메뉴 건너뛰기




Volumn , Issue , 2013, Pages 48-55

A Meta-cognitive Interval Type-2 fuzzy inference system classifier and its projection based learning algorithm

Author keywords

class specific error; classification; hinge loss; Interval type 2 neuro fuzzy system; meta cognition; self regulation

Indexed keywords

BENCHMARK CLASSIFICATION; HINGE-LOSS; META COGNITIONS; NEURO-FUZZY INFERENCE SYSTEMS; NEUROFUZZY SYSTEM; SELF-REGULATION; TAKAGI-SUGENO-KANG TYPES; UCI MACHINE LEARNING REPOSITORY;

EID: 84885226612     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/EAIS.2013.6604104     Document Type: Conference Paper
Times cited : (19)

References (36)
  • 2
    • 84867949020 scopus 로고    scopus 로고
    • Design a wind speed prediction model using probabilistic fuzzy system
    • G. Zhang, H. Li, and M. Gan, "Design a wind speed prediction model using probabilistic fuzzy system," IEEE Trans. Industrial Informatics, vol. 8, no. 4, pp. 819-827, 2012.
    • (2012) IEEE Trans. Industrial Informatics , vol.8 , Issue.4 , pp. 819-827
    • Zhang, G.1    Li, H.2    Gan, M.3
  • 4
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system SAFIS for nonlinear system identification and prediction
    • H. Rong, N. Sundararajan, G. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system SAFIS for nonlinear system identification and prediction," Fuzzy Sets and Syst., vol. 157, no. 9, pp. 1260-1275, 2006.
    • (2006) Fuzzy Sets and Syst. , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.1    Sundararajan, N.2    Huang, G.3    Saratchandran, P.4
  • 5
    • 58149487281 scopus 로고    scopus 로고
    • A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning
    • C. F. Juang, "A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning," IEEE Trans. on Fuzzy Systems, vol. 16, no. 6, pp. 1411-1424, 2008.
    • (2008) IEEE Trans. on Fuzzy Systems , vol.16 , Issue.6 , pp. 1411-1424
    • Juang, C.F.1
  • 6
    • 77955490941 scopus 로고    scopus 로고
    • An interval type-2 fuzzy neural network with support vector regerssion for noisy regression problems
    • -, "An interval type-2 fuzzy neural network with support vector regerssion for noisy regression problems," IEEE Trans. on Fuzzy Systems, vol. 18, no. 4, pp. 686-699, 2010.
    • (2010) IEEE Trans. on Fuzzy Systems , vol.18 , Issue.4 , pp. 686-699
    • Juang, C.F.1
  • 7
    • 64549100695 scopus 로고    scopus 로고
    • Optimization of interval type-2 fuzzy logic controllers for a perturbedautonomous wheeled mobile robot using genetic algorithms
    • R. Martinez, O. Castillo, and L. Aguilar, "Optimization of interval type-2 fuzzy logic controllers for a perturbedautonomous wheeled mobile robot using genetic algorithms," Information Sciences, vol. 179, no. 13, pp. 2158-2174, 2009.
    • (2009) Information Sciences , vol.179 , Issue.13 , pp. 2158-2174
    • Martinez, R.1    Castillo, O.2    Aguilar, L.3
  • 8
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • J. C. Platt, "A resource allocating network for function interpolation," Neural Computation, vol. 3, no. 2, pp. 213-225, 1991.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.C.1
  • 9
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning
    • N. Kasabov, "Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning," IEEE Trans. Syst., Man, Cybern., Part B: Cybern, vol. 31, no. 6, pp. 902-918, 2002.
    • (2002) IEEE Trans. Syst., Man, Cybern., Part B: Cybern , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 10
    • 0036530967 scopus 로고    scopus 로고
    • Dynamic evolving neuro-fuzzy inference system DENFIS: Online learning and application for time-series prediction
    • Q. Song and N. Kasabov, "Dynamic evolving neuro-fuzzy inference system DENFIS: Online learning and application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Song, Q.1    Kasabov, N.2
  • 11
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • P. Angelov and P. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst., Man and Cybern., Part B: Cybern., vol. 34, no. 1, pp. 484-498, 2004.
    • (2004) IEEE Trans. Syst., Man and Cybern., Part B: Cybern. , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, P.2
  • 12
    • 84865864111 scopus 로고    scopus 로고
    • A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system
    • K. Subramanian and S. Suresh, "A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system," Applied Soft Computing, vol. 12, no. 11, pp. 3603-3614, 2012.
    • (2012) Applied Soft Computing , vol.12 , Issue.11 , pp. 3603-3614
    • Subramanian, K.1    Suresh, S.2
  • 13
    • 33750023711 scopus 로고    scopus 로고
    • Advances in type-2 fuzzy sets and systems
    • J. Mendel, "Advances in type-2 fuzzy sets and systems," Information Sciences, vol. 177, no. 1, pp. 84-110, 2007.
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 84-110
    • Mendel, J.1
  • 14
    • 84857116526 scopus 로고    scopus 로고
    • A review on the design and optimization of interval type-2 fuzzy controllers
    • O. Castillo and P. Melin, "A review on the design and optimization of interval type-2 fuzzy controllers," Applied Soft Computing, vol. 12, no. 4, pp. 1267-1278, 2012.
    • (2012) Applied Soft Computing , vol.12 , Issue.4 , pp. 1267-1278
    • Castillo, O.1    Melin, P.2
  • 15
    • 84884593282 scopus 로고    scopus 로고
    • A class of type-2 fuzzy neural networks for nonlinear dynamical system identification
    • DOI: 10. 1007/s00521-012-0981-7
    • J. Tavoosi and M. A. Badamchizadeh, "A class of type-2 fuzzy neural networks for nonlinear dynamical system identification," Neural Computation and Application, 2012, DOI: 10. 1007/s00521-012-0981-7.
    • (2012) Neural Computation and Application
    • Tavoosi, J.1    Badamchizadeh, M.A.2
  • 16
    • 64549090645 scopus 로고    scopus 로고
    • A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    • J. Castro, O. Castillo, P. Melin, and A. Rodriguez-Diaz, "A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks," Information Sciences, vol. 179, no. 13, pp. 2175-2193, 2009.
    • (2009) Information Sciences , vol.179 , Issue.13 , pp. 2175-2193
    • Castro, J.1    Castillo, O.2    Melin, P.3    Rodriguez-Diaz, A.4
  • 17
    • 77957919121 scopus 로고    scopus 로고
    • A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization
    • R. H. Abiyev, O. Kaynak, T. Alshanableh, and F. Mamedov, "A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization," Applied Soft Computing, vol. 11, no. 1, pp. 1396-1406, 2011.
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 1396-1406
    • Abiyev, R.H.1    Kaynak, O.2    Alshanableh, T.3    Mamedov, F.4
  • 18
    • 52649182451 scopus 로고    scopus 로고
    • General type-2 fuzzy inference systems: Analysis, design and computational aspects
    • L. Lucas, T. Centeno, and M. Delgado, "General type-2 fuzzy inference systems: Analysis, design and computational aspects," in Fuzzy Systems Conference, 2007, pp. 1-6.
    • (2007) Fuzzy Systems Conference , pp. 1-6
    • Lucas, L.1    Centeno, T.2    Delgado, M.3
  • 19
    • 34248152046 scopus 로고    scopus 로고
    • Type-2 fuzzy sets and systems: An overview
    • J. Mendel, "Type-2 fuzzy sets and systems: An overview," IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 20-29, 2007.
    • (2007) IEEE Computational Intelligence Magazine , vol.2 , Issue.1 , pp. 20-29
    • Mendel, J.1
  • 20
    • 0034295771 scopus 로고    scopus 로고
    • Interval type-2 fuzzy logic systems: Theory and design
    • Q. Liang and J. Mendel, "Interval type-2 fuzzy logic systems: Theory and design," IEEE Trans. on Fuzzy Systems, vol. 8, no. 5, pp. 535-550, 2000.
    • (2000) IEEE Trans. on Fuzzy Systems , vol.8 , Issue.5 , pp. 535-550
    • Liang, Q.1    Mendel, J.2
  • 21
    • 50849133381 scopus 로고    scopus 로고
    • Metacognitive knowledge monitoring and self-regulated learning: Academic success and reflections on learning
    • R. Isaacson and F. Fujita, "Metacognitive knowledge monitoring and self-regulated learning: Academic success and reflections on learning," Journal of the Scholarship of Teaching and Learning, vol. 6, no. 1, pp. 39-55, 2006.
    • (2006) Journal of the Scholarship of Teaching and Learning , vol.6 , Issue.1 , pp. 39-55
    • Isaacson, R.1    Fujita, F.2
  • 22
    • 78649975292 scopus 로고    scopus 로고
    • A sequential learning algorithm for self-adaptive resource allocation network classifier
    • S. Suresh, K. Dong, and H. Kim, "A sequential learning algorithm for self-adaptive resource allocation network classifier," Neurocomputing, vol. 73, no. 16-18, pp. 3012-3019, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3012-3019
    • Suresh, S.1    Dong, K.2    Kim, H.3
  • 23
    • 84856317703 scopus 로고    scopus 로고
    • Meta-cognitive neural network for classification problems in a sequential learning framework
    • G. Sateesh Babu and S. Suresh, "Meta-cognitive neural network for classification problems in a sequential learning framework," Neurocomputing, vol. 81, no. 1, pp. 86-96, 2012.
    • (2012) Neurocomputing , vol.81 , Issue.1 , pp. 86-96
    • Sateesh Babu, G.1    Suresh, S.2
  • 24
    • 84869475733 scopus 로고    scopus 로고
    • Meta-cognitive RBF network and its projection based learning algorithm for classification problems
    • G. Babu and S. Suresh, "Meta-cognitive RBF network and its projection based learning algorithm for classification problems," Applied Soft Computing, vol. 13, no. 1, pp. 654-666, 2013.
    • (2013) Applied Soft Computing , vol.13 , Issue.1 , pp. 654-666
    • Babu, G.1    Suresh, S.2
  • 25
    • 84872035386 scopus 로고    scopus 로고
    • Parkinson's disease prediction using gene expression-A projection based learning meta-cognitive neural classifier approach
    • G. Sateesh Babu and S. Suresh, "Parkinson's disease prediction using gene expression-A projection based learning meta-cognitive neural classifier approach," Expert Systems with Applications, vol. 40, no. 5, pp. 1519-1529, 2013.
    • (2013) Expert Systems with Applications , vol.40 , Issue.5 , pp. 1519-1529
    • Sateesh Babu, G.1    Suresh, S.2
  • 26
    • 84883690846 scopus 로고    scopus 로고
    • Sequential projection based metacognitive learning in a radial basis function network for classification problems
    • G. Babu and S. Suresh, "Sequential projection based metacognitive learning in a radial basis function network for classification problems," IEEE Trans. Neural Networks and Learning Systems, vol. 24, no. 2, pp. 194-206, 2013.
    • (2013) IEEE Trans. Neural Networks and Learning Systems , vol.24 , Issue.2 , pp. 194-206
    • Babu, G.1    Suresh, S.2
  • 27
    • 84860235672 scopus 로고    scopus 로고
    • Metacognitive learning in a fully complex valued radial basis function neural network
    • R. Savitha, S. Suresh, and N. Sundararajan, "Metacognitive learning in a fully complex valued radial basis function neural network," Neural Computation, vol. 24, no. 5, pp. 1297-1328, 2012.
    • (2012) Neural Computation , vol.24 , Issue.5 , pp. 1297-1328
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 28
    • 84861781199 scopus 로고    scopus 로고
    • A meta-cognitive learning algorithm for a fully complex-valued relaxation network
    • Special Issue
    • -, "A meta-cognitive learning algorithm for a fully complex-valued relaxation network," Neural Networks, vol. 32, no. Special Issue, pp. 209-218, 2012.
    • (2012) Neural Networks , vol.32 , pp. 209-218
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 29
    • 79960139729 scopus 로고    scopus 로고
    • A sequential learning algorithm for complex valued self regulating resource allocation network-CSRAN
    • S. Suresh, R. Savitha, and N. Sundararajan, "A sequential learning algorithm for complex valued self regulating resource allocation network-CSRAN," IEEE Trans. Neural Networks, vol. 22, no. 7, pp. 1061-1072, 2011.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.7 , pp. 1061-1072
    • Suresh, S.1    Savitha, R.2    Sundararajan, N.3
  • 30
    • 84870480229 scopus 로고    scopus 로고
    • Human action recognition using metacognitive neuro-fuzzy inference system
    • K. Subramanian and S. Suresh, "Human action recognition using metacognitive neuro-fuzzy inference system," International Journal of Neural Systems, vol. 22, no. 6, p. 1250028 (15), 2012.
    • (2012) International Journal of Neural Systems , vol.22 , Issue.6-15 , pp. 1250028
    • Subramanian, K.1    Suresh, S.2
  • 31
    • 77957775546 scopus 로고
    • Metamemory: A theoretical framework and new findings
    • T. O. Nelson and L. Narens, "Metamemory: A theoretical framework and new findings," psychology of Learning and Motivation, vol. 26, no. C, pp. 125-173, 1990.
    • (1990) Psychology of Learning and Motivation , vol.26 , Issue.C , pp. 125-173
    • Nelson, T.O.1    Narens, L.2
  • 32
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang, "Statistical behavior and consistency of classification methods based on convex risk minimization," Annals of Statistics, vol. 32, no. 1, pp. 56-85, 2003.
    • (2003) Annals of Statistics , vol.32 , Issue.1 , pp. 56-85
    • Zhang, T.1
  • 33
    • 41749093196 scopus 로고    scopus 로고
    • Risk sensitive loss functions for sparse multi-category classification problems
    • S. Suresh, N. Sundararajan, and P. Saratchandran, "Risk sensitive loss functions for sparse multi-category classification problems," Information Sciences, vol. 179, no. 21, pp. 2621-2638, 2008.
    • (2008) Information Sciences , vol.179 , Issue.21 , pp. 2621-2638
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 34
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • H. Hoffmann, "Kernel PCA for novelty detection," Pattern Recognition, vol. 40, no. 3, pp. 863-874, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 863-874
    • Hoffmann, H.1
  • 36
    • 58549103087 scopus 로고    scopus 로고
    • No reference image quality assessment using modified extreme learning machine classifier
    • S. Suresh, R. Venkatesh Babu, and H. Kim, "No reference image quality assessment using modified extreme learning machine classifier," Applied Soft Computing, vol. 9, no. 2, pp. 541-552, 2009.
    • (2009) Applied Soft Computing , vol.9 , Issue.2 , pp. 541-552
    • Suresh, S.1    Venkatesh Babu, R.2    Kim, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.