-
2
-
-
37449029679
-
Online classification of nonstationary data streams
-
Last M. Online classification of nonstationary data streams. Intell Data Anal 2002, 6:129- 147.
-
(2002)
Intell Data Anal
, vol.6
, pp. 129-147
-
-
Last, M.1
-
3
-
-
84873104312
-
-
Hamilton, New Zealand: University of Waikato, Department of Computer ScienceNew Zealand;
-
Holmes G, Kirkby R, Bainbridge D. Batch Incremental Learning for Mining Data Streams. Hamilton, New Zealand: University of Waikato, Department of Computer Science, New Zealand; 2004.
-
(2004)
Batch Incremental Learning for Mining Data Streams
-
-
Holmes, G.1
Kirkby, R.2
Bainbridge, D.3
-
4
-
-
0010012318
-
Incremental learning from noisy data
-
Schlimmer J, Granger R. Incremental learning from noisy data. Mach Learn 1986, 1:317-354.
-
(1986)
Mach Learn
, vol.1
, pp. 317-354
-
-
Schlimmer, J.1
Granger, R.2
-
6
-
-
0002432565
-
J Multivariate adaptative regression splines
-
Friedman J.Multivariate adaptative regression splines. Ann Stat 1991, 19:1-67.
-
(1991)
Ann Stat
, vol.19
, pp. 1-67
-
-
Friedman, J.1
-
7
-
-
36549052502
-
A recursive partitioning tool for interval prediction
-
Krzanowski W, Hand D. A recursive partitioning tool for interval prediction. Proc ADAC 2007, 1:241-254.
-
(2007)
Proc ADAC
, vol.1
, pp. 241-254
-
-
Krzanowski, W.1
Hand, D.2
-
9
-
-
0001108227
-
Constructive incremental learning from only local information
-
Schaal S, Atkeson C. Constructive incremental learning from only local information. Neural Comput 1998, 10:2047-2084.
-
(1998)
Neural Comput
, vol.10
, pp. 2047-2084
-
-
Schaal, S.1
Atkeson, C.2
-
11
-
-
0002891388
-
Locally weighted projection regression: incremental real time learning in high dimensional space
-
San Francisco: Morgan Kaufmann
-
Vijayakumar S, Schaal S. Locally weighted projection regression: incremental real time learning in high dimensional space. In: Proceedings of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann; 2000, 1079-1086.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning
, pp. 1079-1086
-
-
Vijayakumar, S.1
Schaal, S.2
-
12
-
-
0031197005
-
Understanding time-series networks: a case study in rule extraction
-
Craven M, Shavlik J. Understanding time-series networks: a case study in rule extraction. Int J Neural Syst 1997, 8:373-384.
-
(1997)
Int J Neural Syst
, vol.8
, pp. 373-384
-
-
Craven, M.1
Shavlik, J.2
-
16
-
-
84873156474
-
-
Data Stream Mining A Practical Approach. COSI
-
Bifet A, Kirkby R. Data Stream Mining A Practical Approach. COSI 2009. Available at http://www.cs. waikato.ac.nz /~abifet /MOA.
-
(2009)
-
-
Bifet, A.1
Kirkby, R.2
-
17
-
-
26944478356
-
Segmenting time series: a survey and novel approach
-
Last M, Kandel A, Bunke H, eds. Singapore: World Scientific
-
Keogh E, Chu S, Hart D, Pazzani M. Segmenting time series: a survey and novel approach. In: Last M, Kandel A, Bunke H, eds. Data Mining in Time Series Databases. Singapore: World Scientific; 2004, 1-22.
-
(2004)
Data Mining in Time Series Databases
, pp. 1-22
-
-
Keogh, E.1
Chu, S.2
Hart, D.3
Pazzani, M.4
-
19
-
-
0034320912
-
Learning changing concepts by exploiting the structure of change
-
Bartlett P, Ben David S, Kulkarni S. Learning changing concepts by exploiting the structure of change. Mach Learn 2000, 41:153-174.
-
(2000)
Mach Learn
, vol.41
, pp. 153-174
-
-
Bartlett, P.1
Ben David, S.2
Kulkarni, S.3
-
20
-
-
70350700681
-
-
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and DataMining (KDD'09). Paris
-
Bifet A, Holmes G, Pfahringer B, Kirkby R, Gavald'a R. New ensemble methods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and DataMining (KDD'09). Paris; 2009, 139-148.
-
(2009)
New ensemble methods for evolving data streams
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavald'a, R.5
-
21
-
-
0006178946
-
Problems in the analysis of survey data and a proposal
-
Morgan J, Sonquist J. Problems in the analysis of survey data and a proposal. J Am Stat Assoc 1963, 58:415-434.
-
(1963)
J Am Stat Assoc
, vol.58
, pp. 415-434
-
-
Morgan, J.1
Sonquist, J.2
-
23
-
-
0000661829
-
An exploratory technique for investigating large quantities of categorical data
-
Kass G. An exploratory technique for investigating large quantities of categorical data. Appl Stat 1980, 29:119-127.
-
(1980)
Appl Stat
, vol.29
, pp. 119-127
-
-
Kass, G.1
-
24
-
-
0019181932
-
A combined nonparametric approach to feature selection and binary decision tree design
-
Rounds E. A combined nonparametric approach to feature selection and binary decision tree design. Pattern Recognit 1980, 12:313-317.
-
(1980)
Pattern Recognit
, vol.12
, pp. 313-317
-
-
Rounds, E.1
-
29
-
-
0032117676
-
Using model trees for classification
-
Frank E, Inglis S, Holmes G, Witten I. Using model trees for classification. Mach Learn 1998, 32:63-76.
-
(1998)
Mach Learn
, vol.32
, pp. 63-76
-
-
Frank, E.1
Inglis, S.2
Holmes, G.3
Witten, I.4
-
34
-
-
0000951197
-
Piecewise polynomial regression trees
-
Chaudhuri P, Huang M, Loh W, Yao R. Piecewise polynomial regression trees. Stat Sin 1994, 4:143-167.
-
(1994)
Stat Sin
, vol.4
, pp. 143-167
-
-
Chaudhuri, P.1
Huang, M.2
Loh, W.3
Yao, R.4
-
37
-
-
30044434365
-
Incremental learning of linear model trees
-
Potts D, Sammut C. Incremental learning of linear model trees. Mach Learn 2005, 61:5-48.
-
(2005)
Mach Learn
, vol.61
, pp. 5-48
-
-
Potts, D.1
Sammut, C.2
-
38
-
-
7444225884
-
Comparing simplification methods for model trees with regression and splitting nodes
-
LNAI Symposium. LNAI
-
Ceci M, Appice A, Malerba D. Comparing simplification methods for model trees with regression and splitting nodes. In: Proceedings of Foundations of Intelligent Systems, 14th International LNAI Symposium. LNAI. Vol. 2871. 2003, 49-56.
-
(2003)
Proceedings of Foundations of Intelligent Systems, 14th International
, vol.2871
, pp. 49-56
-
-
Ceci, M.1
Appice, A.2
Malerba, D.3
-
39
-
-
3042583485
-
Top-down induction of model trees with regression and splitting nodes
-
Malerba D, Esposito F, Ceci M, Appice A. Top-down induction of model trees with regression and splitting nodes. IEEE Trans Pattern Anal Mach Intell 2004, 26:612-625.
-
(2004)
IEEE Trans Pattern Anal Mach Intell
, vol.26
, pp. 612-625
-
-
Malerba, D.1
Esposito, F.2
Ceci, M.3
Appice, A.4
-
40
-
-
67650949707
-
Regression by parts: fitting visually interpretable models with GUIDE
-
Berlin: Springer
-
Loh W. Regression by parts: fitting visually interpretable models with GUIDE. In: Handbook of Computational Statistics, Vol. III, Berlin: Springer; 2008, 447-469.
-
(2008)
Handbook of Computational Statistics
, vol.3
, pp. 447-469
-
-
Loh, W.1
-
42
-
-
84950459261
-
Tree-structured Classification via Generalized Discriminant Analysis (with discussion)
-
Loh W, Vanichsetakul N. Tree-structured Classification via Generalized Discriminant Analysis (with discussion). J Am Stat Assoc 1988, 715-728.
-
(1988)
J Am Stat Assoc
, pp. 715-728
-
-
Loh, W.1
Vanichsetakul, N.2
-
46
-
-
0001369142
-
Tests of equality between sets of coefficients in two linear regressions
-
Chow G. Tests of equality between sets of coefficients in two linear regressions. Econometrica 1960, 28:591- 605.
-
(1960)
Econometrica
, vol.28
, pp. 591-605
-
-
Chow, G.1
-
47
-
-
84979347114
-
Highest-density forecast regions for nonlinear and non-normal time series models
-
Hyndman R. Highest-density forecast regions for nonlinear and non-normal time series models. J Forecast 1995, 14:431-441.
-
(1995)
J Forecast
, vol.14
, pp. 431-441
-
-
Hyndman, R.1
-
48
-
-
33846591079
-
Prediction intervals for regression models
-
Olive D. Prediction intervals for regression models. Comput Stat Data Anal 2007, 51:3115-3122.
-
(2007)
Comput Stat Data Anal
, vol.51
, pp. 3115-3122
-
-
Olive, D.1
-
49
-
-
0033741225
-
Nonparametric conditional predictive regions for time series
-
Gooijer J, Gannoun A. Nonparametric conditional predictive regions for time series. Comput Stat Data Anal 2000, 33:259-275.
-
(2000)
Comput Stat Data Anal
, vol.33
, pp. 259-275
-
-
Gooijer, J.1
Gannoun, A.2
-
50
-
-
13444269128
-
Variable selection for 1D regression models
-
Olive D, Hawkins D. Variable selection for 1D regression models. Technometrics 2005, 47:43-50.
-
(2005)
Technometrics
, vol.47
, pp. 43-50
-
-
Olive, D.1
Hawkins, D.2
-
53
-
-
77951147643
-
Induction of mean output prediction trees from continuous temporal meteorological data
-
Miami, FL: IEEE Computer Society
-
Alberg D, Last M, Neuman R, Sharon A. Induction of mean output prediction trees from continuous temporal meteorological data. In: Proceedings of 2009 IEEE International Conference on Data Mining Workshops. Miami, FL: IEEE Computer Society; 2009, 208- 213.
-
(2009)
Proceedings of 2009 IEEE International Conference on Data Mining Workshops
, pp. 208-213
-
-
Alberg, D.1
Last, M.2
Neuman, R.3
Sharon, A.4
-
54
-
-
0141652197
-
Multidimensional regression analysis of time series data streams
-
San Francisco, CA: Morgan Kaufmann
-
Chen Y, Dong G, Han J, Wah B, Wang J. Multidimensional regression analysis of time series data streams. In: Proceedings of the 28th International Conference on Very Large Databases. San Francisco, CA: Morgan Kaufmann; 2002, 323-334.
-
(2002)
Proceedings of the 28th International Conference on Very Large Databases
, pp. 323-334
-
-
Chen, Y.1
Dong, G.2
Han, J.3
Wah, B.4
Wang, J.5
-
56
-
-
0003578943
-
Forecasting Structural Time Series Models and the Kalman Filter
-
Cambridge, UK: Cambridge University Press
-
Harvey A. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge, UK: Cambridge University Press; 1989.
-
(1989)
-
-
Harvey, A.1
-
58
-
-
0742323983
-
A general framework for mining massive data streams
-
Hulten P, Domingos G. A general framework for mining massive data streams. J Comput Graph Stat 2003, 12:945-949.
-
(2003)
J Comput Graph Stat
, vol.12
, pp. 945-949
-
-
Hulten, P.1
Domingos, G.2
-
59
-
-
16244377118
-
Test of page-hinkley, an approach for fault detection in an agro-alimentary production system
-
Mouss H, Mouss D, Mouss N, Sefouhi L. Test of page-hinkley, an approach for fault detection in an agro-alimentary production system. In: 5th Asian Control Conference 2;Melbourne IEEE Computer Society; 2004, 815-818.
-
(2004)
5th Asian Control Conference 2;Melbourne IEEE Computer Society
, pp. 815-818
-
-
Mouss, H.1
Mouss, D.2
Mouss, N.3
Sefouhi, L.4
-
60
-
-
62449130659
-
A system for analysis and prediction of electricity-load streams
-
Rodrigues P, Gama J. A system for analysis and prediction of electricity-load streams. Intell Data Anal 2009, 13:477-496.
-
(2009)
Intell Data Anal
, vol.13
, pp. 477-496
-
-
Rodrigues, P.1
Gama, J.2
-
61
-
-
50149120100
-
Info-fuzzy algorithms for mining dynamic data streams
-
Cohen L, Avrahami G, Last M, Kandel A. Info-fuzzy algorithms for mining dynamic data streams. Appl Soft Comput 2008, 8:1283-1294.
-
(2008)
Appl Soft Comput
, vol.8
, pp. 1283-1294
-
-
Cohen, L.1
Avrahami, G.2
Last, M.3
Kandel, A.4
-
62
-
-
43549086207
-
Real-time data mining of non-stationary data streams from sensor networks
-
Cohen L, Avrahami G, Last M, Kandel A, Kipersztok O. Real-time data mining of non-stationary data streams from sensor networks. Inf Fusion 9, 2008:344- 353.
-
(2008)
Inf Fusion
, vol.9
, pp. 344-353
-
-
Cohen, L.1
Avrahami, G.2
Last, M.3
Kandel, A.4
Kipersztok, O.5
|