메뉴 건너뛰기




Volumn 2, Issue 1, 2012, Pages 69-78

Knowledge discovery in data streams with regression tree methods

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DATA STREAMS; FORESTRY; REGRESSION ANALYSIS;

EID: 84873203642     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.51     Document Type: Review
Times cited : (32)

References (62)
  • 2
    • 37449029679 scopus 로고    scopus 로고
    • Online classification of nonstationary data streams
    • Last M. Online classification of nonstationary data streams. Intell Data Anal 2002, 6:129- 147.
    • (2002) Intell Data Anal , vol.6 , pp. 129-147
    • Last, M.1
  • 4
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer J, Granger R. Incremental learning from noisy data. Mach Learn 1986, 1:317-354.
    • (1986) Mach Learn , vol.1 , pp. 317-354
    • Schlimmer, J.1    Granger, R.2
  • 6
    • 0002432565 scopus 로고
    • J Multivariate adaptative regression splines
    • Friedman J.Multivariate adaptative regression splines. Ann Stat 1991, 19:1-67.
    • (1991) Ann Stat , vol.19 , pp. 1-67
    • Friedman, J.1
  • 7
    • 36549052502 scopus 로고    scopus 로고
    • A recursive partitioning tool for interval prediction
    • Krzanowski W, Hand D. A recursive partitioning tool for interval prediction. Proc ADAC 2007, 1:241-254.
    • (2007) Proc ADAC , vol.1 , pp. 241-254
    • Krzanowski, W.1    Hand, D.2
  • 9
    • 0001108227 scopus 로고    scopus 로고
    • Constructive incremental learning from only local information
    • Schaal S, Atkeson C. Constructive incremental learning from only local information. Neural Comput 1998, 10:2047-2084.
    • (1998) Neural Comput , vol.10 , pp. 2047-2084
    • Schaal, S.1    Atkeson, C.2
  • 11
    • 0002891388 scopus 로고    scopus 로고
    • Locally weighted projection regression: incremental real time learning in high dimensional space
    • San Francisco: Morgan Kaufmann
    • Vijayakumar S, Schaal S. Locally weighted projection regression: incremental real time learning in high dimensional space. In: Proceedings of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann; 2000, 1079-1086.
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 1079-1086
    • Vijayakumar, S.1    Schaal, S.2
  • 12
    • 0031197005 scopus 로고    scopus 로고
    • Understanding time-series networks: a case study in rule extraction
    • Craven M, Shavlik J. Understanding time-series networks: a case study in rule extraction. Int J Neural Syst 1997, 8:373-384.
    • (1997) Int J Neural Syst , vol.8 , pp. 373-384
    • Craven, M.1    Shavlik, J.2
  • 16
    • 84873156474 scopus 로고    scopus 로고
    • Data Stream Mining A Practical Approach. COSI
    • Bifet A, Kirkby R. Data Stream Mining A Practical Approach. COSI 2009. Available at http://www.cs. waikato.ac.nz /~abifet /MOA.
    • (2009)
    • Bifet, A.1    Kirkby, R.2
  • 17
    • 26944478356 scopus 로고    scopus 로고
    • Segmenting time series: a survey and novel approach
    • Last M, Kandel A, Bunke H, eds. Singapore: World Scientific
    • Keogh E, Chu S, Hart D, Pazzani M. Segmenting time series: a survey and novel approach. In: Last M, Kandel A, Bunke H, eds. Data Mining in Time Series Databases. Singapore: World Scientific; 2004, 1-22.
    • (2004) Data Mining in Time Series Databases , pp. 1-22
    • Keogh, E.1    Chu, S.2    Hart, D.3    Pazzani, M.4
  • 19
    • 0034320912 scopus 로고    scopus 로고
    • Learning changing concepts by exploiting the structure of change
    • Bartlett P, Ben David S, Kulkarni S. Learning changing concepts by exploiting the structure of change. Mach Learn 2000, 41:153-174.
    • (2000) Mach Learn , vol.41 , pp. 153-174
    • Bartlett, P.1    Ben David, S.2    Kulkarni, S.3
  • 21
    • 0006178946 scopus 로고
    • Problems in the analysis of survey data and a proposal
    • Morgan J, Sonquist J. Problems in the analysis of survey data and a proposal. J Am Stat Assoc 1963, 58:415-434.
    • (1963) J Am Stat Assoc , vol.58 , pp. 415-434
    • Morgan, J.1    Sonquist, J.2
  • 23
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass G. An exploratory technique for investigating large quantities of categorical data. Appl Stat 1980, 29:119-127.
    • (1980) Appl Stat , vol.29 , pp. 119-127
    • Kass, G.1
  • 24
    • 0019181932 scopus 로고
    • A combined nonparametric approach to feature selection and binary decision tree design
    • Rounds E. A combined nonparametric approach to feature selection and binary decision tree design. Pattern Recognit 1980, 12:313-317.
    • (1980) Pattern Recognit , vol.12 , pp. 313-317
    • Rounds, E.1
  • 34
    • 0000951197 scopus 로고
    • Piecewise polynomial regression trees
    • Chaudhuri P, Huang M, Loh W, Yao R. Piecewise polynomial regression trees. Stat Sin 1994, 4:143-167.
    • (1994) Stat Sin , vol.4 , pp. 143-167
    • Chaudhuri, P.1    Huang, M.2    Loh, W.3    Yao, R.4
  • 37
    • 30044434365 scopus 로고    scopus 로고
    • Incremental learning of linear model trees
    • Potts D, Sammut C. Incremental learning of linear model trees. Mach Learn 2005, 61:5-48.
    • (2005) Mach Learn , vol.61 , pp. 5-48
    • Potts, D.1    Sammut, C.2
  • 40
    • 67650949707 scopus 로고    scopus 로고
    • Regression by parts: fitting visually interpretable models with GUIDE
    • Berlin: Springer
    • Loh W. Regression by parts: fitting visually interpretable models with GUIDE. In: Handbook of Computational Statistics, Vol. III, Berlin: Springer; 2008, 447-469.
    • (2008) Handbook of Computational Statistics , vol.3 , pp. 447-469
    • Loh, W.1
  • 42
    • 84950459261 scopus 로고
    • Tree-structured Classification via Generalized Discriminant Analysis (with discussion)
    • Loh W, Vanichsetakul N. Tree-structured Classification via Generalized Discriminant Analysis (with discussion). J Am Stat Assoc 1988, 715-728.
    • (1988) J Am Stat Assoc , pp. 715-728
    • Loh, W.1    Vanichsetakul, N.2
  • 43
    • 36849093959 scopus 로고    scopus 로고
    • Scalable lookahead linear regression trees
    • New York: ACM
    • Vogel D, Asparouhov O, Scheffer T. Scalable lookahead linear regression trees. In: Proceedings of KDD'07. New York: ACM; 2007, 757-764.
    • (2007) Proceedings of KDD'07 , pp. 757-764
    • Vogel, D.1    Asparouhov, O.2    Scheffer, T.3
  • 46
    • 0001369142 scopus 로고
    • Tests of equality between sets of coefficients in two linear regressions
    • Chow G. Tests of equality between sets of coefficients in two linear regressions. Econometrica 1960, 28:591- 605.
    • (1960) Econometrica , vol.28 , pp. 591-605
    • Chow, G.1
  • 47
    • 84979347114 scopus 로고
    • Highest-density forecast regions for nonlinear and non-normal time series models
    • Hyndman R. Highest-density forecast regions for nonlinear and non-normal time series models. J Forecast 1995, 14:431-441.
    • (1995) J Forecast , vol.14 , pp. 431-441
    • Hyndman, R.1
  • 48
    • 33846591079 scopus 로고    scopus 로고
    • Prediction intervals for regression models
    • Olive D. Prediction intervals for regression models. Comput Stat Data Anal 2007, 51:3115-3122.
    • (2007) Comput Stat Data Anal , vol.51 , pp. 3115-3122
    • Olive, D.1
  • 49
    • 0033741225 scopus 로고    scopus 로고
    • Nonparametric conditional predictive regions for time series
    • Gooijer J, Gannoun A. Nonparametric conditional predictive regions for time series. Comput Stat Data Anal 2000, 33:259-275.
    • (2000) Comput Stat Data Anal , vol.33 , pp. 259-275
    • Gooijer, J.1    Gannoun, A.2
  • 50
    • 13444269128 scopus 로고    scopus 로고
    • Variable selection for 1D regression models
    • Olive D, Hawkins D. Variable selection for 1D regression models. Technometrics 2005, 47:43-50.
    • (2005) Technometrics , vol.47 , pp. 43-50
    • Olive, D.1    Hawkins, D.2
  • 56
    • 0003578943 scopus 로고
    • Forecasting Structural Time Series Models and the Kalman Filter
    • Cambridge, UK: Cambridge University Press
    • Harvey A. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge, UK: Cambridge University Press; 1989.
    • (1989)
    • Harvey, A.1
  • 58
    • 0742323983 scopus 로고    scopus 로고
    • A general framework for mining massive data streams
    • Hulten P, Domingos G. A general framework for mining massive data streams. J Comput Graph Stat 2003, 12:945-949.
    • (2003) J Comput Graph Stat , vol.12 , pp. 945-949
    • Hulten, P.1    Domingos, G.2
  • 60
    • 62449130659 scopus 로고    scopus 로고
    • A system for analysis and prediction of electricity-load streams
    • Rodrigues P, Gama J. A system for analysis and prediction of electricity-load streams. Intell Data Anal 2009, 13:477-496.
    • (2009) Intell Data Anal , vol.13 , pp. 477-496
    • Rodrigues, P.1    Gama, J.2
  • 61
    • 50149120100 scopus 로고    scopus 로고
    • Info-fuzzy algorithms for mining dynamic data streams
    • Cohen L, Avrahami G, Last M, Kandel A. Info-fuzzy algorithms for mining dynamic data streams. Appl Soft Comput 2008, 8:1283-1294.
    • (2008) Appl Soft Comput , vol.8 , pp. 1283-1294
    • Cohen, L.1    Avrahami, G.2    Last, M.3    Kandel, A.4
  • 62
    • 43549086207 scopus 로고    scopus 로고
    • Real-time data mining of non-stationary data streams from sensor networks
    • Cohen L, Avrahami G, Last M, Kandel A, Kipersztok O. Real-time data mining of non-stationary data streams from sensor networks. Inf Fusion 9, 2008:344- 353.
    • (2008) Inf Fusion , vol.9 , pp. 344-353
    • Cohen, L.1    Avrahami, G.2    Last, M.3    Kandel, A.4    Kipersztok, O.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.