-
1
-
-
0034324043
-
A Formalism for Relevance and its Application in Feature Subset Selection
-
Bell, D. and Wang, H. (2000): "A Formalism for Relevance and its Application in Feature Subset Selection," Machine Learning, 4, 2, 175-195.
-
(2000)
Machine Learning
, vol.4
, Issue.2
, pp. 175-195
-
-
Bell, D.1
Wang, H.2
-
2
-
-
0035478854
-
Random Forests
-
Breiman, L. (2001a), "Random Forests," Machine Learning, 45, 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0000245743
-
Statistical Modeling: The Two Cultures
-
(2001b), "Statistical Modeling: The Two Cultures," Statistical Science, 16, 3, 199-231.
-
Statistical Science
, vol.16
, Issue.3
, pp. 199-231
-
-
-
4
-
-
0011996706
-
Manual on Setting Up, Using, and Understanding Random Forests v3.1
-
Technical Report
-
(2002), "Manual on Setting Up, Using, and Understanding Random Forests v3.1." Technical Report, ftp://ftp.stat.berkeley.edu/pub/users/ breiman/Using-random-forests-v3.1.pdf.
-
-
-
-
5
-
-
0003802343
-
-
London: Chapman & Hall
-
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984), Classification and Regression Trees, London: Chapman & Hall.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
6
-
-
53549120786
-
-
Breiman, L, Cutler, A, Liaw, A, and Wiener, M, 2006, Breiman and Cutler's Random Forests for Classification and Regression. R package version 4.5-18
-
Breiman, L., Cutler, A., Liaw, A., and Wiener, M. (2006), Breiman and Cutler's Random Forests for Classification and Regression. R package version 4.5-18 http://cran.r-project.org/doc/packages/randomForest.pdf.
-
-
-
-
7
-
-
34248632806
-
-
Bureau, A., Dupuis, J., Hayward, B., Falls, K., and Van Eerdewegh, P. (2003), Mapping Complex Traits using Random Forests, BMC Genetics, 4(Suppl. 1): S64, http://www.biomedcentral.eom/1471-2156/4/s1/ S64.
-
Bureau, A., Dupuis, J., Hayward, B., Falls, K., and Van Eerdewegh, P. (2003), "Mapping Complex Traits using Random Forests," BMC Genetics, 4(Suppl. 1): S64, http://www.biomedcentral.eom/1471-2156/4/s1/ S64.
-
-
-
-
8
-
-
34247115449
-
Boosted Trees for Ecological Modeling and Prediction
-
De'ath, G. (2007), "Boosted Trees for Ecological Modeling and Prediction," Ecology, 88, 1, 243-251.
-
(2007)
Ecology
, vol.88
, Issue.1
, pp. 243-251
-
-
De'ath, G.1
-
9
-
-
30644464444
-
Gene Selection and Classification of Microarray Data using Random Forest
-
Diaz-Uriarte, R., and Alvarez de Andrés, S. (2006), "Gene Selection and Classification of Microarray Data using Random Forest," BMC Genetics, 7:3, http://www.biomedcentral.com/1471-2105/7/3.
-
(2006)
BMC Genetics
, vol.7
, pp. 3
-
-
Diaz-Uriarte, R.1
Alvarez de Andrés, S.2
-
10
-
-
1842692307
-
Bias Correction in Classification Tree Construction
-
eds. C.E. Brodley and A. P. Danyluk, Williams College, Williamstown, MA
-
Dobra, A., and Gehrke, J. (2001), "Bias Correction in Classification Tree Construction," in Proceedings of the Seventeenth International Conference on Machine Learning, eds. C.E. Brodley and A. P. Danyluk, Williams College, Williamstown, MA, 90-97.
-
(2001)
Proceedings of the Seventeenth International Conference on Machine Learning
, pp. 90-97
-
-
Dobra, A.1
Gehrke, J.2
-
11
-
-
0035470889
-
Greedy Function Approximation: A Gradient Boosting Machine
-
Friedman, J.H. (2001), "Greedy Function Approximation: A Gradient Boosting Machine," The Annals of Statistics, 29, 1189-1232.
-
(2001)
The Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
12
-
-
53549127446
-
Tutorial: Getting Started with MART in R,
-
Technical Report, Standford University. Available online at
-
(2002), "Tutorial: Getting Started with MART in R," Technical Report, Standford University. Available online at http://www-stat.stanford. edu/∼jhf/r-mart/tutorial/tutorial.pdf.
-
-
-
-
13
-
-
0038702163
-
Multiple Additive Regression Trees with Application in Epidemiology
-
Friedman, J.H., and Meulman, J.J. (2003), "Multiple Additive Regression Trees with Application in Epidemiology," Statistics in Medicine, 22, 1365-1381.
-
(2003)
Statistics in Medicine
, vol.22
, pp. 1365-1381
-
-
Friedman, J.H.1
Meulman, J.J.2
-
14
-
-
0001552995
-
Cross-Validation, the Jackknife, and the Bootstrap: Excess Error Estimation in Forward Logistic Regression
-
Gong, G. (1986), "Cross-Validation, the Jackknife, and the Bootstrap: Excess Error Estimation in Forward Logistic Regression," Journal of the American Statistical Association, 81, 108-113.
-
(1986)
Journal of the American Statistical Association
, vol.81
, pp. 108-113
-
-
Gong, G.1
-
15
-
-
0036791583
-
Risk Assessment and Prediction of Rebleeding in Bleeding Gastroduodenal Ulcer
-
Guglielmi, A., Ruzzenente, A., Sandri, M., Kind, R., Lombardo, F., Rodella, L., Catalano, F., De Manzoni, G. and Cordiano, C. (2002), "Risk Assessment and Prediction of Rebleeding in Bleeding Gastroduodenal Ulcer," Endoscopy, 34, 771-779.
-
(2002)
Endoscopy
, vol.34
, pp. 771-779
-
-
Guglielmi, A.1
Ruzzenente, A.2
Sandri, M.3
Kind, R.4
Lombardo, F.5
Rodella, L.6
Catalano, F.7
De Manzoni, G.8
Cordiano, C.9
-
16
-
-
10044227497
-
Development of Linear, Ensemble, and Nonlinear Models for the Prediction and Interpretation of the Biological Activity of a Set of PDGFR Inhibitors
-
Guha, R., and Jurs, P.C. (2004), "Development of Linear, Ensemble, and Nonlinear Models for the Prediction and Interpretation of the Biological Activity of a Set of PDGFR Inhibitors," Journal of Chemical Inference and Computer Science, 44, 2179-2189.
-
(2004)
Journal of Chemical Inference and Computer Science
, vol.44
, pp. 2179-2189
-
-
Guha, R.1
Jurs, P.C.2
-
17
-
-
33749677657
-
Unbiased Recursive Partitioning: A Conditional Inference Framework
-
Hothorn, T., Hornik, K., and Zeileis, A. (2006a), "Unbiased Recursive Partitioning: A Conditional Inference Framework," Journal of Computational and Graphical Statistics, 15, 651-674.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
18
-
-
53549091184
-
-
Hothorn, T, Hornik, K, and Zeileis, A, 2006b, party: A Laboratory for Recursive Partitioning, R package version 0.9-11. Available online at
-
Hothorn, T., Hornik, K., and Zeileis, A. (2006b), "party: A Laboratory for Recursive Partitioning," R package version 0.9-11. Available online at http://cran.r-project.org/doc/vignettes/party/party.pdf.
-
-
-
-
19
-
-
85099325734
-
Irrelevant Features and the Subset Selection Problem
-
eds. W. W. Cohen and H. Hirsch, New Brunswick, NJ: Morgan Kaufmann
-
John, G.H., Kohavi, R., and Pfleger, K. (1994), "Irrelevant Features and the Subset Selection Problem," in Proceedings of the llth International Conference on Machine Learning, eds. W. W. Cohen and H. Hirsch, New Brunswick, NJ: Morgan Kaufmann, 121-129.
-
(1994)
Proceedings of the llth International Conference on Machine Learning
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
20
-
-
1542573450
-
Classification Trees with Unbiased Multiway Splits
-
Kim, H., and Loh, W. (2001), "Classification Trees with Unbiased Multiway Splits," Journal of the American Statistical Association, 96, 589-604.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 589-604
-
-
Kim, H.1
Loh, W.2
-
21
-
-
85077432727
-
On Biases in Estimating Multi-Valued Attributes
-
ed. C. Mellish, Montréal, Canada
-
Kononenko, I. (1995), "On Biases in Estimating Multi-Valued Attributes," in Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, ed. C. Mellish, Montréal, Canada, 1034-1040.
-
(1995)
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
, pp. 1034-1040
-
-
Kononenko, I.1
-
22
-
-
0031312210
-
Split Selection Methods for Classification Trees
-
Loh, W.-Y., Shih, Y.-S. (1997), "Split Selection Methods for Classification Trees," Statististica Sinica, 7, 815-840.
-
(1997)
Statististica Sinica
, vol.7
, pp. 815-840
-
-
Loh, W.-Y.1
Shih, Y.-S.2
-
23
-
-
25444453244
-
Screening Large-Scale Association Study Data: Exploiting Interactions using Random Forests
-
Available online at
-
Lunetta, K.L., Hayward, B.L., Segal, J., and Van Eerdewegh, P. (2004), "Screening Large-Scale Association Study Data: Exploiting Interactions using Random Forests," BMC Genetics, 5, 32. Available online at http://www.biomedcentral.com/1471-2156/5/32.
-
(2004)
BMC Genetics
, vol.5
, pp. 32
-
-
Lunetta, K.L.1
Hayward, B.L.2
Segal, J.3
Van Eerdewegh, P.4
-
24
-
-
33847236254
-
Multivariate Feature Selection and Hierarchical Classification for Infrared Spectroscopy: Serum-Based Detection of Bovine Spongiform Encepbalopathy
-
doi:10.1007/s00216-006-1070-5
-
Menze, B.H., Petrich, W., and Hamprecht F.A. (2007), "Multivariate Feature Selection and Hierarchical Classification for Infrared Spectroscopy: Serum-Based Detection of Bovine Spongiform Encepbalopathy," Analytical and Bioanalytical Chemistry, doi:10.1007/s00216-006-1070-5.
-
(2007)
Analytical and Bioanalytical Chemistry
-
-
Menze, B.H.1
Petrich, W.2
Hamprecht, F.A.3
-
27
-
-
33646517317
-
Boosted Regression (Boosting): A Tutorial and a Stata Plugin
-
Schonlau, M. (2005), "Boosted Regression (Boosting): A Tutorial and a Stata Plugin," The Stata Journal, 5, 3, 330-354.
-
(2005)
The Stata Journal
, vol.5
, Issue.3
, pp. 330-354
-
-
Schonlau, M.1
-
28
-
-
53549101527
-
Statistical Sources of Variable Selection Bias in Classification Trees Based on the Gini Index,
-
Technical Report, SFB 386
-
Strobl, C. (2005), "Statistical Sources of Variable Selection Bias in Classification Trees Based on the Gini Index," Technical Report, SFB 386, http://epub.ub.uni-muenchen.de/archive/00001789/01/paper.420.pdf.
-
(2005)
-
-
Strobl, C.1
-
29
-
-
33847096395
-
Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution
-
doi:10.1186/1471-2105- 8-25
-
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. (2007a), "Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution," BMC Bioinformatics, 8, 25, doi:10.1186/1471-2105- 8-25.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.-L.2
Zeileis, A.3
Hothorn, T.4
-
30
-
-
34548250123
-
Unbiased Split Selection for Classification Trees Based on the Gini Index
-
doi:10.1016/j.csda.2006.12. 030
-
Strobl, C., Boulesteix, A.-L., and Augustin, T. (2007b), "Unbiased Split Selection for Classification Trees Based on the Gini Index," Computational Statistics & Data Analysis, doi:10.1016/j.csda.2006.12. 030.
-
(2007)
Computational Statistics & Data Analysis
-
-
Strobl, C.1
Boulesteix, A.-L.2
Augustin, T.3
-
31
-
-
20444399504
-
Boosting: An Ensemble Learning Tool for Compound Classification and QSAR Modeling
-
Svetnik, V., Wang, T., Tong, C., Liaw, A., Sheridan, R.P., and Song Q. (2005), "Boosting: An Ensemble Learning Tool for Compound Classification and QSAR Modeling," Journal of Chemical Information and Modeling, 45, 786-799
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, pp. 786-799
-
-
Svetnik, V.1
Wang, T.2
Tong, C.3
Liaw, A.4
Sheridan, R.P.5
Song, Q.6
-
32
-
-
0028443213
-
Bias in Information-Based Measures in Decision Tree Induction
-
White, A.P., and Liu, W.Z. (1994), "Bias in Information-Based Measures in Decision Tree Induction," Machine Learning, 15, 321-329.
-
(1994)
Machine Learning
, vol.15
, pp. 321-329
-
-
White, A.P.1
Liu, W.Z.2
-
33
-
-
33947248175
-
Controlling Variable Selection by the Addition of Pseudovariables
-
Wu, Y., Boos, D.D., and Stefanski, L.A. (2007), "Controlling Variable Selection by the Addition of Pseudovariables," Journal of the American Statistical Association, 102, 235-243.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 235-243
-
-
Wu, Y.1
Boos, D.D.2
Stefanski, L.A.3
-
34
-
-
25144492516
-
Efficient Feature Selection via Analysis of Relevance and Redundancy
-
Yu, L., and Liu, H. (2004), "Efficient Feature Selection via Analysis of Relevance and Redundancy," Journal of Machine Learning Research, 5, 1205-1224.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
|