메뉴 건너뛰기




Volumn 123, Issue , 2014, Pages 110-120

A complex-valued neuro-fuzzy inference system and its learning mechanism

Author keywords

Complex valued neural network; Fuzzy inference system; Meta cognition; Self regulation; Wirtinger calculus

Indexed keywords

COMPLEX-VALUED NEURAL NETWORKS; FUZZY INFERENCE SYSTEMS; META COGNITIONS; SELF-REGULATION; WIRTINGER CALCULUS;

EID: 84885861235     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.06.009     Document Type: Article
Times cited : (62)

References (56)
  • 1
    • 70350726188 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based total demand distortion factor for power quality evaluation
    • Prabha N.R., Marimuthu N.S., Babulal C.K. Adaptive neuro-fuzzy inference system based total demand distortion factor for power quality evaluation. Neurocomputing 2009, 73(1-3):315-323.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 315-323
    • Prabha, N.R.1    Marimuthu, N.S.2    Babulal, C.K.3
  • 2
    • 32544448057 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for diagnosis of antibody deficiency syndrome
    • Lim J.S., Wang D., Kim Y.-S., Gupta S. A neuro-fuzzy approach for diagnosis of antibody deficiency syndrome. Neurocomputing 2006, 69(7-9):969-974.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 969-974
    • Lim, J.S.1    Wang, D.2    Kim, Y.-S.3    Gupta, S.4
  • 3
    • 33745802982 scopus 로고    scopus 로고
    • Analysis, synthesis and diagnostics of antenna arrays through complex-valued neural networks
    • Bregains J., Ares F. Analysis, synthesis and diagnostics of antenna arrays through complex-valued neural networks. Microwave and Optical Technology Letters 2006, 48(8):1512-1515.
    • (2006) Microwave and Optical Technology Letters , vol.48 , Issue.8 , pp. 1512-1515
    • Bregains, J.1    Ares, F.2
  • 5
    • 44349176195 scopus 로고    scopus 로고
    • Blur identification by multilayer neural network based on multivalued neurons
    • Aizenberg I., Paliy D., Zurada J., Astola J. Blur identification by multilayer neural network based on multivalued neurons. IEEE Transactions on Neural Networks 2008, 19(5):883-898.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.5 , pp. 883-898
    • Aizenberg, I.1    Paliy, D.2    Zurada, J.3    Astola, J.4
  • 6
    • 0041523970 scopus 로고    scopus 로고
    • A new design method for the complex valued multistate hopfield associative memory
    • Muezzinoglu M., Guzelis C., Zuruda J. A new design method for the complex valued multistate hopfield associative memory. IEEE Transactions on Neural Networks 2003, 14(4):891-899.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.4 , pp. 891-899
    • Muezzinoglu, M.1    Guzelis, C.2    Zuruda, J.3
  • 7
    • 51649108022 scopus 로고    scopus 로고
    • Complex valued prediction of wind profile using augmented complex statistics
    • Mandic D., Javidi S., Goh S., Kuh A., Aihara K. Complex valued prediction of wind profile using augmented complex statistics. Renewable Energy 2009, 34(1):196-201.
    • (2009) Renewable Energy , vol.34 , Issue.1 , pp. 196-201
    • Mandic, D.1    Javidi, S.2    Goh, S.3    Kuh, A.4    Aihara, K.5
  • 8
    • 81855226515 scopus 로고    scopus 로고
    • Real time hand gesture recognition using complex valued neural network (CVNN), in: Neural Information Processing, Lecture Notes in Computer Science
    • A. Ghani, M. Amin, K. Murase, Real time hand gesture recognition using complex valued neural network (CVNN), in: Neural Information Processing, Lecture Notes in Computer Science, 2011, pp. 541-549.
    • (2011) , pp. 541-549
    • Ghani, A.1    Amin, M.2    Murase, K.3
  • 9
    • 0042198308 scopus 로고    scopus 로고
    • The computational power of complex-valued neuron, in: Artificial Neural Networks and Neural Information Processing ICANN/ICONIP, Lecture Notes in Computer Science
    • T. Nitta, The computational power of complex-valued neuron, in: Artificial Neural Networks and Neural Information Processing ICANN/ICONIP, Lecture Notes in Computer Science, vol. 2714, 2003, pp. 993-1000.
    • (2003) , vol.2714 , pp. 993-1000
    • Nitta, T.1
  • 10
    • 84885869121 scopus 로고    scopus 로고
    • An extension of back-propagation algorithm to complex numbers
    • Nitta T. An extension of back-propagation algorithm to complex numbers. Neural Networks 1997, 48(1):180-192.
    • (1997) Neural Networks , vol.48 , Issue.1 , pp. 180-192
    • Nitta, T.1
  • 11
    • 0038159963 scopus 로고    scopus 로고
    • Approximation by fully complex multilayer perceptron
    • Kim T., Adali T. Approximation by fully complex multilayer perceptron. Neural Computation 2003, 15(7):1641-1666.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1641-1666
    • Kim, T.1    Adali, T.2
  • 12
    • 70249094707 scopus 로고    scopus 로고
    • A fully complex-valued radial basis function network and its learning algorithm
    • Savitha R., Suresh S., Sundararajan N. A fully complex-valued radial basis function network and its learning algorithm. International Journal of Neural Systems 2009, 19(4):253-267.
    • (2009) International Journal of Neural Systems , vol.19 , Issue.4 , pp. 253-267
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 13
    • 0028277017 scopus 로고
    • Complex valued radial basis function network, part I. network architecture and learning algorithms
    • Chen S., McLaughlin S., Mulgrew N. Complex valued radial basis function network, part I. network architecture and learning algorithms. EURASIP Signal Processing Journal 1994, 35(1):19-31.
    • (1994) EURASIP Signal Processing Journal , vol.35 , Issue.1 , pp. 19-31
    • Chen, S.1    McLaughlin, S.2    Mulgrew, N.3
  • 14
    • 0000908204 scopus 로고
    • Zur formalen theorie der funktionen von mehr komplexen vernderlichen
    • Wirtinger W. Zur formalen theorie der funktionen von mehr komplexen vernderlichen. Annals of Mathematics 1927, 97:357-375.
    • (1927) Annals of Mathematics , vol.97 , pp. 357-375
    • Wirtinger, W.1
  • 16
    • 84860235672 scopus 로고    scopus 로고
    • Metacognitive learning in a fully complex-valued radial basis function neural network
    • Savitha R., Suresh S., Sundararajan N. Metacognitive learning in a fully complex-valued radial basis function neural network. Neural Computation 2012, 24(5):1297-1328.
    • (2012) Neural Computation , vol.24 , Issue.5 , pp. 1297-1328
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 17
    • 70249109961 scopus 로고    scopus 로고
    • Complex-valued function approximation using a fully complex-valued RBF (FC-RBF) learning algorithm, in: Proceedings of International Joint Conference on Neural Networks
    • R. Savitha, S. Suresh, N. Sundararajan, Complex-valued function approximation using a fully complex-valued RBF (FC-RBF) learning algorithm, in: Proceedings of International Joint Conference on Neural Networks, 2009, pp. 2819-2825.
    • (2009) , pp. 2819-2825
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 18
    • 84861778142 scopus 로고    scopus 로고
    • Orthogonal least squares based complex-valued functional link network
    • (Special Issue)
    • Amin M.F., Savitha R., Amin M.I., Murase K. Orthogonal least squares based complex-valued functional link network. Neural Networks 2012, 32:257-266. (Special Issue).
    • (2012) Neural Networks , vol.32 , pp. 257-266
    • Amin, M.F.1    Savitha, R.2    Amin, M.I.3    Murase, K.4
  • 19
    • 84865864111 scopus 로고    scopus 로고
    • A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system
    • Subramanian K., Suresh S. A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. Applied Soft Computing 2012, 12(11):3603-3614.
    • (2012) Applied Soft Computing , vol.12 , Issue.11 , pp. 3603-3614
    • Subramanian, K.1    Suresh, S.2
  • 20
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • Rong H.-J., Sundararajan N., Huang G.-B., Saratchandran P. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets and Systems 2006, 157(9):1260-1275.
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.-J.1    Sundararajan, N.2    Huang, G.-B.3    Saratchandran, P.4
  • 21
    • 77949623876 scopus 로고    scopus 로고
    • Modeling meta-cognition for learning in artificial systems, in: World Congress on Nature and Biologically Inspired Computing
    • D.P. Joysula, H. Vadali, J. Donahue, F. Hughes, Modeling meta-cognition for learning in artificial systems, in: World Congress on Nature and Biologically Inspired Computing, 2009, pp. 1419-1424.
    • (2009) , pp. 1419-1424
    • Joysula, D.P.1    Vadali, H.2    Donahue, J.3    Hughes, F.4
  • 22
    • 33744781376 scopus 로고
    • Meta-cognition and cognitive monitoring. a new area of cognitive-developmental inquiry
    • Flavell J. Meta-cognition and cognitive monitoring. a new area of cognitive-developmental inquiry. American Psychologist 1979, 34(10):906-911.
    • (1979) American Psychologist , vol.34 , Issue.10 , pp. 906-911
    • Flavell, J.1
  • 23
    • 0002316913 scopus 로고
    • Metamemory revisited, in: M.T.H. Chi (Ed.), Contributions to Human Development, vol. 9, Trends in Memory Development Research
    • H. Wellman, Metamemory revisited, in: M.T.H. Chi (Ed.), Contributions to Human Development, vol. 9, Trends in Memory Development Research, 1983, pp. 31-51.
    • (1983) , pp. 31-51
    • Wellman, H.1
  • 24
    • 77951938888 scopus 로고    scopus 로고
    • Neural mechanisms of the mind, Aristotle, Zadeh and fMRI
    • Perlovsky L. Neural mechanisms of the mind, Aristotle, Zadeh and fMRI. IEEE Transactions on Neual Networks 2010, 21(5):718-733.
    • (2010) IEEE Transactions on Neual Networks , vol.21 , Issue.5 , pp. 718-733
    • Perlovsky, L.1
  • 25
  • 27
    • 84897710607 scopus 로고    scopus 로고
    • A meta-cognitive neuro-fuzzy inference system (McFIS) for sequential classification problems, IEEE Transactions on Fuzzy Systems, doi:. doi:10.1109/TFUZZ.2013.2242894
    • K. Subramanian, S. Sundaram, N. Sundararajan, A meta-cognitive neuro-fuzzy inference system (McFIS) for sequential classification problems, IEEE Transactions on Fuzzy Systems, doi:. doi:10.1109/TFUZZ.2013.2242894.
    • Subramanian, K.1    Sundaram, S.2    Sundararajan, N.3
  • 28
    • 78649975292 scopus 로고    scopus 로고
    • A sequential learning algorithm for self adaptive resource allocation network classifier
    • Suresh S., Dong K., Kim H. A sequential learning algorithm for self adaptive resource allocation network classifier. Neurocomputing 2010, 73(16-18):3012-3019.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3012-3019
    • Suresh, S.1    Dong, K.2    Kim, H.3
  • 29
    • 79960139729 scopus 로고    scopus 로고
    • A sequential learning algorithm for complex valued self regulating resource allocation network-CSRAN
    • Suresh S., Savitha R., Sundararajan N. A sequential learning algorithm for complex valued self regulating resource allocation network-CSRAN. IEEE Transactions on Neural Networks 2011, 22(7):1061-1072.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.7 , pp. 1061-1072
    • Suresh, S.1    Savitha, R.2    Sundararajan, N.3
  • 30
    • 84856317703 scopus 로고    scopus 로고
    • Metacognitive neural network for classification problems in a sequential learning framework
    • Sateesh Babu G., Suresh S. Metacognitive neural network for classification problems in a sequential learning framework. Neurocomputing 2011, 81(1):86-96.
    • (2011) Neurocomputing , vol.81 , Issue.1 , pp. 86-96
    • Sateesh Babu, G.1    Suresh, S.2
  • 31
    • 84861781199 scopus 로고    scopus 로고
    • A meta-cognitive learning algorithm for a fully complex-valued relaxation network
    • (Special Issue)
    • Savitha R., Suresh S., Sundararajan N. A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Networks 2012, 32:209-218. (Special Issue).
    • (2012) Neural Networks , vol.32 , pp. 209-218
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 32
    • 80054766765 scopus 로고    scopus 로고
    • A sequential learning algorithm for meta-cognitive neuro-fuzzy inference system for classification problems, in: Proceedings of International Joint Conference on Neural Networks
    • S. Suresh, K. Subramanian, A sequential learning algorithm for meta-cognitive neuro-fuzzy inference system for classification problems, in: Proceedings of International Joint Conference on Neural Networks, 2011, pp. 2507-2512.
    • (2011) , pp. 2507-2512
    • Suresh, S.1    Subramanian, K.2
  • 33
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine
    • Blake C., Merz C. UCI Repository of Machine Learning Databases 1998, Department of Information and Computer Sciences, University of California, Irvine, http://archive.ics.uci.edu/ml/.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 38
    • 69249205575 scopus 로고    scopus 로고
    • A new learning algorithm with logarithmic performance index for complex-valued neural networks
    • Savitha R., Suresh S., Sundararajan N. A new learning algorithm with logarithmic performance index for complex-valued neural networks. Neurocomputing 2009, 72(16-18):3771-3781.
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3771-3781
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 39
    • 84875891295 scopus 로고    scopus 로고
    • A projection based fast learning fully complex-valued relaxation neural network, in: IEEE Transactions on Neural Networks
    • R. Savitha, S. Suresh, N. Sundararajan, A projection based fast learning fully complex-valued relaxation neural network, in: IEEE Transactions on Neural Networks, vol. 24, 2013, pp. 529-541.
    • (2013) , vol.24 , pp. 529-541
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 41
    • 0348156824 scopus 로고    scopus 로고
    • Orthogonality of decision boundaries of complex-valued neural networks
    • Nitta T. Orthogonality of decision boundaries of complex-valued neural networks. Neural Computation 2004, 16(1):73-97.
    • (2004) Neural Computation , vol.16 , Issue.1 , pp. 73-97
    • Nitta, T.1
  • 42
    • 82655172397 scopus 로고    scopus 로고
    • A fully complex valued radial basis function classifier for real valued classification problems
    • Savitha R., Suresh S., Sundararajan N., Kim H. A fully complex valued radial basis function classifier for real valued classification problems. Neurocomputing 2012, 78(1):104-110.
    • (2012) Neurocomputing , vol.78 , Issue.1 , pp. 104-110
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3    Kim, H.4
  • 43
    • 33748371451 scopus 로고    scopus 로고
    • Multilayer feedforward neural network based on multi-valued neurons MLMVN and a backpropagation learning algorithm
    • Aizenberg I., Moraga C. Multilayer feedforward neural network based on multi-valued neurons MLMVN and a backpropagation learning algorithm. Soft Computing 2007, 11(2):169-193.
    • (2007) Soft Computing , vol.11 , Issue.2 , pp. 169-193
    • Aizenberg, I.1    Moraga, C.2
  • 44
    • 58149460022 scopus 로고    scopus 로고
    • Single-layer complex-valued neural network for real-valued classification problems
    • Amin M.F., Murase K. Single-layer complex-valued neural network for real-valued classification problems. Neurocomputing 2009, 72(4-6):945-955.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 945-955
    • Amin, M.F.1    Murase, K.2
  • 45
    • 79957799279 scopus 로고    scopus 로고
    • Fast learning fully complex-valued classifiers for real-valued classification problems, in: Lecture Notes in Computer Science: Advances in Neural Networks
    • R. Savitha, S. Suresh, N. Sundararajan, H.J. Kim, Fast learning fully complex-valued classifiers for real-valued classification problems, in: Lecture Notes in Computer Science: Advances in Neural Networks, vol. 6675, 2011, pp. 602-609.
    • (2011) , vol.6675 , pp. 602-609
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3    Kim, H.J.4
  • 46
    • 84155165297 scopus 로고    scopus 로고
    • Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems
    • Savitha R., Suresh S., Sundararajan N. Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems. Information Sciences 2012, 187:277-290.
    • (2012) Information Sciences , vol.187 , pp. 277-290
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 47
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 1985, 15(1):116-132.
    • (1985) IEEE Transactions on Systems, Man, and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 48
    • 12944331170 scopus 로고    scopus 로고
    • Intelligent beam-forming by using a complex-valued neural network
    • Suksmono A., Hirose A. Intelligent beam-forming by using a complex-valued neural network. Journal of Intelligent & Fuzzy Systems 2004, 15(3-4):139-147.
    • (2004) Journal of Intelligent & Fuzzy Systems , vol.15 , Issue.3-4 , pp. 139-147
    • Suksmono, A.1    Hirose, A.2
  • 49
    • 69249205575 scopus 로고    scopus 로고
    • A new learning algorithm with logarithmic performance index for complex-valued neural networks
    • Savitha R., Suresh S., Sundararajan N. A new learning algorithm with logarithmic performance index for complex-valued neural networks. Neurocomputing 2009, 72(16-18):3771-3781.
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3771-3781
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 52
    • 41749093196 scopus 로고    scopus 로고
    • Risk-sensitive loss functions for sparse multi-category classification problems
    • Suresh S., Sundararajan N., Saratchandran P. Risk-sensitive loss functions for sparse multi-category classification problems. Information Sciences 2008, 178:2621-2638.
    • (2008) Information Sciences , vol.178 , pp. 2621-2638
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 53
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics 2003, 32(1):56-85.
    • (2003) Annals of Statistics , vol.32 , Issue.1 , pp. 56-85
    • Zhang, T.1
  • 54
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Machine Learning 1995, 20(3):272-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 272-297
    • Cortes, C.1    Vapnik, V.2
  • 55
    • 58549103087 scopus 로고    scopus 로고
    • No-reference image quality assessment using modified extreme learning machine classifier
    • Suresh S., Venkatesh Babu R., Kim H.J. No-reference image quality assessment using modified extreme learning machine classifier. Applied Soft Computing 2009, 9(2):541-552.
    • (2009) Applied Soft Computing , vol.9 , Issue.2 , pp. 541-552
    • Suresh, S.1    Venkatesh Babu, R.2    Kim, H.J.3
  • 56
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006, 7(1):1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.1 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.