assoc., 101, 959-967.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 959-967
    • Fan, J.1    Su, X.2    Levine, R.3    Nunn, M.4    LeBlanc, M.5
  • 47
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenic., 7(2), 179-188.
    • (1936) Ann. Eugenic. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.1
  • 48
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y. & Schapire R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55(1), 119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 49
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J., Hastie T. & Tibshirani R. (2000). Additive logistic regression: A statistical view of boosting. Ann. Stat., 38(2), 337-374.
    • (2000) Ann. Stat. , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 50
    • 3543051838 scopus 로고    scopus 로고
    • Functional trees
    • Gama J. (2004). Functional trees. Mach. Learn., 55, 219-250.
    • (2004) Mach. Learn. , vol.55 , pp. 219-250
    • Gama, J.1
  • 51
    • 16544382022 scopus 로고    scopus 로고
    • Identification of prognostic factors with multivariate survival data
    • Gao F., Manatunga A.K. & Chen S. (2004). Identification of prognostic factors with multivariate survival data. Comput. Stat. Data Anal., 45, 813-824.
    • (2004) Comput. Stat. Data Anal. , vol.45 , pp. 813-824
    • Gao, F.1    Manatunga, A.2    Chen, S.3
  • 52
    • 79954510153 scopus 로고    scopus 로고
    • Phase-type survival trees and mixed distribution survival trees for clustering patients' hospital length of stay
    • Garg L., McClean S., Meenan B.J. & Millard P. (2011). Phase-type survival trees and mixed distribution survival trees for clustering patients' hospital length of stay. Informatica, 22, 57-72.
    • (2011) Informatica , vol.22 , pp. 57-72
    • Garg, L.1    McClean, S.2    Meenan, B.3    Millard, P.4
  • 54
    • 84912547815 scopus 로고    scopus 로고
    • Scalable decision tree construction
    • In, Eds. L. Liu & T. Ozsu New York: Springer.
    • Gehrke J. (2009). Scalable decision tree construction. In Encyclopedia of Database Systems, Eds. L. Liu & T. Ozsu pp. 2469-2474. New York: Springer.
    • (2009) Encyclopedia of Database Systems , pp. 2469-2474
    • Gehrke, J.1
  • 55
    • 0021875130 scopus 로고
    • Tree-structured survival analysis
    • Gordon L. & Olshen R.A. (1985). Tree-structured survival analysis. Cancer Treat. Rep., 69, 1065-1069.
    • (1985) Cancer Treat. Rep. , vol.69 , pp. 1065-1069
    • Gordon, L.1    Olshen, R.2
  • 56
    • 35548967562 scopus 로고    scopus 로고
    • Classification tree analysis using TARGET
    • Gray J.B. & Fan G. (2008). Classification tree analysis using TARGET. Comput. Stat. Data Anal., 52, 1362-1372.
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 1362-1372
    • Gray, J.1    Fan, G.2
  • 59
    • 27844472191 scopus 로고    scopus 로고
    • An empirical comparison of ensemble methods based on classification trees
    • Hamza M. & Larocque D. (2005). An empirical comparison of ensemble methods based on classification trees. J. Stat. Comput. Sim., 75, 629-643.
    • (2005) J. Stat. Comput. Sim. , vol.75 , pp. 629-643
    • Hamza, M.1    Larocque, D.2
  • 60
    • 13444291932 scopus 로고    scopus 로고
    • A review and comparison of classification algorithms for medical decision making
    • Harper P.R. (2005). A review and comparison of classification algorithms for medical decision making. Health Policy, 71, 315-331.
    • (2005) Health Policy , vol.71 , pp. 315-331
    • Harper, P.1
  • 61
    • 0014534561 scopus 로고
    • A nonparametric partitioning procedure for pattern classification
    • Henrichon Jr. E.G. & Fu K.-S. (1969). A nonparametric partitioning procedure for pattern classification. IEEE T. Comput., C-18, 614-624.
    • (1969) IEEE T. Comput. , vol.18 C , pp. 614-624
    • Henrichon Jr., E.G.1    Fu, K.-S.2
  • 62
    • 0011249615 scopus 로고
    • A critical look at some analyses of major league baseball salaries
    • Hoaglin D.C. & Velleman P.F. (1995). A critical look at some analyses of major league baseball salaries. Am. Stat., 49, 277-285.
    • (1995) Am. Stat. , vol.49 , pp. 277-285
    • Hoaglin, D.1    Velleman, P.2
  • 64
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: a conditional inference framework
    • Hothorn T., Hornik K. & Zeileis A. (2006b). Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat., 15, 651-674.
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 65
    • 19044398807 scopus 로고    scopus 로고
    • Bundling classifiers by bagging trees
    • Hothorn T. & Lausen B. (2005). Bundling classifiers by bagging trees. Comput. Stat. Data Anal., 49, 1068-1078.
    • (2005) Comput. Stat. Data Anal. , vol.49 , pp. 1068-1078
    • Hothorn, T.1    Lausen, B.2
  • 67
    • 33751543346 scopus 로고    scopus 로고
    • Splitting variable selection for multivariate regression trees
    • Hsiao W.-C. & Shih Y.-S. (2007). Splitting variable selection for multivariate regression trees. Stat. Probab. Lett., 77, 265-271.
    • (2007) Stat. Probab. Lett. , vol.77 , pp. 265-271
    • Hsiao, W.-C.1    Shih, Y.-S.2
  • 68
    • 4944264367 scopus 로고    scopus 로고
    • Relative risk forests for exercise heart rate recovery as a predictor of mortality
    • Ishwaran H., Blackstone E.H., Pothier C.E. & Lauer M. (2004). Relative risk forests for exercise heart rate recovery as a predictor of mortality. J. Amer. Statist. Assoc., 99, 591-600.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 591-600
    • Ishwaran, H.1    Blackstone, E.2    Pothier, C.3    Lauer, M.4
  • 70
    • 8744279082 scopus 로고    scopus 로고
    • Survival analysis based on variance of survival time
    • Jin H., Lu Y., Stone K. & Black D.M. (2004). Survival analysis based on variance of survival time. Med. Decis. Making, 24, 670-680.
    • (2004) Med. Decis. Making , vol.24 , pp. 670-680
    • Jin, H.1    Lu, Y.2    Stone, K.3    Black, D.4
  • 71
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass G.V. (1980). An exploratory technique for investigating large quantities of categorical data. Ann. Appl. Stat., 29, 119-127.
    • (1980) Ann. Appl. Stat. , vol.29 , pp. 119-127
    • Kass, G.1
  • 72
    • 1542573450 scopus 로고    scopus 로고
    • Classification trees with unbiased multiway splits
    • Kim H. & Loh W.-Y. (2001). Classification trees with unbiased multiway splits. J. Amer. Statist. Assoc., 96, 589-604.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 589-604
    • Kim, H.1    Loh, W.-Y.2
  • 73
    • 0141907311 scopus 로고    scopus 로고
    • Classification trees with bivariate linear discriminant node models
    • Kim H. & Loh W.-Y. (2003). Classification trees with bivariate linear discriminant node models. J. Comput. Graph. Stat., 12, 512-530.
    • (2003) J. Comput. Graph. Stat. , vol.12 , pp. 512-530
    • Kim, H.1    Loh, W.-Y.2
  • 74
    • 33947650590 scopus 로고    scopus 로고
    • Visualizable and interpretable regression models with good prediction power
    • Kim H., Loh W.-Y., Shih Y.-S. & Chaudhuri P. (2007). Visualizable and interpretable regression models with good prediction power. IIE Transactions, 39, 565-579.
    • (2007) IIE Transactions , vol.39 , pp. 565-579
    • Kim, H.1    Loh, W.-Y.2    Shih, Y.-S.3    Chaudhuri, P.4
  • 77
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird N.M. & Ware J.H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.1    Ware, J.2
  • 79
    • 2942640466 scopus 로고    scopus 로고
    • Multivariate regression trees for analysis of abundance data
    • Larsen D.R. & Speckman P.L. (2004). Multivariate regression trees for analysis of abundance data. Biometrics, 60, 543-549.
    • (2004) Biometrics , vol.60 , pp. 543-549
    • Larsen, D.1    Speckman, P.2
  • 80
    • 0026770594 scopus 로고
    • Relative risk trees for censored survival data
    • LeBlanc M. & Crowley J. (1992). Relative risk trees for censored survival data. Biometrics, 48, 411-425.
    • (1992) Biometrics , vol.48 , pp. 411-425
    • LeBlanc, M.1    Crowley, J.2
  • 81
  • 82
    • 77249161117 scopus 로고    scopus 로고
    • Distance-based tree models for ranking data
    • Lee P.H. & Yu P.L.H. (2010). Distance-based tree models for ranking data. Comput. Stat. Data Anal., 54, 1672-1682.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 1672-1682
    • Lee, P.1    Yu, P.2
  • 83
    • 19044378185 scopus 로고    scopus 로고
    • On generalized multivariate decision tree by using GEE
    • Lee S.K. (2005). On generalized multivariate decision tree by using GEE. Comput. Stat. Data Anal., 49, 1105-1119.
    • (2005) Comput. Stat. Data Anal. , vol.49 , pp. 1105-1119
    • Lee, S.1
  • 84
    • 0348220947 scopus 로고    scopus 로고
    • Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression
    • Lemon S.C., Roy J., Clark M.A., Friedman P.D. & Rakowski W. (2003). Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. Ann. Behav. Med., 26, 172-181.
    • (2003) Ann. Behav. Med. , vol.26 , pp. 172-181
    • Lemon, S.1    Roy, J.2    Clark, M.3    Friedman, P.4    Rakowski, W.5
  • 85
    • 77649099980 scopus 로고
    • An analysis of variance for categorical data
    • Light R.J. & Margolin B.H. (1971). An analysis of variance for categorical data. J. Amer. Statist. Assoc., 66, 534-544.
    • (1971) J. Amer. Statist. Assoc. , vol.66 , pp. 534-544
    • Light, R.1    Margolin, B.2
  • 86
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim T.-S., Loh W.-Y. & Shih Y.-S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn., 40, 203-228.
    • (2000) Mach. Learn. , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 87
    • 0041061577 scopus 로고
    • Survival modeling through recursive stratification
    • Loh W.-Y. (1991). Survival modeling through recursive stratification. Comput. Stat. Data Anal., 12, 295-313.
    • (1991) Comput. Stat. Data Anal. , vol.12 , pp. 295-313
    • Loh, W.-Y.1
  • 88
    • 0036556537 scopus 로고    scopus 로고
    • Regression trees with unbiased variable selection and interaction detection
    • Loh W.-Y. (2002). Regression trees with unbiased variable selection and interaction detection. Stat. Sinica, 12, 361-386.
    • (2002) Stat. Sinica , vol.12 , pp. 361-386
    • Loh, W.-Y.1
  • 89
    • 85088284160 scopus 로고    scopus 로고
    • Logistic regression tree analysis
    • In, Ed. H. Pham -. New York: Springer
    • Loh W.-Y. (2006a). Logistic regression tree analysis. In Handbook of engineering statistics, Ed. H. Pham, pp. 537-549. New York: Springer
    • (2006) Handbook of engineering statistics , pp. 537-549
    • Loh, W.-Y.1
  • 90
    • 77950261294 scopus 로고    scopus 로고
    • Regression tree models for designed experiments
    • Ed. J. Rojo. IMS Lecture Notes-Monograph Series -. Bethesda, MD: Institute of Mathematical Statistics.
    • Loh W.-Y. (2006b). Regression tree models for designed experiments. In Second E. L. Lehmann Symposium, Vol.49, Ed. J. Rojo. IMS Lecture Notes-Monograph Series, pp. 210-228. Bethesda, MD: Institute of Mathematical Statistics.
    • (2006) Second E. L. Lehmann Symposium , vol.49 , pp. 210-228
    • Loh, W.-Y.1
  • 91
    • 77954879455 scopus 로고    scopus 로고
    • Classification and regression tree methods
    • In, Eds. F. Ruggeri, R. Kenett & F.W. Faltin. Chichester, UK: Wiley.
    • Loh W.-Y. (2008a). Classification and regression tree methods. In Encyclopedia of Statistics in Quality and Reliability, Eds. F. Ruggeri, R. Kenett & F.W. Faltin, pp. 315-323. Chichester, UK: Wiley.
    • (2008) Encyclopedia of Statistics in Quality and Reliability , pp. 315-323
    • Loh, W.-Y.1
  • 92
    • 61349166314 scopus 로고    scopus 로고
    • Regression by parts: fitting visually interpretable models with GUIDE
    • In, Eds. C. Chen, W. Härdle & A. Unwin. New York: Springer.
    • Loh W.-Y. (2008b). Regression by parts: fitting visually interpretable models with GUIDE. In Handbook of Data Visualization, Eds. C. Chen, W. Härdle & A. Unwin. pp. 447-469. New York: Springer.
    • (2008) Handbook of Data Visualization , pp. 447-469
    • Loh, W.-Y.1
  • 93
    • 78651532074 scopus 로고    scopus 로고
    • Improving the precision of classification trees
    • Loh W.-Y. (2009). Improving the precision of classification trees. Ann. Appl. Stat., 3, 1710-1737.
    • (2009) Ann. Appl. Stat. , vol.3 , pp. 1710-1737
    • Loh, W.-Y.1
  • 95
    • 84859890427 scopus 로고    scopus 로고
    • Variable selection for classification and regression in large p, small n problems
    • Eds. A. Barbour, H.P. Chan & D. Siegmund. Lecture Notes in Statistics-Proceedings. New York: Springer.
    • Loh W.-Y. (2012). Variable selection for classification and regression in large p, small n problems. In Probability approximations and beyond, Vol.205, Eds. A. Barbour, H.P. Chan & D. Siegmund. Lecture Notes in Statistics-Proceedings. pp. 133-157. New York: Springer.
    • (2012) Probability approximations and beyond , vol.205 , pp. 133-157
    • Loh, W.-Y.1
  • 97
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh W.-Y. & Shih Y.-S. (1997). Split selection methods for classification trees. Stat. Sinica, 7, 815-840.
    • (1997) Stat. Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 98
    • 84950459261 scopus 로고
    • Tree-structured classification via generalized discriminant analysis (with discussion)
    • Loh W.-Y. & Vanichsetakul N. (1988). Tree-structured classification via generalized discriminant analysis (with discussion). J. Amer. Statist. Assoc., 83, 715-728.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 715-728
    • Loh, W.-Y.1    Vanichsetakul, N.2
  • 99
    • 84876056969 scopus 로고    scopus 로고
    • Regression trees for longitudinal and multiresponse data
    • Loh W.-Y. & Zheng W. (2013). Regression trees for longitudinal and multiresponse data. Ann. Appl. Stat., 7(1), 495-522.
    • (2013) Ann. Appl. Stat. , vol.7 , Issue.1 , pp. 495-522
    • Loh, W.-Y.1    Zheng, W.2
  • 100
    • 0015562555 scopus 로고
    • A partitioning algorithm with application in pattern classification and the optimization of decision trees
    • Meisel W.S. & Michalopoulos D.A. (1973). A partitioning algorithm with application in pattern classification and the optimization of decision trees. IEEE T. Comput., C-22, 93-103.
    • (1973) IEEE T. Comput. , vol.22 C , pp. 93-103
    • Meisel, W.1    Michalopoulos, D.2
  • 101
    • 79751517591 scopus 로고    scopus 로고
    • Binary recursive partitioning: Background, methods, and application to psychology
    • Merkle E.C. & Shaffer V.A. (2011). Binary recursive partitioning: Background, methods, and application to psychology. Brit. J. Math. Stat. Psy., 64, 161-181.
    • (2011) Brit. J. Math. Stat. Psy. , vol.64 , pp. 161-181
    • Merkle, E.1    Shaffer, V.2
  • 102
    • 84915046103 scopus 로고
    • A modal search technique for predictive nominal scale multivariate analysis
    • Messenger R. & Mandell L. (1972). A modal search technique for predictive nominal scale multivariate analysis. J. Amer. Statist. Assoc., 67, 768-772.
    • (1972) J. Amer. Statist. Assoc. , vol.67 , pp. 768-772
    • Messenger, R.1    Mandell, L.2
  • 103
    • 23744457899 scopus 로고    scopus 로고
    • Tree-based multivariate regression and density estimation with right-censored data
    • Molinaro A.M., Dudoit S. & vander Laan M.J. (2004). Tree-based multivariate regression and density estimation with right-censored data. J. Multivariate Anal., 90, 154-177.
    • (2004) J. Multivariate Anal. , vol.90 , pp. 154-177
    • Molinaro, A.1    Dudoit, S.2    vander Laan, M.3
  • 104
    • 0006178946 scopus 로고
    • Problems in the analysis of survey data, and a proposal
    • Morgan J.N. & Sonquist J.A. (1963). Problems in the analysis of survey data, and a proposal. J. Amer. Statist. Assoc., 58, 415-434.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 415-434
    • Morgan, J.1    Sonquist, J.2
  • 105
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: a multi-disciplinary survey
    • Murthy S.K. (1998). Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min. Knowl. Disc., 2, 345-389.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 345-389
    • Murthy, S.1
  • 106
    • 0017532953 scopus 로고
    • An algorithm for constructing optimal binary decision trees
    • Payne H.J. & Meisel W.S. (1977). An algorithm for constructing optimal binary decision trees. IEEE T. Comput., C-26, 905-916.
    • (1977) IEEE T. Comput. , vol.26 C , pp. 905-916
    • Payne, H.1    Meisel, W.2
  • 107
    • 1242268938 scopus 로고    scopus 로고
    • Tree induction vs. logistic regression: A learning-curve analysis
    • Perlich C., Provost F. & Simonoff J.S. (2004). Tree induction vs. logistic regression: A learning-curve analysis. J. Mach. Learn. Res., 4, 211-255.
    • (2004) J. Mach. Learn. Res. , vol.4 , pp. 211-255
    • Perlich, C.1    Provost, F.2    Simonoff, J.3
  • 108
    • 0000957062 scopus 로고
    • Asymptotically efficient rank invariant test procedures
    • Peto R. & Peto J. (1972). Asymptotically efficient rank invariant test procedures. J. R. Stat. Soc. Ser.-A, 135, 185-207.
    • (1972) J. R. Stat. Soc. Ser.-A , vol.135 , pp. 185-207
    • Peto, R.1    Peto, J.2
  • 109
    • 30044434365 scopus 로고    scopus 로고
    • Incremental learning of linear model trees
    • Potts D. & Sammut C. (2005). Incremental learning of linear model trees. Mach. Learn., 61, 5-48.
    • (2005) Mach. Learn. , vol.61 , pp. 5-48
    • Potts, D.1    Sammut, C.2
  • 110
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. (1986). Induction of decision trees. Mach. Learn., 1, 81-106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 113
    • 84863304598 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing. Vienna, Austria
    • R Core Team. (2014). R: A language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0.
    • (2014) R: A language and environment for statistical computing
  • 114
    • 84879533886 scopus 로고    scopus 로고
    • Gaining insight with recursive partitioning of generalized linear models
    • Rusch T. & Zeileis A. (2013). Gaining insight with recursive partitioning of generalized linear models. J. Stat. Comput. Sim., 83(7), 1301-1315.
    • (2013) J. Stat. Comput. Sim. , vol.83 , Issue.7 , pp. 1301-1315
    • Rusch, T.1    Zeileis, A.2
  • 115
    • 53549131556 scopus 로고    scopus 로고
    • A bias correction algorithm for the Gini variable importance measure in classification trees
    • Sandri M. & Zuccolotto P. (2008). A bias correction algorithm for the Gini variable importance measure in classification trees. J. Comput. Graph. Stat., 17, 611-628.
    • (2008) J. Comput. Graph. Stat. , vol.17 , pp. 611-628
    • Sandri, M.1    Zuccolotto, P.2
  • 116
    • 0023942063 scopus 로고
    • Regression trees for censored data
    • Segal M.R. (1988). Regression trees for censored data. Biometrics, 44, 35-47.
    • (1988) Biometrics , vol.44 , pp. 35-47
    • Segal, M.1
  • 117
    • 0000644048 scopus 로고
    • Tree structured methods for longitudinal data
    • Segal M.R. (1992). Tree structured methods for longitudinal data. J. Amer. Statist. Assoc., 87, 407-418.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 407-418
    • Segal, M.1
  • 119
    • 84868300223 scopus 로고    scopus 로고
    • RE-EM trees: A data mining approach for longitudinal and clustered data
    • Sela R.J. & Simonoff J.S. (2012). RE-EM trees: A data mining approach for longitudinal and clustered data. Mach. Learn., 86, 169-207.
    • (2012) Mach. Learn. , vol.86 , pp. 169-207
    • Sela, R.1    Simonoff, J.2
  • 120
    • 0017725769 scopus 로고
    • Efficient decision tree design for discrete variable pattern recognition problems
    • Sethi I.K. & Chatterjee B. (1977). Efficient decision tree design for discrete variable pattern recognition problems. Pattern Recogn., 9, 197-206.
    • (1977) Pattern Recogn. , vol.9 , pp. 197-206
    • Sethi, I.1    Chatterjee, B.2
  • 121
    • 1842630388 scopus 로고    scopus 로고
    • A note on split selection bias in classification trees
    • Shih Y.S. (2004). A note on split selection bias in classification trees. Comput. Stat. Data Anal., 45, 457-466.
    • (2004) Comput. Stat. Data Anal. , vol.45 , pp. 457-466
    • Shih, Y.1
  • 122
    • 1842680821 scopus 로고    scopus 로고
    • Variable selection bias in regression trees with constant fits
    • Shih Y.S. & Tsai H.W. (2004). Variable selection bias in regression trees with constant fits. Comput. Stat. Data Anal., 45, 595-607.
    • (2004) Comput. Stat. Data Anal. , vol.45 , pp. 595-607
    • Shih, Y.1    Tsai, H.2
  • 124
    • 34548250123 scopus 로고    scopus 로고
    • Unbiased split selection for classification trees based on the Gini index
    • Strobl C., Boulesteix A. & Augustin T. (2007a). Unbiased split selection for classification trees based on the Gini index. Comput. Stat. Data Anal., 52, 483-501.
    • (2007) Comput. Stat. Data Anal. , vol.52 , pp. 483-501
    • Strobl, C.1    Boulesteix, A.2    Augustin, T.3
  • 126
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C., Boulesteix A., Zeileis A. & Hothorn T. (2007b). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8, 25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.2    Zeileis, A.3    Hothorn, T.4
  • 127
    • 84872283559 scopus 로고    scopus 로고
    • A new method for detecting differential item functioning in the Rasch model
    • Department of Statistics, Ludwig-Maximilians-Universitaet Muenchen.
    • Strobl C., Kopf J. & Zeileis A. (2010). A new method for detecting differential item functioning in the Rasch model. Tech. Rep. 92, Department of Statistics, Ludwig-Maximilians-Universitaet Muenchen.
    • (2010) Tech. Rep. , vol.92
    • Strobl, C.1    Kopf, J.2    Zeileis, A.3
  • 128
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests
    • Strobl C., Malley J. & Tutz G. (2009). An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol. Methods, 14, 323-348.
    • (2009) Psychol. Methods , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 129
    • 79955052335 scopus 로고    scopus 로고
    • Accounting for individual differences in Bradley-Terry models by means of recursive partitioning
    • Strobl C., Wickelmaier F. & Zeileis A. (2011). Accounting for individual differences in Bradley-Terry models by means of recursive partitioning. J. Educ. Behav. Stat., 36(2), 135-153.
    • (2011) J. Educ. Behav. Stat. , vol.36 , Issue.2 , pp. 135-153
    • Strobl, C.1    Wickelmaier, F.2    Zeileis, A.3
  • 130
    • 1642395595 scopus 로고    scopus 로고
    • Multivariate survival trees: A maximum likelihood approach based on frailty models
    • Su X. & Fan J. (2004). Multivariate survival trees: A maximum likelihood approach based on frailty models. Biometrics, 60, 93-99.
    • (2004) Biometrics , vol.60 , pp. 93-99
    • Su, X.1    Fan, J.2
  • 131
    • 4344681291 scopus 로고    scopus 로고
    • Maximum likelihood regression trees
    • Su X.G., Wang M. & Fan J.J. (2004). Maximum likelihood regression trees. J. Comput. Graph. Stat., 13, 586-598.
    • (2004) J. Comput. Graph. Stat. , vol.13 , pp. 586-598
    • Su, X.1    Wang, M.2    Fan, J.3
  • 134
  • 136
    • 0028443213 scopus 로고
    • Technical note: bias in information-based measures in decision tree induction
    • White A.P. & Liu W.Z. (1994). Technical note: bias in information-based measures in decision tree induction. Mach. Learn., 15, 321-329.
    • (1994) Mach. Learn. , vol.15 , pp. 321-329
    • White, A.1    Liu, W.2
  • 139
    • 33646425831 scopus 로고    scopus 로고
    • Model selection in omnivariate decision trees
    • Eds. J. Gama, R. Camacho, P. Brazdil, A. Jorge & L. Torgo. Lecture Notes in Artificial Intelligence -. Berlin: Springer-Verlag.
    • Yildiz O.T. & Alpaydin E. (2005b). Model selection in omnivariate decision trees. In Machine learning: ECML 2005, Proceedings, Vol.3720, Eds. J. Gama, R. Camacho, P. Brazdil, A. Jorge & L. Torgo. Lecture Notes in Artificial Intelligence, pp. 473-484. Berlin: Springer-Verlag.
    • (2005) Machine learning: ECML 2005, Proceedings , vol.3720 , pp. 473-484
    • Yildiz, O.1    Alpaydin, E.2
  • 140
    • 0033271632 scopus 로고    scopus 로고
    • Fitting trees to functional data, with an application to time-of-day patterns
    • Yu Y. & Lambert D. (1999). Fitting trees to functional data, with an application to time-of-day patterns. J. Comput. Graph. Stat., 8, 749-762.
    • (1999) J. Comput. Graph. Stat. , vol.8 , pp. 749-762
    • Yu, Y.1    Lambert, D.2
  • 142
    • 0032355968 scopus 로고    scopus 로고
    • Classification trees for multiple binary responses
    • Zhang H. (1998). Classification trees for multiple binary responses. J. Amer. Statist. Assoc., 93, 180-193.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 180-193
    • Zhang, H.1
  • 144
    • 65849418129 scopus 로고    scopus 로고
    • A tree-based method for modeling a multivariate ordinal response
    • Zhang H. & Ye Y. (2008). A tree-based method for modeling a multivariate ordinal response. Stat. and Its Interface, 1, 169-178.
    • (2008) Stat. and Its Interface , vol.1 , pp. 169-178
    • Zhang, H.1    Ye, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.