-
1
-
-
0016355478
-
A new look at statistical model identification
-
H. Akaike. A new look at statistical model identification. IEEE Transactions on Automatic Control, AU-19:716-722, 1974.
-
(1974)
IEEE Transactions on Automatic Control
, vol.AU-19
, pp. 716-722
-
-
Akaike, H.1
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Machine Learning, 36:105-142, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0003408496
-
UCI repository of machine learning databases
-
University of California, Irvine
-
C. Blake and C.J. Merz. UCI repository of machine learning databases. Technical Report, University of California, Irvine. Available electronically at http://www.ics.uci.edu/mlearn/MLRepository.html, 2000.
-
(2000)
Technical Report
-
-
Blake, C.1
Merz, C.J.2
-
5
-
-
0003100554
-
Robustness in the strategy of scientific model building
-
eds. R.L. Launer and G.N. Wilkinson, Academic Press, New York
-
G.E.P. Box. Robustness in the strategy of scientific model building. In Robustness in Statistics, eds. R.L. Launer and G.N. Wilkinson, pages 201-236, Academic Press, New York, 1979.
-
(1979)
Robustness in Statistics
, pp. 201-236
-
-
Box, G.E.P.1
-
6
-
-
84957107950
-
Pruning decision trees with misclassification costs
-
J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C.E. Bradley. Pruning decision trees with misclassification costs. In Proceedings of the Tenth European Conference on Machine Learning (ECML-98), pages 131-136, 1998.
-
(1998)
Proceedings of the Tenth European Conference on Machine Learning (ECML-98)
, pp. 131-136
-
-
Bradford, J.1
Kunz, C.2
Kohavi, R.3
Brunk, C.4
Bradley, C.E.5
-
7
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30:1145-1159, 1997.
-
(1997)
Pattern Recognition
, vol.30
, pp. 1145-1159
-
-
Bradley, A.P.1
-
8
-
-
2342654979
-
On the effect of data set size on bias and variance in classification learning
-
University of New South Wales
-
D. Brain and G. Webb. On the effect of data set size on bias and variance in classification learning. In Proceedings of the Fourth Australian Knowledge Acquisition Workshop, University of New South Wales, pages 117-128, 1999.
-
(1999)
Proceedings of the Fourth Australian Knowledge Acquisition Workshop
, pp. 117-128
-
-
Brain, D.1
Webb, G.2
-
9
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
0003637516
-
-
PhD thesis, School of Computer Science, University of Technology, Sydney, Australia
-
W. Buntine. A Theory of Learning Classification Rules. PhD thesis, School of Computer Science, University of Technology, Sydney, Australia, 1991.
-
(1991)
A Theory of Learning Classification Rules
-
-
Buntine, W.1
-
13
-
-
0003460351
-
-
PhD thesis, School of Computer Science, University of Technology, Sydney, Australia
-
J. Catlett. Megainduction: Machine learning on Very Large Databases. PhD thesis, School of Computer Science, University of Technology, Sydney, Australia, 1991.
-
(1991)
Megainduction: Machine Learning on Very Large Databases
-
-
Catlett, J.1
-
15
-
-
85015191605
-
Rule induction with CN2: Some recent improvements
-
Springer-Verlag, Porto, Portugal
-
P. Clark and R. Boswell. Rule induction with CN2: some recent improvements. In Proceedings of the Sixth European Working Session on Learning, pages 151-163, Springer-Verlag, Porto, Portugal, 1991.
-
(1991)
Proceedings of the Sixth European Working Session on Learning
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
-
16
-
-
85149612939
-
Fast effective rule induction
-
eds. A. Prieditis and S. Russell, Lake Tahoe, California, Morgan Kaufmann
-
W.W. Cohen. Fast effective rule induction. Machine Learning: Proceedings of the Twelfth International Conference, eds. A. Prieditis and S. Russell, pages 115-123, Lake Tahoe, California, Morgan Kaufmann, 1995.
-
(1995)
Machine Learning: Proceedings of the Twelfth International Conference
, pp. 115-123
-
-
Cohen, W.W.1
-
17
-
-
0012253104
-
Learning curves: Asymptotic values and rate of convergence
-
Morgan Kaufmann, San Mateo, California
-
C. Cortes, L.D. Jackel, S.A. Solla, V. Vapnik, and J.S. Denker. Learning curves: asymptotic values and rate of convergence. Advances in Neural Information Processing Systems, Volume 6, pages 327-334, Morgan Kaufmann, San Mateo, California, 1994.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 327-334
-
-
Cortes, C.1
Jackel, L.D.2
Solla, S.A.3
Vapnik, V.4
Denker, J.S.5
-
19
-
-
0042493398
-
Telecommunications network diagnosis
-
eds. W. Kloesgen and J. Zytkow, Oxford University Press, Oxford
-
A. Danyluk and F. Provost. Telecommunications network diagnosis. In Handbook of Knowledge Discovery and Data Mining, eds. W. Kloesgen and J. Zytkow, Oxford University Press, Oxford, pp. 897-902, 2002.
-
(2002)
Handbook of Knowledge Discovery and Data Mining
, pp. 897-902
-
-
Danyluk, A.1
Provost, F.2
-
20
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
22
-
-
0032533761
-
A comparison of statistical learning methods on the GUSTO database
-
M. Ennis, G. Hinton, D. Naylor, M. Revow, and R. Tibshirani. A comparison of statistical learning methods on the GUSTO database. Statist. Med. 17:2501-2508, 1998.
-
(1998)
Statist. Med.
, vol.17
, pp. 2501-2508
-
-
Ennis, M.1
Hinton, G.2
Naylor, D.3
Revow, M.4
Tibshirani, R.5
-
23
-
-
21344489373
-
Error rates in quadratic discrimination with constraints on the covariance matrices
-
B.W. Flury and M.J. Schmid. Error rates in quadratic discrimination with constraints on the covariance matrices. Journal of Classification, 11:101-120, 1994.
-
(1994)
Journal of Classification
, vol.11
, pp. 101-120
-
-
Flury, B.W.1
Schmid, M.J.2
-
24
-
-
0346198098
-
The reputation quotient: A multi-stakeholder measure of corporate reputation
-
C.J. Fombrun, N. Gardberg, and J. Sever. The reputation quotient: a multi-stakeholder measure of corporate reputation. Journal of B rand Management, 7:241-255, 2000.
-
(2000)
Journal of B Rand Management
, vol.7
, pp. 241-255
-
-
Fombrun, C.J.1
Gardberg, N.2
Sever, J.3
-
25
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse of dimensionality
-
J.H. Friedman. On bias, variance, 0/1-loss, and the curse of dimensionality. Data Mining and Knowledge Discovery, 1:55-77, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
26
-
-
0000319411
-
Learning Bayesian networks with local structure
-
Morgan Kaufmann, Portland, Oregon
-
N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages 252-262, Morgan Kaufmann, Portland, Oregon, 1996.
-
(1996)
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
, pp. 252-262
-
-
Friedman, N.1
Goldszmidt, M.2
-
28
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143:29-36, 1982.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
29
-
-
0037550836
-
Sample size and misclassification: Is more always better?
-
AMS Center for Advanced Technologies
-
C. Harris-Jones and T.L. Haines. Sample size and misclassification: is more always better? AMSCAT-WP-97-118, AMS Center for Advanced Technologies, 1997.
-
(1997)
AMSCAT-WP-97-118
-
-
Harris-Jones, C.1
Haines, T.L.2
-
31
-
-
0030282940
-
Rigorous learning curve bounds from statistical mechanics
-
D. Haussler, M. Kearns, H.S. Seung, and N. Tishby. Rigorous learning curve bounds from statistical mechanics. Machine Learning 25:195-236, 1996.
-
(1996)
Machine Learning
, vol.25
, pp. 195-236
-
-
Haussler, D.1
Kearns, M.2
Seung, H.S.3
Tishby, N.4
-
32
-
-
84942484786
-
Ridge regression: Biased estimates for nonorthogonal problems
-
A.E. Hoerl and R.W. Kennard. Ridge regression: biased estimates for nonorthogonal problems. Technometrics, 12:55-67, 1970.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
36
-
-
0042685161
-
Bayesian logistic regression: A variational approach
-
T.S. Jaakkola and M.I. Jordan. Bayesian logistic regression: a variational approach. Statistics and Computing, 10:25-37, 2000.
-
(2000)
Statistics and Computing
, vol.10
, pp. 25-37
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
38
-
-
0029306995
-
STATLOG: Comparison of classification algorithms on large real-world problems
-
R. D. King, C. Feng, and A. Sutherland. STATLOG: comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9(3):289-334, 1995.
-
(1995)
Applied Artificial Intelligence
, vol.9
, Issue.3
, pp. 289-334
-
-
King, R.D.1
Feng, C.2
Sutherland, A.3
-
41
-
-
0018195038
-
Efficient screening of nonnormal regression models
-
J.F. Lawless and K. Singhai. Efficient screening of nonnormal regression models. Biometrics, 34:318-327, 1978.
-
(1978)
Biometrics
, vol.34
, pp. 318-327
-
-
Lawless, J.F.1
Singhai, K.2
-
44
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time for thirty-three old and new classification algorithms
-
T.S. Lim, W. Y. Loh, and Y.S. Shih. A comparison of prediction accuracy, complexity, and training time for thirty-three old and new classification algorithms. Machine Learning, 40:203-228, 2000.
-
(2000)
Machine Learning
, vol.40
, pp. 203-228
-
-
Lim, T.S.1
Loh, W.Y.2
Shih, Y.S.3
-
47
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
-
A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems (NIPS-2001) 14: 841-848, 2001.
-
(2001)
Advances in Neural Information Processing Systems (NIPS-2001)
, vol.14
, pp. 841-848
-
-
Ng, A.1
Jordan, M.2
-
48
-
-
0002125069
-
The effects of training set size on decision tree complexity
-
ed. D. Fisher, Morgan Kaufmann, San Mateo, California
-
T. Oates and D. Jensen. The effects of training set size on decision tree complexity. In Machine Learning: Proceedings of the Fourteenth International Conference, ed. D. Fisher, pages 254-262, Morgan Kaufmann, San Mateo, California, 1997.
-
(1997)
Machine Learning: Proceedings of the Fourteenth International Conference
, pp. 254-262
-
-
Oates, T.1
Jensen, D.2
-
49
-
-
85041528332
-
Reducing misclassification costs
-
Morgan Kaufmann, San Mateo, California
-
M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing misclassification costs. In Proceedings of the Eleventh International Conference on Machine Learning, pages 217-225, Morgan Kaufmann, San Mateo, California, 1994.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 217-225
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
Ali, K.4
Hume, T.5
Brunk, C.6
-
50
-
-
2342496307
-
Tree induction for probability-based rankings
-
forthcoming
-
F. Provost and P. Domingos. Tree induction for probability-based rankings. Machine Learning, 52:3, forthcoming.
-
Machine Learning
, vol.52
, pp. 3
-
-
Provost, F.1
Domingos, P.2
-
51
-
-
85101511266
-
Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
-
AAAI Press, Meno Park, California
-
F. Provost and T. Fawcett. Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-97), pages 43-48, AAAI Press, Meno Park, California, 1997.
-
(1997)
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-97)
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
-
52
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
53
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
Morgan Kaufmann, San Mateo, California
-
F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for comparing induction algorithms. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 445-453, Morgan Kaufmann, San Mateo, California, 1998.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 445-453
-
-
Provost, F.1
Fawcett, T.2
Kohavi, R.3
-
54
-
-
0002515248
-
Efficient progressive sampling
-
Association for Computing Machinery, New York
-
F. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 23-32, Association for Computing Machinery, New York, 1999.
-
(1999)
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 23-32
-
-
Provost, F.1
Jensen, D.2
Oates, T.3
-
55
-
-
0141771188
-
A survey of methods for scaling up inductive algorithms
-
F. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms. Data Mining and Knowledge Discovery, 3:131-169, 1999.
-
(1999)
Data Mining and Knowledge Discovery
, vol.3
, pp. 131-169
-
-
Provost, F.1
Kolluri, V.2
-
57
-
-
0004282518
-
-
SAS Publishing, Gary, North Carolina
-
SAS Institute. SAS/STAT User's Guide, Version 8, SAS Publishing, Gary, North Carolina, 2000.
-
(2000)
SAS/STAT User's Guide, Version 8
-
-
-
58
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
59
-
-
0026119038
-
Symbolic and neural learning algorithms: An experimental comparison
-
J.W. Shavlik, R.J. Mooney, and G.G. Towell. Symbolic and neural learning algorithms: an experimental comparison. Machine Learning, 6:111-143, 1991.
-
(1991)
Machine Learning
, vol.6
, pp. 111-143
-
-
Shavlik, J.W.1
Mooney, R.J.2
Towell, G.G.3
-
60
-
-
84862340556
-
A tutorial on logistic regression
-
Y. So. A tutorial on logistic regression. Technical Note 450. Available electronically at http://www.sas.com/service/techsup/tnote/tnote_index4.html, 1995.
-
(1995)
Technical Note
, vol.450
-
-
So, Y.1
-
61
-
-
0004041987
-
Moody's public firm risk model: A hybrid approach to modeling short term default risk
-
Moody's Investors Service, Global Credit Research
-
J.R. Sobehart, R.M. Stein, V. Mikityanskaya, and L. Li. Moody's public firm risk model: a hybrid approach to modeling short term default risk. Technical Report, Moody's Investors Service, Global Credit Research. Available electronically at http://www.moodysqra.com/researoh/crm/53853.asp, 2000.
-
(2000)
Technical Report
-
-
Sobehart, J.R.1
Stein, R.M.2
Mikityanskaya, V.3
Li, L.4
-
63
-
-
0023890867
-
Measuring the accuracy of diagnostic systems
-
J. Swets. Measuring the accuracy of diagnostic systems. Science, 240:1285-1293, 1988.
-
(1988)
Science
, vol.240
, pp. 1285-1293
-
-
Swets, J.1
-
66
-
-
0033423903
-
A self-affirmation analysis of survivors' reactions to unfair organizational downsizings
-
B.M. Wiesenfeld, J. Brockner, and C. Martin. A self-affirmation analysis of survivors' reactions to unfair organizational downsizings. Journal of Experimental Social Psychology, 35:441-460, 1999.
-
(1999)
Journal of Experimental Social Psychology
, vol.35
, pp. 441-460
-
-
Wiesenfeld, B.M.1
Brockner, J.2
Martin, C.3
-
68
-
-
0003259364
-
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
-
eds. C. Brodley and A. Danyluk, Morgan Kaufmann, San Mateo, California
-
B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML-01), eds. C. Brodley and A. Danyluk, pages 609-616, Morgan Kaufmann, San Mateo, California, 2001.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning (ICML-01)
, pp. 609-616
-
-
Zadrozny, B.1
Elkan, C.2
|