메뉴 건너뛰기




Volumn 205, Issue 2, 2008, Pages 899-907

A new image thresholding method based on Gaussian mixture model

Author keywords

Histogram; Optimization; Thresholding

Indexed keywords

BOOLEAN FUNCTIONS; COMMUNICATION CHANNELS (INFORMATION THEORY); IMAGE SEGMENTATION; MIXTURES; OBJECT RECOGNITION; OPTIMIZATION;

EID: 54249106794     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2008.05.130     Document Type: Article
Times cited : (203)

References (18)
  • 5
    • 0038823501 scopus 로고
    • Operations useful for similarity-invariant pattern recognition
    • Doyle W. Operations useful for similarity-invariant pattern recognition. Journal of the ACM 9 (1962) 259-267
    • (1962) Journal of the ACM , vol.9 , pp. 259-267
    • Doyle, W.1
  • 7
    • 84915400743 scopus 로고
    • Comments on 'Picture thresholding using an iterative selection method'
    • Trussell H.J. Comments on 'Picture thresholding using an iterative selection method'. IEEE Transactions on Systems Man and Cybernetics 9 (1979) 311
    • (1979) IEEE Transactions on Systems Man and Cybernetics , vol.9 , pp. 311
    • Trussell, H.J.1
  • 9
    • 0019038769 scopus 로고
    • A new method for gray-level picture thresholding using the entropy of the histogram
    • Pun T. A new method for gray-level picture thresholding using the entropy of the histogram. Signal Processing 2 (1980) 223-237
    • (1980) Signal Processing , vol.2 , pp. 223-237
    • Pun, T.1
  • 10
  • 11
    • 10444248803 scopus 로고    scopus 로고
    • Determining the centers of radial basis probabilities neural networks by recursive orthogonal least square algorithms
    • Huang D.S., and Zhao W.-B. Determining the centers of radial basis probabilities neural networks by recursive orthogonal least square algorithms. Applied Mathematics and Computation 162 1 (2005) 461-473
    • (2005) Applied Mathematics and Computation , vol.162 , Issue.1 , pp. 461-473
    • Huang, D.S.1    Zhao, W.-B.2
  • 12
    • 0032712063 scopus 로고    scopus 로고
    • Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding
    • Huang D.S., and Ma S.D. Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding. Journal of Intelligent Systems 9 1 (1999) 1-38
    • (1999) Journal of Intelligent Systems , vol.9 , Issue.1 , pp. 1-38
    • Huang, D.S.1    Ma, S.D.2
  • 13
    • 3042584634 scopus 로고    scopus 로고
    • D.S. Huang, Horace H.S. Ip, Zheru Chi, A neural root finder of polynomials based on root moments, Neural Computation 16(8) (2004) 1721-1762.
    • D.S. Huang, Horace H.S. Ip, Zheru Chi, A neural root finder of polynomials based on root moments, Neural Computation 16(8) (2004) 1721-1762.
  • 15
    • 54249125154 scopus 로고    scopus 로고
    • N. Friedman, S. Russell, Image segmentation in video sequences: a probabilistic approach, in: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, August 1997.
    • N. Friedman, S. Russell, Image segmentation in video sequences: a probabilistic approach, in: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, August 1997.
  • 16
    • 54249139358 scopus 로고    scopus 로고
    • MathWorks Inc. .
    • MathWorks Inc. .
  • 17
    • 0032296592 scopus 로고    scopus 로고
    • W.E.L. Grimson, C. Stauffer, R. Romano, L. Lee, Using adaptive tracking to classify and monitor activities in a site, Computer Vision and Pattern Recognition (1998).
    • W.E.L. Grimson, C. Stauffer, R. Romano, L. Lee, Using adaptive tracking to classify and monitor activities in a site, Computer Vision and Pattern Recognition (1998).
  • 18
    • 0032634283 scopus 로고    scopus 로고
    • C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, Computer Vision and Pattern Recognition (1999).
    • C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, Computer Vision and Pattern Recognition (1999).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.