메뉴 건너뛰기




Volumn 3, Issue 4, 2009, Pages 1710-1737

Improving the precision of classification trees

Author keywords

Bagging; Discrimination; Kernel density; Nearest neighbor; Prediction; Random forest; Selection bias; Variable selection

Indexed keywords


EID: 78651532074     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/09-AOAS260     Document Type: Article
Times cited : (138)

References (36)
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Mach. Learn. 24 123-140.
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Mach. Learn. 45 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0037189765 scopus 로고    scopus 로고
    • Using k-nearest-neighbor classification in the leaves of a tree
    • Buttrey, S. E. and Karo, C. (2002). Using k-nearest-neighbor classification in the leaves of a tree. Comput. Statist. Data Anal. 40 27-37.
    • (2002) Comput. Statist. Data Anal , vol.40 , pp. 27-37
    • Buttrey, S.E.1    Karo, C.2
  • 9
    • 0012625154 scopus 로고
    • The use of Automatic Interaction Detector and similar search procedures
    • Doyle, P. (1973). The use of Automatic Interaction Detector and similar search procedures. Operational Research Quarterly 24 465-467.
    • (1973) Operational Research Quarterly , vol.24 , pp. 465-467
    • Doyle, P.1
  • 11
    • 3543051838 scopus 로고    scopus 로고
    • Functional trees
    • Gama, J. (2004). Functional trees. Mach. Learn. 55 219-250.
    • (2004) Mach. Learn , vol.55 , pp. 219-250
    • Gama, J.1
  • 12
    • 33344460392 scopus 로고    scopus 로고
    • Classification using kernel density estimates: Multiscale analysis and visualization
    • Ghosh, A. K., Chaudhuri, P. and Sengupta, D. (2006). Classification using kernel density estimates: Multiscale analysis and visualization. Technometrics 48 120-132.
    • (2006) Technometrics , vol.48 , pp. 120-132
    • Ghosh, A.K.1    Chaudhuri, P.2    Sengupta, D.3
  • 15
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: A conditional inference framework
    • Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Statist.15 651-674.
    • (2006) J. Comput. Graph. Statist , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 16
    • 1542573450 scopus 로고    scopus 로고
    • Classification trees with unbiased multiway splits
    • Kim, H. and Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. J. Amer. Statist. Assoc. 96 589-604.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 589-604
    • Kim, H.1    Loh, W.-Y.2
  • 17
    • 0141907311 scopus 로고    scopus 로고
    • Classification trees with bivariate linear discriminant node models
    • Kim, H. and Loh, W.-Y. (2003). Classification trees with bivariate linear discriminant node models. J. Comput. Graph. Statist. 12 512-530.
    • (2003) J. Comput. Graph. Statist , vol.12 , pp. 512-530
    • Kim, H.1    Loh, W.-Y.2
  • 18
    • 33750372019 scopus 로고    scopus 로고
    • Unbiased variable selection for classification trees with multivariate responses
    • Lee, T.-H. and Shih, Y.-S. (2006). Unbiased variable selection for classification trees with multivariate responses. Comput. Statist. Data Anal. 51 659-667.
    • (2006) Comput. Statist. Data Anal , vol.51 , pp. 659-667
    • Lee, T.-H.1    Shih, Y.-S.2
  • 21
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Available at
    • Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News 2 18-22. Available at http://CRAN.R-project.org/doc/Rnews/.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 22
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim, T.-S., Loh, W.-Y. and Shih, Y.-S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. J. 40 203-228.
    • (2000) Mach. Learn. J , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 23
    • 0036556537 scopus 로고    scopus 로고
    • Regression trees with unbiased variable selection and interaction detection
    • Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statist. Sinica 12 361-386.
    • (2002) Statist. Sinica , vol.12 , pp. 361-386
    • Loh, W.-Y.1
  • 24
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.-Y. and Shih, Y.-S. (1997). Split selection methods for classification trees. Statist. Sinica 7 815-840.
    • (1997) Statist. Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 25
    • 84950459261 scopus 로고
    • Tree-structured classification via generalized discriminant analysis (with discussion)
    • Loh, W.-Y. and Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis (with discussion). J. Amer. Statist. Assoc. 83 715-728.
    • (1988) J. Amer. Statist. Assoc , vol.83 , pp. 715-728
    • Loh, W.-Y.1    Vanichsetakul, N.2
  • 28
    • 0006178946 scopus 로고
    • Problems in the analysis of survey data, and a proposal
    • Morgan, J. N. and Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. J. Amer. Statist. Assoc. 58 415-434.
    • (1963) J. Amer. Statist. Assoc , vol.58 , pp. 415-434
    • Morgan, J.N.1    Sonquist, J.A.2
  • 29
    • 4544369306 scopus 로고    scopus 로고
    • An unbiased method for constructing multilabel classification trees
    • Noh, H. G., Song, M. S. and Park, S. H. (2004). An unbiased method for constructing multilabel classification trees. Comput. Statist. Data Anal. 47149-164.
    • (2004) Comput. Statist. Data Anal , pp. 47149-47164
    • Noh, H.G.1    Song, M.S.2    Park, S.H.3
  • 30
    • 1242268938 scopus 로고    scopus 로고
    • Tree induction vs. logistic regression: A learning-curve analysis
    • Perlich, C., Provost, F. and Simonoff, J. S. (2003). Tree induction vs. logistic regression: A learning-curve analysis. J. Mach. Learn. Res. 4 211-255.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 211-255
    • Perlich, C.1    Provost, F.2    Simonoff, J.S.3
  • 32
    • 0003393711 scopus 로고    scopus 로고
    • StataCorp., Stata Corporation, College Station, TX
    • StataCorp. (2003). Stata Statistical Software: Release 8.0. Stata Corporation, College Station, TX.
    • (2003) Stata Statistical Software: Release 8.0
  • 33
    • 34548250123 scopus 로고    scopus 로고
    • Unbiased split selection for classification trees based on the Gini index
    • Strobl, C., Boulesteix, A.-L. and Augustin, T. (2007). Unbiased split selection for classification trees based on the Gini index. Comput. Statist. Data Anal. 52 483-501.
    • (2007) Comput. Statist. Data Anal , vol.52 , pp. 483-501
    • Strobl, C.1    Boulesteix, A.-L.2    Augustin, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.