메뉴 건너뛰기




Volumn 5, Issue 4, 2014, Pages 219-230

A meta-cognitive interval type-2 fuzzy inference system and its projection based learning algorithm

Author keywords

Attention deficiency hyperactivity disorder; Classification; Interval type 2 fuzzy systems; Meta cognition; Projection based learning; Self regulation

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); ERRORS; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; INFERENCE ENGINES; LEARNING SYSTEMS; NETWORK LAYERS; OBJECT ORIENTED PROGRAMMING; SUPPORT VECTOR MACHINES;

EID: 84911968214     PISSN: 18686478     EISSN: 18686486     Source Type: Journal    
DOI: 10.1007/s12530-013-9102-9     Document Type: Article
Times cited : (59)

References (70)
  • 1
    • 77957919121 scopus 로고    scopus 로고
    • A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization
    • Abiyev RH, Kaynak O, Alshanableh T, Mamedov F (2011) A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization. Appl Soft Comput 11(1):1396–1406
    • (2011) Appl Soft Comput , vol.11 , Issue.1 , pp. 1396-1406
    • Abiyev, R.H.1    Kaynak, O.2    Alshanableh, T.3    Mamedov, F.4
  • 2
    • 79960697024 scopus 로고    scopus 로고
    • Fuzzily connected multimodel systems evolving autonomously from data streams
    • Angelov P (2011) Fuzzily connected multimodel systems evolving autonomously from data streams. Syst Man Cybern Part B: Cybern IEEE Trans 41(4):898–910
    • (2011) Syst Man Cybern Part B: Cybern IEEE Trans , vol.41 , Issue.4 , pp. 898-910
    • Angelov, P.1
  • 3
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov P, Filev P (2004a) An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B: Cybern 34(1):484–498
    • (2004) IEEE Trans Syst Man Cybern Part B: Cybern , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, P.2
  • 4
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov P, Filev P (2004b) An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B: Cybern 34(1):484–498
    • (2004) IEEE Trans Syst Man Cybern Part B: Cybern , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, P.2
  • 5
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_eTS: a simplifed method for learning evolving Takagi-Sugeno fuzzy models
    • Angelov P, Filev P (2005) Simpl_eTS: a simplifed method for learning evolving Takagi-Sugeno fuzzy models. IEEE Int Conf Fuzzy Syst:1068–1073
    • (2005) IEEE Int Conf Fuzzy Syst , pp. 1068-1073
    • Angelov, P.1    Filev, P.2
  • 6
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • Angelov P, Lughofer E, Zhou X (2008) Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst 159(23):3160–3182
    • (2008) Fuzzy Sets Syst , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.1    Lughofer, E.2    Zhou, X.3
  • 7
    • 34548832230 scopus 로고    scopus 로고
    • A fast diffeomorphic image registration algorithm
    • Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113
    • (2007) NeuroImage , vol.38 , Issue.1 , pp. 95-113
    • Ashburner, J.1
  • 8
    • 84869475733 scopus 로고    scopus 로고
    • Meta-cognitive RBF network and its projection based learning algorithm for classification problems
    • Babu G, Suresh S (2013a) Meta-cognitive RBF network and its projection based learning algorithm for classification problems. Appl Soft Comput 13(1):654–666
    • (2013) Appl Soft Comput , vol.13 , Issue.1 , pp. 654-666
    • Babu, G.1    Suresh, S.2
  • 9
    • 84883690846 scopus 로고    scopus 로고
    • Sequential projection based metacognitive learning in a radial basis function network for classification problems
    • Babu G, Suresh S (2013b) Sequential projection based metacognitive learning in a radial basis function network for classification problems. IEEE Trans Neural Netw Learn Syst 24(2):194–206
    • (2013) IEEE Trans Neural Netw Learn Syst , vol.24 , Issue.2 , pp. 194-206
    • Babu, G.1    Suresh, S.2
  • 11
    • 84911982605 scopus 로고    scopus 로고
    • Blake C, Merz C (1998) UCI repository of machine learning databases. Department of Information and Computer Sciences, University of California, Irvine
    • Blake C, Merz C (1998) UCI repository of machine learning databases. http://archive.ics.uci.edu/ml/. Department of Information and Computer Sciences, University of California, Irvine
  • 12
    • 79957833411 scopus 로고    scopus 로고
    • Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-defcit/hyperactivity disorder-combined type
    • Bledsoe JC, Semrud-Clikeman M, Pliszka SR (2011) Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-defcit/hyperactivity disorder-combined type. J Am Acad Child Adolesc Psychiatry 50(6):593–601
    • (2011) J Am Acad Child Adolesc Psychiatry , vol.50 , Issue.6 , pp. 593-601
    • Bledsoe, J.C.1    Semrud-Clikeman, M.2    Pliszka, S.R.3
  • 13
    • 84857116526 scopus 로고    scopus 로고
    • A review on the design and optimization of interval type-2 fuzzy controllers
    • Castillo O, Melin P (2012) A review on the design and optimization of interval type-2 fuzzy controllers. Appl Soft Comput 12(4):1267–1278
    • (2012) Appl Soft Comput , vol.12 , Issue.4 , pp. 1267-1278
    • Castillo, O.1    Melin, P.2
  • 14
    • 64549090645 scopus 로고    scopus 로고
    • A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    • Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2009) A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf Sci 179(13):2175–2193
    • (2009) Inf Sci , vol.179 , Issue.13 , pp. 2175-2193
    • Castro, J.R.1    Castillo, O.2    Melin, P.3    Rodriguez-Diaz, A.4
  • 15
    • 84911973005 scopus 로고    scopus 로고
    • Chang C, Lin C (2003) LIBSVM: a library for support vector machines. National Taiwan University, Taiwan, Deptartment of Computer Science and Information Engineering
    • Chang C, Lin C (2003) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm/. National Taiwan University, Taiwan, Deptartment of Computer Science and Information Engineering
  • 16
    • 70350513650 scopus 로고    scopus 로고
    • Neuroimaging in attention defcit hyperactivity disorder: beyond the frontostriatal circuitry
    • Cherkasova LHMV (2009) Neuroimaging in attention defcit hyperactivity disorder: beyond the frontostriatal circuitry. Can J Psychiatry 54(10):651–664
    • (2009) Can J Psychiatry , vol.54 , Issue.10 , pp. 651-664
    • Cherkasova, L.H.M.V.1
  • 17
    • 84865125955 scopus 로고    scopus 로고
    • The neurobiology and genetics of attention-deficit/hyperactivity disorder (ADHD): what every clinician should know
    • Cortese S (2012) The neurobiology and genetics of attention-deficit/hyperactivity disorder (ADHD): what every clinician should know. Eur J Paediatr Neurol 16(5):422–433
    • (2012) Eur J Paediatr Neurol , vol.16 , Issue.5 , pp. 422-433
    • Cortese, S.1
  • 18
    • 84855681679 scopus 로고    scopus 로고
    • Meta-analysis of structural MRI studies inchildren and adults with attention defcit hyperactivity disorder indicates treatment efects
    • Frodl T, Skokauskas N (2012) Meta-analysis of structural MRI studies inchildren and adults with attention defcit hyperactivity disorder indicates treatment efects. Acta Psychiatr Scand 125(2):114–126
    • (2012) Acta Psychiatr Scand , vol.125 , Issue.2 , pp. 114-126
    • Frodl, T.1    Skokauskas, N.2
  • 20
    • 77956317772 scopus 로고    scopus 로고
    • Structural MRI of pediatric brain development: what have we learned and where are we going?
    • Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Can J Psychiatry 67(5):728–734
    • (2010) Can J Psychiatry , vol.67 , Issue.5 , pp. 728-734
    • Giedd, J.N.1    Rapoport, J.L.2
  • 22
    • 77950621303 scopus 로고    scopus 로고
    • Morphological abnormalities of the thalamus in youths with attention defcit hyperactivity disorder
    • Ivanov I, Bansal R, Hao X, Zhu H, Kellendonk C, Miller L (2010) Morphological abnormalities of the thalamus in youths with attention defcit hyperactivity disorder. Am J Psychiatry 167(4):397–408
    • (2010) Am J Psychiatry , vol.167 , Issue.4 , pp. 397-408
    • Ivanov, I.1    Bansal, R.2    Hao, X.3    Zhu, H.4    Kellendonk, C.5    Miller, L.6
  • 23
    • 0026597219 scopus 로고
    • Mr-based hippocampal volumetry in the diagnosis of alzheimer’s disease
    • Jack CR, Petersen RC, Brien PCO, Tangalos EG (1992) Mr-based hippocampal volumetry in the diagnosis of alzheimer’s disease. Neurology 42(1):183–8
    • (1992) Neurology , vol.42 , Issue.1 , pp. 183-188
    • Jack, C.R.1    Petersen, R.C.2    Brien, P.C.O.3    Tangalos, E.G.4
  • 24
    • 0027601884 scopus 로고
    • ANFIS: adaptive network based fuzzy inference system
    • Jang J (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.1
  • 25
    • 58149487281 scopus 로고    scopus 로고
    • A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning
    • Juang CF (2008) A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans Fuzzy Syst 16(6):1411–1424
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.6 , pp. 1411-1424
    • Juang, C.F.1
  • 26
    • 77955490941 scopus 로고    scopus 로고
    • An interval type-2 fuzzy neural network with support vector regerssion for noisy regression problems
    • Juang CF (2010) An interval type-2 fuzzy neural network with support vector regerssion for noisy regression problems. IEEE Trans Fuzzy Syst 18(4):686–699
    • (2010) IEEE Trans Fuzzy Syst , vol.18 , Issue.4 , pp. 686-699
    • Juang, C.F.1
  • 27
    • 33645084590 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • Juang CF, Lin CT (2002) An on-line self-constructing neural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 10(2):144–154
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Juang, C.F.1    Lin, C.T.2
  • 28
    • 80053571600 scopus 로고    scopus 로고
    • A servo system control with time varying and nonlinear load conditions using type-2 tsk fuzzy neural system
    • Kayacan E, Oniz Y, Aras AC, Kaynak O, Abiyev R (2011) A servo system control with time varying and nonlinear load conditions using type-2 tsk fuzzy neural system. Appl Soft Comput 11(8):5735–5744
    • (2011) Appl Soft Comput , vol.11 , Issue.8 , pp. 5735-5744
    • Kayacan, E.1    Oniz, Y.2    Aras, A.C.3    Kaynak, O.4    Abiyev, R.5
  • 29
    • 84860424873 scopus 로고    scopus 로고
    • Evolving fuzzy granular modeling from nonstationary fuzzy data streams
    • Leite D, Ballini R, Costa P, Gomide F (2012) Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol Syst 3(2):65–79
    • (2012) Evol Syst , vol.3 , Issue.2 , pp. 65-79
    • Leite, D.1    Ballini, R.2    Costa, P.3    Gomide, F.4
  • 30
    • 0034295771 scopus 로고    scopus 로고
    • Interval type-2 fuzzy logic systems: theory and design
    • Liang Q, Mendel J (2000) Interval type-2 fuzzy logic systems: Theory and design. IEEE Trans Fuzzy Syst 8(5):535–550
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , Issue.5 , pp. 535-550
    • Liang, Q.1    Mendel, J.2
  • 31
    • 84911957528 scopus 로고    scopus 로고
    • General type-2 fuzzy inference systems: analysis, design and computational aspects. In: Fuzzy Systems Conference
    • Lucas L, Centeno T, Delgado M (2007) General type-2 fuzzy inference systems: analysis, design and computational aspects. In: Fuzzy Systems Conference, pp 1–6
    • (2007) pp 1–6
    • Lucas, L.1    Centeno, T.2    Delgado, M.3
  • 32
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: a robust incremental learning approach for evolving takagi sugeno fuzzy models
    • Lughofer E (2008) FLEXFIS: a robust incremental learning approach for evolving takagi sugeno fuzzy models. Fuzzy Syst IEEE Trans 16(6):1393–1410
    • (2008) Fuzzy Syst IEEE Trans , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.1
  • 33
    • 84865752987 scopus 로고    scopus 로고
    • A dynamic split-and-merge approach for evolving cluster models
    • Lughofer E (2012) A dynamic split-and-merge approach for evolving cluster models. Evol Syst 3(3):135–151
    • (2012) Evol Syst , vol.3 , Issue.3 , pp. 135-151
    • Lughofer, E.1
  • 34
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in on-line data streams with evolving fuzzy systems
    • Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Appl Soft Comput 11(2):2057–2068
    • (2011) Appl Soft Comput , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 35
    • 84857869648 scopus 로고    scopus 로고
    • Evolving fuzzy systems fro pricing fixed income options
    • Maciel L, Lemos A, Gomide F, Ballini R (2012) Evolving fuzzy systems fro pricing fixed income options. Evol Syst 3(1):5–18
    • (2012) Evol Syst , vol.3 , Issue.1 , pp. 5-18
    • Maciel, L.1    Lemos, A.2    Gomide, F.3    Ballini, R.4
  • 36
    • 84893807134 scopus 로고    scopus 로고
    • Computer aided diagnosis of ADHD using brain magnetic resonance images
    • Mahanand BS, Savitha R, Suresh S (2013) Computer aided diagnosis of ADHD using brain magnetic resonance images. LNCS 8272:386–395
    • (2013) LNCS , vol.8272 , pp. 386-395
    • Mahanand, B.S.1    Savitha, R.2    Suresh, S.3
  • 37
    • 33750023711 scopus 로고    scopus 로고
    • Advances in type-2 fuzzy sets and systems
    • Mendel J (2007a) Advances in type-2 fuzzy sets and systems. Inf Sci 177(1):84–110
    • (2007) Inf Sci , vol.177 , Issue.1 , pp. 84-110
    • Mendel, J.1
  • 38
    • 34248152046 scopus 로고    scopus 로고
    • Type-2 fuzzy sets and systems: an overview
    • Mendel J (2007b) Type-2 fuzzy sets and systems: an overview. IEEE Comput Intell Mag 2(1):20–29
    • (2007) IEEE Comput Intell Mag , vol.2 , Issue.1 , pp. 20-29
    • Mendel, J.1
  • 39
    • 84865966603 scopus 로고    scopus 로고
    • The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
    • Milham PM, Damien F, Maarten M, Stewart HM (2012) The ADHD- 200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 6:1–5
    • (2012) Front Syst Neurosci , vol.6 , pp. 1-5
    • Milham, P.M.1    Damien, F.2    Maarten, M.3    Stewart, H.M.4
  • 40
    • 77957775546 scopus 로고
    • Metamemory: a theoretical framework and new findings
    • Nelson TO, Narens L (1990) Metamemory: A theoretical framework and new findings. Psychol Learn Mot 26(C):125–173
    • (1990) Psychol Learn Mot , vol.26 , Issue.C , pp. 125-173
    • Nelson, T.O.1    Narens, L.2
  • 41
    • 34250832736 scopus 로고    scopus 로고
    • The worldwide prevalence of ADHD: a systematic review and metaregression analysis
    • Polanczyk G, Lima MSD, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948
    • (2007) Am J Psychiatry , vol.164 , Issue.6 , pp. 942-948
    • Polanczyk, G.1    Lima, M.S.D.2    Horta, B.L.3    Biederman, J.4    Rohde, L.A.5
  • 42
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system SAFIS for nonlinear system identification and prediction
    • Rong H, Sundararajan N, Huang G, Saratchandran P (2006) Sequential adaptive fuzzy inference system SAFIS for nonlinear system identification and prediction. Fuzzy Sets Syst 157(9):1260–1275
    • (2006) Fuzzy Sets Syst , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.1    Sundararajan, N.2    Huang, G.3    Saratchandran, P.4
  • 43
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy extreme learning machine for function approximation and classification problems
    • Rong HJ, Huang GB, Sundararajan N, Saratchandran P (2009) Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern Part B: Cybern 39(4):1067–1072
    • (2009) IEEE Trans Syst Man Cybern Part B: Cybern , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.J.1    Huang, G.B.2    Sundararajan, N.3    Saratchandran, P.4
  • 44
    • 72649095852 scopus 로고    scopus 로고
    • SOFMLS: online self-organizing fuzzy modified least-squares network
    • Rubio JJ (2009) SOFMLS: online self-organizing fuzzy modified least-squares network. Fuzzy Syst IEEE Trans 17(6):1296–1309
    • (2009) Fuzzy Syst IEEE Trans , vol.17 , Issue.6 , pp. 1296-1309
    • Rubio, J.J.1
  • 45
    • 84878419271 scopus 로고    scopus 로고
    • Modified optimal control with a back propagation network for robotic arms
    • Rubio JJ (2012) Modified optimal control with a back propagation network for robotic arms. Control Theory Appl IET 6(14):2216–2225
    • (2012) Control Theory Appl IET , vol.6 , Issue.14 , pp. 2216-2225
    • Rubio, J.J.1
  • 46
    • 84889091682 scopus 로고    scopus 로고
    • Evolving intelligent algorithms for the modelling of brain and eye signals
    • Rubio JJ (2014) Evolving intelligent algorithms for the modelling of brain and eye signals. Appl Soft Comput 14(B):259–268
    • (2014) Appl Soft Comput , vol.14 , Issue.B , pp. 259-268
    • Rubio, J.J.1
  • 47
    • 84888303803 scopus 로고    scopus 로고
    • Evolving intelligent system for the modelling of nonlinear systems with dead-zone input
    • Rubio JJ, Humberto Perez-Cruz J (2014) Evolving intelligent system for the modelling of nonlinear systems with dead-zone input. Appl Soft Comput 14(B):289–304
    • (2014) Appl Soft Comput , vol.14 , Issue.B , pp. 289-304
    • Rubio, J.J.1    Humberto Perez-Cruz, J.2
  • 48
    • 84856317703 scopus 로고    scopus 로고
    • Meta-cognitive neural network for classification problems in a sequential learning framework
    • Sateesh Babu G, Suresh S (2012) Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing 81(1):86–96
    • (2012) Neurocomputing , vol.81 , Issue.1 , pp. 86-96
    • Sateesh Babu, G.1    Suresh, S.2
  • 49
    • 84872035386 scopus 로고    scopus 로고
    • Parkinson’s disease prediction using gene expression—a projection based learning meta-cognitive neural classifier approach
    • Sateesh Babu G, Suresh S (2013) Parkinson’s disease prediction using gene expression—a projection based learning meta-cognitive neural classifier approach. Expert Syst Appl 40(5):1519–1529
    • (2013) Expert Syst Appl , vol.40 , Issue.5 , pp. 1519-1529
    • Sateesh Babu, G.1    Suresh, S.2
  • 50
    • 84861781199 scopus 로고    scopus 로고
    • A meta-cognitive learning algorithm for a fully complex-valued relaxation network
    • Savitha R, Suresh S, Sundararajan N (2012a) A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw 32(Special Issue):209–218
    • (2012) Neural Netw , vol.32 , pp. 209-218
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 51
    • 84860235672 scopus 로고    scopus 로고
    • Metacognitive learning in a fully complex valued radial basis function neural network
    • Savitha R, Suresh S, Sundararajan N (2012b) Metacognitive learning in a fully complex valued radial basis function neural network. Neural Comput 24(5):1297–1328
    • (2012) Neural Comput , vol.24 , Issue.5 , pp. 1297-1328
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 52
    • 84875891295 scopus 로고    scopus 로고
    • Projection based fast learning fully complex-valued relaxation neural network
    • Savitha R, Suresh S, Sundararajan N (2013) Projection based fast learning fully complex-valued relaxation neural network. IEEE Trans Neural Netw Learn Syst 24(4):529–541
    • (2013) IEEE Trans Neural Netw Learn Syst , vol.24 , Issue.4 , pp. 529-541
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 53
    • 33646932136 scopus 로고    scopus 로고
    • Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-defcit/hyperactivity disorder
    • Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J, Castellanos F, Rapoport J (2006) Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-defcit/hyperactivity disorder. Arch Gen Psychiatry 63(5):540–549
    • (2006) Arch Gen Psychiatry , vol.63 , Issue.5 , pp. 540-549
    • Shaw, P.1    Lerch, J.2    Greenstein, D.3    Sharp, W.4    Clasen, L.5    Evans, A.6    Giedd, J.7    Castellanos, F.8    Rapoport, J.9
  • 54
    • 0036530967 scopus 로고    scopus 로고
    • Dynamic evolving neuro-fuzzy inference system DENFIS: online learning and application for time-series prediction
    • Song Q, Kasabov N (2002) Dynamic evolving neuro-fuzzy inference system DENFIS: Online learning and application for time-series prediction. IEEE Trans Fuzzy Syst 10(2):144–154
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.2 , pp. 144-154
    • Song, Q.1    Kasabov, N.2
  • 55
    • 84870480229 scopus 로고    scopus 로고
    • Human action recognition using meta-cognitive neuro-fuzzy inference system
    • Subramanian K, Suresh S (2012a) Human action recognition using meta-cognitive neuro-fuzzy inference system. Int J Neural Sys 22(6):1250028 (15)
    • (2012) Int J Neural Sys 22(6)
    • Subramanian, K.1    Suresh, S.2
  • 56
    • 84865864111 scopus 로고    scopus 로고
    • A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system
    • Subramanian K, Suresh S (2012b) A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. Appl Soft Comput 12(11):3603–3614
    • (2012) Appl Soft Comput , vol.12 , Issue.11 , pp. 3603-3614
    • Subramanian, K.1    Suresh, S.2
  • 57
    • 84887844923 scopus 로고    scopus 로고
    • A projection based learning algorithm for Meta-Cognitive Neuro-Fuzzy Inference system. In: Fuzzy systems (FUZZ), 2013 IEEE International Conference
    • Subramanian K, Suresh S (2013) A projection based learning algorithm for Meta-Cognitive Neuro-Fuzzy Inference system. In: Fuzzy systems (FUZZ), 2013 IEEE International Conference, pp 1–8
    • (2013) pp 1–8
    • Subramanian, K.1    Suresh, S.2
  • 58
    • 84865091724 scopus 로고    scopus 로고
    • Complex-valued neuro-fuzzy inference system for wind prediction. In: International Joint Conference on Neural Networks(IJCNN), Brisbane
    • Subramanian K, Savitha R, Suresh S (2012a) Complex-valued neuro-fuzzy inference system for wind prediction. In: International Joint Conference on Neural Networks(IJCNN), Brisbane, pp 1–7
    • (2012) pp 1–7
    • Subramanian, K.1    Savitha, R.2    Suresh, S.3
  • 59
    • 84871549051 scopus 로고    scopus 로고
    • Mahanand B (2012b) Complex-valued neuro-fuzzy inference system based classifier
    • Springer, Berlin Heidelberg:
    • Subramanian K, Savitha R, Suresh S, Mahanand B (2012b) Complex-valued neuro-fuzzy inference system based classifier. In: Swarm, evolutionary, and memetic computing. Springer, Berlin Heidelberg, pp 348–355
    • Swarm, evolutionary, and memetic computing , pp. 348-355
    • Subramanian, K.1    Savitha, R.2    Suresh, S.3
  • 60
    • 84885226612 scopus 로고    scopus 로고
    • A meta-cognitive interval type-2 fuzzy inference system classifier and its projection based learning algorithm. In: Evolving and adaptive intelligent systems (EAIS), 2013 IEEE Conference
    • Subramanian K, Savitha R, Suresh S (2013a) A meta-cognitive interval type-2 fuzzy inference system classifier and its projection based learning algorithm. In: Evolving and adaptive intelligent systems (EAIS), 2013 IEEE Conference, pp 48–55
    • (2013) pp 48–55
    • Subramanian, K.1    Savitha, R.2    Suresh, S.3
  • 61
    • 84897710607 scopus 로고    scopus 로고
    • A metacognitive neuro-fuzzy inference system (mcfis) for sequential classification problems
    • Subramanian K, Suresh S, Sundararajan N (2013b) A metacognitive neuro-fuzzy inference system (mcfis) for sequential classification problems. Fuzzy Syst IEEE Trans 21(6):1080–1095
    • (2013) Fuzzy Syst IEEE Trans , vol.21 , Issue.6 , pp. 1080-1095
    • Subramanian, K.1    Suresh, S.2    Sundararajan, N.3
  • 62
    • 84885861235 scopus 로고    scopus 로고
    • A complex-valued neuro-fuzzy inference system and its learning mechanism
    • Subramanian K, Savitha R, Suresh S (2014) A complex-valued neuro-fuzzy inference system and its learning mechanism. Neurocomputing 123:110–120
    • (2014) Neurocomputing , vol.123 , pp. 110-120
    • Subramanian, K.1    Savitha, R.2    Suresh, S.3
  • 63
    • 58549103087 scopus 로고    scopus 로고
    • No-reference image quality assessment using modified extreme learning machine classifier
    • Suresh S, Babu RV, Kim HJ (2009) No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput 9(2):541–552
    • (2009) Appl Soft Comput , vol.9 , Issue.2 , pp. 541-552
    • Suresh, S.1    Babu, R.V.2    Kim, H.J.3
  • 64
    • 78649975292 scopus 로고    scopus 로고
    • A sequential learning algorithm for self-adaptive resource allocation network classifier
    • Suresh S, Dong K, Kim H (2010) A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing 73(16–18):3012–3019
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3012-3019
    • Suresh, S.1    Dong, K.2    Kim, H.3
  • 65
    • 79960139729 scopus 로고    scopus 로고
    • A sequential learning algorithm for complex valued self regulating resource allocation network- CSRAN
    • Suresh S, Savitha R, Sundararajan N (2011) A sequential learning algorithm for complex valued self regulating resource allocation network- CSRAN. IEEE Trans Neural Netw 22(7):1061–1072
    • (2011) IEEE Trans Neural Netw , vol.22 , Issue.7 , pp. 1061-1072
    • Suresh, S.1    Savitha, R.2    Sundararajan, N.3
  • 66
    • 41749093196 scopus 로고    scopus 로고
    • Risk sensitive loss functions for sparse multi-category classification problems
    • Suresh S, Sundararajan N, Saratchandran P (2008) Risk sensitive loss functions for sparse multi-category classification problems. Inf Sci 179(21):2621–2638
    • (2008) Inf Sci , vol.179 , Issue.21 , pp. 2621-2638
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 67
    • 84884593282 scopus 로고    scopus 로고
    • A class of type-2 fuzzy neural networks for nonlinear dynamical system identification
    • Tavoosi J, Badamchizadeh MA (2012) A class of type-2 fuzzy neural networks for nonlinear dynamical system identification. Neural Comput Appl 23(3–4):707–717
    • (2012) Neural Comput Appl , vol.23 , Issue.3-4 , pp. 707-717
    • Tavoosi, J.1    Badamchizadeh, M.A.2
  • 68
    • 84880395855 scopus 로고    scopus 로고
    • Characterisation framework for epileptic signals
    • Vazquez DM, Rubio JJ, Pacheco J (2012) Characterisation framework for epileptic signals. Image Process IET 6(9):1227–1235
    • (2012) Image Process IET , vol.6 , Issue.9 , pp. 1227-1235
    • Vazquez, D.M.1    Rubio, J.J.2    Pacheco, J.3
  • 69
    • 84867602878 scopus 로고    scopus 로고
    • An overview of alternative type-reduction approaches for reducing the computational cost of interval type-2 fuzzy logic controllers. In: IEEE Intl. Conf. on Fuzzy Systems
    • Wu D (2012) An overview of alternative type-reduction approaches for reducing the computational cost of interval type-2 fuzzy logic controllers. In: IEEE Intl. Conf. on Fuzzy Systems, pp 1–8
    • (2012) pp 1–8
    • Wu, D.1
  • 70
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang T (2003) Statistical behavior and consistency of classification methods based on convex risk minimization. Ann Stat 32(1):56–85
    • (2003) Ann Stat , vol.32 , Issue.1 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.