메뉴 건너뛰기




Volumn 32, Issue 11, 2014, Pages 586-594

Emerging microengineered tools for functional analysis and phenotyping of blood cells

Author keywords

Blood cell; Functional analysis; Microengineering; Microfluidics; Phenotyping

Indexed keywords

CELLS; CYTOLOGY; DIAGNOSIS; FUNCTIONAL ANALYSIS; MICROFLUIDICS;

EID: 84908200705     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.09.003     Document Type: Review
Times cited : (17)

References (91)
  • 1
    • 0347418916 scopus 로고    scopus 로고
    • High blood pressure in acute stroke and subsequent outcome: a systematic review
    • Willmot M., et al. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension 2004, 43:18-24.
    • (2004) Hypertension , vol.43 , pp. 18-24
    • Willmot, M.1
  • 2
    • 33646026410 scopus 로고    scopus 로고
    • Use in routine clinical practice of two commercial blood tests for diagnosis of infection with Mycobacterium tuberculosis: a prospective study
    • Ferrara G., et al. Use in routine clinical practice of two commercial blood tests for diagnosis of infection with Mycobacterium tuberculosis: a prospective study. Lancet 2006, 367:1328-1334.
    • (2006) Lancet , vol.367 , pp. 1328-1334
    • Ferrara, G.1
  • 3
    • 4143094988 scopus 로고    scopus 로고
    • Circulating tumor cells, disease progression, and survival in metastatic breast cancer
    • Cristofanilli M., et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351:781-791.
    • (2004) N. Engl. J. Med. , vol.351 , pp. 781-791
    • Cristofanilli, M.1
  • 4
    • 84878524128 scopus 로고    scopus 로고
    • Response to the AIDS pandemic - a global health model
    • Piot P., Quinn T.C. Response to the AIDS pandemic - a global health model. N. Engl. J. Med. 2013, 368:2210-2218.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 2210-2218
    • Piot, P.1    Quinn, T.C.2
  • 5
    • 0023161127 scopus 로고
    • Red cell deformability and its relevance to blood flow
    • Chien S. Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 1987, 49:177-192.
    • (1987) Annu. Rev. Physiol. , vol.49 , pp. 177-192
    • Chien, S.1
  • 6
    • 50249141261 scopus 로고    scopus 로고
    • Cylex ImmuKnow assay levels are lower in lung transplant recipients with infection
    • Bhorade S.M., et al. Cylex ImmuKnow assay levels are lower in lung transplant recipients with infection. J. Heart Lung Transplant. 2008, 27:990-994.
    • (2008) J. Heart Lung Transplant. , vol.27 , pp. 990-994
    • Bhorade, S.M.1
  • 7
    • 60549104066 scopus 로고    scopus 로고
    • Clinical utility of the PFA-100
    • Favaloro E.J. Clinical utility of the PFA-100. Semin. Thromb. Hemost. 2008, 34:709-733.
    • (2008) Semin. Thromb. Hemost. , vol.34 , pp. 709-733
    • Favaloro, E.J.1
  • 8
    • 33747086959 scopus 로고    scopus 로고
    • Microfluidic diagnostic technologies for global public health
    • Yager P., et al. Microfluidic diagnostic technologies for global public health. Nature 2006, 442:412-418.
    • (2006) Nature , vol.442 , pp. 412-418
    • Yager, P.1
  • 9
    • 33845910922 scopus 로고    scopus 로고
    • Lab-on-a-chip devices for global health: past studies and future opportunities
    • Chin C.D., et al. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 2007, 7:41-57.
    • (2007) Lab Chip , vol.7 , pp. 41-57
    • Chin, C.D.1
  • 10
    • 84896284039 scopus 로고    scopus 로고
    • The present and future role of microfluidics in biomedical research
    • Sackmann E.K., et al. The present and future role of microfluidics in biomedical research. Nature 2014, 507:181-189.
    • (2014) Nature , vol.507 , pp. 181-189
    • Sackmann, E.K.1
  • 11
    • 0034578083 scopus 로고    scopus 로고
    • Microengineering of cellular interactions
    • Folch A., Toner M. Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2000, 2:227-256.
    • (2000) Annu. Rev. Biomed. Eng. , vol.2 , pp. 227-256
    • Folch, A.1    Toner, M.2
  • 12
    • 23944523469 scopus 로고    scopus 로고
    • Microengineering the environment of mammalian cells in culture
    • Chen C.S., et al. Microengineering the environment of mammalian cells in culture. MRS Bull. 2005, 30:194-201.
    • (2005) MRS Bull. , vol.30 , pp. 194-201
    • Chen, C.S.1
  • 13
    • 33747116681 scopus 로고    scopus 로고
    • Cells on chips
    • El-Ali J., et al. Cells on chips. Nature 2006, 442:403-411.
    • (2006) Nature , vol.442 , pp. 403-411
    • El-Ali, J.1
  • 14
    • 0021350185 scopus 로고
    • Plasmodium falciparum maturation abolishes physiologic red cell deformability
    • Cranston H.A., et al. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 1984, 223:400-403.
    • (1984) Science , vol.223 , pp. 400-403
    • Cranston, H.A.1
  • 15
    • 77955626789 scopus 로고    scopus 로고
    • Sickle cell biomechanics
    • Barabino G.A., et al. Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 2010, 12:345-367.
    • (2010) Annu. Rev. Biomed. Eng. , vol.12 , pp. 345-367
    • Barabino, G.A.1
  • 16
    • 0034993192 scopus 로고    scopus 로고
    • Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension
    • Sprague R.S., et al. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension. Exp. Biol. Med. 2001, 226:434-439.
    • (2001) Exp. Biol. Med. , vol.226 , pp. 434-439
    • Sprague, R.S.1
  • 17
    • 0017098544 scopus 로고
    • A simple method for measuring erythrocyte deformability
    • Reid H., et al. A simple method for measuring erythrocyte deformability. J. Clin. Pathol. 1976, 29:855-858.
    • (1976) J. Clin. Pathol. , vol.29 , pp. 855-858
    • Reid, H.1
  • 18
    • 33845348652 scopus 로고    scopus 로고
    • Dynamic single-cell analysis for quantitative biology
    • Carlo D.D., Lee L.P. Dynamic single-cell analysis for quantitative biology. Anal. Chem. 2006, 78:7918-7925.
    • (2006) Anal. Chem. , vol.78 , pp. 7918-7925
    • Carlo, D.D.1    Lee, L.P.2
  • 19
    • 0033990244 scopus 로고    scopus 로고
    • Micropipette aspiration of living cells
    • Hochmuth R.M. Micropipette aspiration of living cells. J. Biomech. 2000, 33:15-22.
    • (2000) J. Biomech. , vol.33 , pp. 15-22
    • Hochmuth, R.M.1
  • 20
    • 0018887249 scopus 로고
    • New optical technique for measuring erythrocyte deformability with the ektacytometer
    • Groner W., et al. New optical technique for measuring erythrocyte deformability with the ektacytometer. Clin. Chem. 1980, 26:1435-1442.
    • (1980) Clin. Chem. , vol.26 , pp. 1435-1442
    • Groner, W.1
  • 21
    • 33745506029 scopus 로고    scopus 로고
    • Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device
    • Shevkoplyas S.S., et al. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device. Lab Chip 2006, 6:914-920.
    • (2006) Lab Chip , vol.6 , pp. 914-920
    • Shevkoplyas, S.S.1
  • 22
    • 79952128472 scopus 로고    scopus 로고
    • A microfabricated deformability-based flow cytometer with application to malaria
    • Bow H., et al. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 2011, 11:1065-1073.
    • (2011) Lab Chip , vol.11 , pp. 1065-1073
    • Bow, H.1
  • 23
    • 84873299093 scopus 로고    scopus 로고
    • Dynamic deformability of Plasmodium falciparum-infected erythrocytes exposed to artesunate in vitro
    • Huang S., et al. Dynamic deformability of Plasmodium falciparum-infected erythrocytes exposed to artesunate in vitro. Integr. Biol. (Camb.) 2013, 5:414-422.
    • (2013) Integr. Biol. (Camb.) , vol.5 , pp. 414-422
    • Huang, S.1
  • 24
    • 84880367230 scopus 로고    scopus 로고
    • Electrical measurement of red blood cell deformability on a microfluidic device
    • Zheng Y., et al. Electrical measurement of red blood cell deformability on a microfluidic device. Lab Chip 2013, 13:3275-3283.
    • (2013) Lab Chip , vol.13 , pp. 3275-3283
    • Zheng, Y.1
  • 25
    • 84870495770 scopus 로고    scopus 로고
    • Cell stretching measurement utilizing viscoelastic particle focusing
    • Cha S., et al. Cell stretching measurement utilizing viscoelastic particle focusing. Anal. Chem. 2012, 84:10471-10477.
    • (2012) Anal. Chem. , vol.84 , pp. 10471-10477
    • Cha, S.1
  • 26
    • 0030445908 scopus 로고    scopus 로고
    • ATP: the red blood cell link to NO and local control of the pulmonary circulation
    • Sprague R.S., et al. ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am. J. Physiol. Heart Circ. Physiol. 1996, 271:H2717-H2722.
    • (1996) Am. J. Physiol. Heart Circ. Physiol. , vol.271 , pp. H2717-H2722
    • Sprague, R.S.1
  • 27
    • 0031755111 scopus 로고    scopus 로고
    • Deformation-induced ATP release from red blood cells requires CFTR activity
    • Sprague R.S., et al. Deformation-induced ATP release from red blood cells requires CFTR activity. Am. J. Physiol. Heart Circ. Physiol. 1998, 275:H1726-H1732.
    • (1998) Am. J. Physiol. Heart Circ. Physiol. , vol.275 , pp. H1726-H1732
    • Sprague, R.S.1
  • 28
    • 33746451683 scopus 로고    scopus 로고
    • Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes
    • Moehlenbrock M.J., et al. Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes. Analyst 2006, 131:930-937.
    • (2006) Analyst , vol.131 , pp. 930-937
    • Moehlenbrock, M.J.1
  • 29
    • 55949096011 scopus 로고    scopus 로고
    • Dynamics of shear-induced ATP release from red blood cells
    • Wan J., et al. Dynamics of shear-induced ATP release from red blood cells. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16432-16437.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 16432-16437
    • Wan, J.1
  • 30
    • 0027360333 scopus 로고
    • An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection
    • Flynn J.L., et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993, 178:2249-2254.
    • (1993) J. Exp. Med. , vol.178 , pp. 2249-2254
    • Flynn, J.L.1
  • 31
    • 0033124904 scopus 로고    scopus 로고
    • Mechanics of leukocyte deformation and adhesion to endothelium in shear flow
    • Dong C., et al. Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann. Biomed. Eng. 1999, 27:298-312.
    • (1999) Ann. Biomed. Eng. , vol.27 , pp. 298-312
    • Dong, C.1
  • 32
    • 84890743170 scopus 로고    scopus 로고
    • Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization
    • Chen W., et al. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization. Front. Oncol. 2013, 3:98.
    • (2013) Front. Oncol. , vol.3 , pp. 98
    • Chen, W.1
  • 33
    • 35548977988 scopus 로고    scopus 로고
    • Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels
    • Herrmann M., et al. Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab Chip 2007, 7:1546-1552.
    • (2007) Lab Chip , vol.7 , pp. 1546-1552
    • Herrmann, M.1
  • 34
    • 0035152676 scopus 로고    scopus 로고
    • Development and characterization of an ELISA assay in PDMS microfluidic channels
    • Eteshola E., Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens. Actuators B 2001, 72:129-133.
    • (2001) Sens. Actuators B , vol.72 , pp. 129-133
    • Eteshola, E.1    Leckband, D.2
  • 35
    • 46849096248 scopus 로고    scopus 로고
    • Quantification of low-picomolar concentrations of TNF-α in serum using the dual-network microfluidic ELISA platform
    • Herrmann M., et al. Quantification of low-picomolar concentrations of TNF-α in serum using the dual-network microfluidic ELISA platform. Anal. Chem. 2008, 80:5160-5167.
    • (2008) Anal. Chem. , vol.80 , pp. 5160-5167
    • Herrmann, M.1
  • 36
    • 56549095872 scopus 로고    scopus 로고
    • A microdevice for multiplexed detection of T-cell-secreted cytokines
    • Zhu H., et al. A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 2008, 8:2197-2205.
    • (2008) Lab Chip , vol.8 , pp. 2197-2205
    • Zhu, H.1
  • 37
    • 77951861838 scopus 로고    scopus 로고
    • Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function
    • Stybayeva G., et al. Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal. Chem. 2010, 82:3736-3744.
    • (2010) Anal. Chem. , vol.82 , pp. 3736-3744
    • Stybayeva, G.1
  • 38
    • 84862651402 scopus 로고    scopus 로고
    • Single-cell analysis in biotechnology, systems biology, and biocatalysis
    • Fritzsch F.S., et al. Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu. Rev. Chem. Biomol. Eng. 2012, 3:129-155.
    • (2012) Annu. Rev. Chem. Biomol. Eng. , vol.3 , pp. 129-155
    • Fritzsch, F.S.1
  • 39
    • 77953121190 scopus 로고    scopus 로고
    • Single cell analysis: the new frontier in 'omics'
    • Wang D., Bodovitz S. Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 2010, 28:281-290.
    • (2010) Trends Biotechnol. , vol.28 , pp. 281-290
    • Wang, D.1    Bodovitz, S.2
  • 40
    • 70349617709 scopus 로고    scopus 로고
    • Detecting cytokine release from single T-cells
    • Zhu H., et al. Detecting cytokine release from single T-cells. Anal. Chem. 2009, 81:8150-8156.
    • (2009) Anal. Chem. , vol.81 , pp. 8150-8156
    • Zhu, H.1
  • 41
    • 33745072443 scopus 로고    scopus 로고
    • A microengraving method for rapid selection of single cells producing antigen-specific antibodies
    • Love J.C., et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 2006, 24:703-707.
    • (2006) Nat. Biotechnol. , vol.24 , pp. 703-707
    • Love, J.C.1
  • 42
    • 84857126819 scopus 로고    scopus 로고
    • Polyfunctional responses by human T cells result from sequential release of cytokines
    • Han Q., et al. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1607-1612.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1607-1612
    • Han, Q.1
  • 44
    • 57449085941 scopus 로고    scopus 로고
    • Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood
    • Fan R., et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 2008, 26:1373-1378.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 1373-1378
    • Fan, R.1
  • 45
    • 84874068247 scopus 로고    scopus 로고
    • High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity
    • Lu Y., et al. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 2013, 85:2548-2556.
    • (2013) Anal. Chem. , vol.85 , pp. 2548-2556
    • Lu, Y.1
  • 46
    • 84886239469 scopus 로고    scopus 로고
    • AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery
    • Beaudet L., et al. AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery. Nat. Methods 2008, 5:an8-an9.
    • (2008) Nat. Methods , vol.5 , pp. an8-an9
    • Beaudet, L.1
  • 47
    • 84911470614 scopus 로고    scopus 로고
    • An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping
    • Huang N.T., et al. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip 2012, 12:4093-4101.
    • (2012) Lab Chip , vol.12 , pp. 4093-4101
    • Huang, N.T.1
  • 48
    • 84880291819 scopus 로고    scopus 로고
    • Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells
    • Chen W., et al. Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells. Adv. Healthc. Mater. 2013, 2:965-975.
    • (2013) Adv. Healthc. Mater. , vol.2 , pp. 965-975
    • Chen, W.1
  • 49
    • 84875428584 scopus 로고    scopus 로고
    • Implementing enzyme-linked immunosorbent assays on a microfluidic chip to quantify intracellular molecules in single cells
    • Eyer K., et al. Implementing enzyme-linked immunosorbent assays on a microfluidic chip to quantify intracellular molecules in single cells. Anal. Chem. 2013, 85:3280-3287.
    • (2013) Anal. Chem. , vol.85 , pp. 3280-3287
    • Eyer, K.1
  • 50
    • 33846695595 scopus 로고    scopus 로고
    • Label-free immunodetection with CMOS-compatible semiconducting nanowires
    • Stern E., et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445:519-522.
    • (2007) Nature , vol.445 , pp. 519-522
    • Stern, E.1
  • 51
    • 84897002946 scopus 로고    scopus 로고
    • Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood
    • Oh B-R., et al. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS Nano 2014, 8:2667-2676.
    • (2014) ACS Nano , vol.8 , pp. 2667-2676
    • Oh, B.-R.1
  • 52
    • 76649136462 scopus 로고    scopus 로고
    • Label-free biomarker detection from whole blood
    • Stern E., et al. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 2009, 5:138-142.
    • (2009) Nat. Nanotechnol. , vol.5 , pp. 138-142
    • Stern, E.1
  • 53
    • 84902475406 scopus 로고    scopus 로고
    • Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes
    • Li X., et al. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 2014, 14:2565-2575.
    • (2014) Lab Chip , vol.14 , pp. 2565-2575
    • Li, X.1
  • 54
    • 0033064993 scopus 로고    scopus 로고
    • Increased rigidity and priming of polymorphonuclear leukocytes in sepsis
    • Drost E.M., et al. Increased rigidity and priming of polymorphonuclear leukocytes in sepsis. Am. J. Respir. Crit. Care Med. 1999, 159:1696-1702.
    • (1999) Am. J. Respir. Crit. Care Med. , vol.159 , pp. 1696-1702
    • Drost, E.M.1
  • 55
    • 0027957329 scopus 로고
    • Decreased polymorphonuclear leukocyte deformability in NIDDM
    • Pécsvarády Z., et al. Decreased polymorphonuclear leukocyte deformability in NIDDM. Diabetes Care 1994, 17:57-63.
    • (1994) Diabetes Care , vol.17 , pp. 57-63
    • Pécsvarády, Z.1
  • 56
    • 84863697079 scopus 로고    scopus 로고
    • Microfluidic micropipette aspiration for measuring the deformability of single cells
    • Guo Q., et al. Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip 2012, 12:2687-2695.
    • (2012) Lab Chip , vol.12 , pp. 2687-2695
    • Guo, Q.1
  • 57
    • 70350464298 scopus 로고    scopus 로고
    • Inertial microfluidics
    • Di Carlo D. Inertial microfluidics. Lab Chip 2009, 9:3038-3046.
    • (2009) Lab Chip , vol.9 , pp. 3038-3046
    • Di Carlo, D.1
  • 58
    • 84861216623 scopus 로고    scopus 로고
    • Hydrodynamic stretching of single cells for large population mechanical phenotyping
    • Gossett D.R., et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:7630-7635.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 7630-7635
    • Gossett, D.R.1
  • 59
    • 0034728866 scopus 로고    scopus 로고
    • Platelets
    • George J.N. Platelets. Lancet 2000, 355:1531-1539.
    • (2000) Lancet , vol.355 , pp. 1531-1539
    • George, J.N.1
  • 60
    • 10444228879 scopus 로고    scopus 로고
    • Platelet function analysis
    • Harrison P. Platelet function analysis. Blood Rev. 2005, 19:111-123.
    • (2005) Blood Rev. , vol.19 , pp. 111-123
    • Harrison, P.1
  • 61
    • 79951556994 scopus 로고    scopus 로고
    • Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow
    • Colace T., et al. Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow. Ann. Biomed. Eng. 2011, 39:922-929.
    • (2011) Ann. Biomed. Eng. , vol.39 , pp. 922-929
    • Colace, T.1
  • 62
    • 56749092145 scopus 로고    scopus 로고
    • Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates
    • Neeves K.B., et al. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J. Thromb. Haemost. 2008, 6:2193-2201.
    • (2008) J. Thromb. Haemost. , vol.6 , pp. 2193-2201
    • Neeves, K.B.1
  • 63
    • 84878374503 scopus 로고    scopus 로고
    • High content evaluation of shear dependent platelet function in a microfluidic flow assay
    • Hansen R.R., et al. High content evaluation of shear dependent platelet function in a microfluidic flow assay. Ann. Biomed. Eng. 2013, 41:250-262.
    • (2013) Ann. Biomed. Eng. , vol.41 , pp. 250-262
    • Hansen, R.R.1
  • 64
    • 35348953113 scopus 로고    scopus 로고
    • Characterization of the threshold response of initiation of blood clotting to stimulus patch size
    • Kastrup C.J., et al. Characterization of the threshold response of initiation of blood clotting to stimulus patch size. Biophys. J. 2007, 93:2969-2977.
    • (2007) Biophys. J. , vol.93 , pp. 2969-2977
    • Kastrup, C.J.1
  • 65
    • 33750481224 scopus 로고    scopus 로고
    • Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis
    • Kastrup C.J., et al. Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:15747-15752.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 15747-15752
    • Kastrup, C.J.1
  • 66
    • 84876888940 scopus 로고    scopus 로고
    • Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient
    • Muthard R.W., Diamond S.L. Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient. Lab Chip 2013, 13:1883-1891.
    • (2013) Lab Chip , vol.13 , pp. 1883-1891
    • Muthard, R.W.1    Diamond, S.L.2
  • 67
    • 84863286346 scopus 로고    scopus 로고
    • Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood
    • Li M., et al. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 2012, 12:1355-1362.
    • (2012) Lab Chip , vol.12 , pp. 1355-1362
    • Li, M.1
  • 68
    • 67149093849 scopus 로고    scopus 로고
    • A shear gradient-dependent platelet aggregation mechanism drives thrombus formation
    • Nesbitt W.S., et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 2009, 15:665-673.
    • (2009) Nat. Med. , vol.15 , pp. 665-673
    • Nesbitt, W.S.1
  • 69
    • 75149121866 scopus 로고    scopus 로고
    • A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood
    • Tovar-Lopez F.J., et al. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 2010, 10:291-302.
    • (2010) Lab Chip , vol.10 , pp. 291-302
    • Tovar-Lopez, F.J.1
  • 70
    • 84896736199 scopus 로고    scopus 로고
    • Transport limitations of nitric oxide inhibition of platelet aggregation under flow
    • Sylman J.L., et al. Transport limitations of nitric oxide inhibition of platelet aggregation under flow. Ann. Biomed. Eng. 2013, 41:2193-2205.
    • (2013) Ann. Biomed. Eng. , vol.41 , pp. 2193-2205
    • Sylman, J.L.1
  • 71
    • 0021186201 scopus 로고
    • The hemodynamic forces acting on thrombi, from incipient attachment of single cells to maturity and embolization
    • Basmadjian D. The hemodynamic forces acting on thrombi, from incipient attachment of single cells to maturity and embolization. J. Biomech. 1984, 17:287-298.
    • (1984) J. Biomech. , vol.17 , pp. 287-298
    • Basmadjian, D.1
  • 72
    • 0020437090 scopus 로고
    • The structural properties and contractile force of a clot
    • Jen C.J., McIntire L.V. The structural properties and contractile force of a clot. Cell Motil. 1982, 2:445-455.
    • (1982) Cell Motil. , vol.2 , pp. 445-455
    • Jen, C.J.1    McIntire, L.V.2
  • 73
    • 18744376043 scopus 로고    scopus 로고
    • Nonlinear elasticity in biological gels
    • Storm C., et al. Nonlinear elasticity in biological gels. Nature 2005, 435:191-194.
    • (2005) Nature , vol.435 , pp. 191-194
    • Storm, C.1
  • 74
    • 0035516140 scopus 로고    scopus 로고
    • Transmembrane crosstalk between the extracellular matrix and the cytoskeleton
    • Geiger B., et al. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2001, 2:793-805.
    • (2001) Nat. Rev. Mol. Cell Biol. , vol.2 , pp. 793-805
    • Geiger, B.1
  • 75
    • 33750209018 scopus 로고    scopus 로고
    • Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis
    • Collet J., et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26:2567-2573.
    • (2006) Arterioscler. Thromb. Vasc. Biol. , vol.26 , pp. 2567-2573
    • Collet, J.1
  • 76
    • 36348983304 scopus 로고    scopus 로고
    • Tranexamic acid combined with recombinant factor VIII increases clot resistance to accelerated fibrinolysis in severe hemophilia A
    • Hvas A.M., et al. Tranexamic acid combined with recombinant factor VIII increases clot resistance to accelerated fibrinolysis in severe hemophilia A. J. Thromb. Haemost. 2007, 5:2408-2414.
    • (2007) J. Thromb. Haemost. , vol.5 , pp. 2408-2414
    • Hvas, A.M.1
  • 77
    • 0015912629 scopus 로고
    • Platelet contractile regulation in an isometric system
    • Cohen I., de Vries A. Platelet contractile regulation in an isometric system. Nature 1973, 246:36-37.
    • (1973) Nature , vol.246 , pp. 36-37
    • Cohen, I.1    de Vries, A.2
  • 78
    • 0642347882 scopus 로고    scopus 로고
    • Development of platelet contractile force as a research and clinical measure of platelet function
    • Carr M.E. Development of platelet contractile force as a research and clinical measure of platelet function. Cell Biochem. Biophys. 2003, 38:55-78.
    • (2003) Cell Biochem. Biophys. , vol.38 , pp. 55-78
    • Carr, M.E.1
  • 79
    • 84869120317 scopus 로고    scopus 로고
    • Force field evolution during human blood platelet activation
    • Henriques S.S., et al. Force field evolution during human blood platelet activation. J. Cell Sci. 2012, 125:3914-3920.
    • (2012) J. Cell Sci. , vol.125 , pp. 3914-3920
    • Henriques, S.S.1
  • 80
    • 77950420066 scopus 로고    scopus 로고
    • Platelet retraction force measurements using flexible post force sensors
    • Liang X.M., et al. Platelet retraction force measurements using flexible post force sensors. Lab Chip 2010, 10:991-998.
    • (2010) Lab Chip , vol.10 , pp. 991-998
    • Liang, X.M.1
  • 81
    • 84894641744 scopus 로고    scopus 로고
    • E-beam nanopost arrays reveal that glycoprotein Ib-IV-X complex and von Willebrand factor interactions transmit platelet cytoskeletal forces
    • pp. V01BT50A004
    • Feghhi S., et al. E-beam nanopost arrays reveal that glycoprotein Ib-IV-X complex and von Willebrand factor interactions transmit platelet cytoskeletal forces. ASME 2013 Summer Bioengineering Conference 2013, pp. V01BT50A004.
    • (2013) ASME 2013 Summer Bioengineering Conference
    • Feghhi, S.1
  • 82
    • 84894660678 scopus 로고    scopus 로고
    • Platelet retraction forces induced under high shear gradient activation
    • pp. V01BT49A003
    • Ting L.H., et al. Platelet retraction forces induced under high shear gradient activation. ASME 2013 Summer Bioengineering Conference 2013, pp. V01BT49A003.
    • (2013) ASME 2013 Summer Bioengineering Conference
    • Ting, L.H.1
  • 83
    • 78650276408 scopus 로고    scopus 로고
    • Mechanics and contraction dynamics of single platelets and implications for clot stiffening
    • Lam W.A., et al. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat. Mater. 2010, 10:61-66.
    • (2010) Nat. Mater. , vol.10 , pp. 61-66
    • Lam, W.A.1
  • 84
    • 84880515343 scopus 로고    scopus 로고
    • Microfluidics and coagulation biology
    • Colace T.V., et al. Microfluidics and coagulation biology. Annu. Rev. Biomed. Eng. 2013, 15:283-303.
    • (2013) Annu. Rev. Biomed. Eng. , vol.15 , pp. 283-303
    • Colace, T.V.1
  • 85
    • 84862186471 scopus 로고    scopus 로고
    • Microengineered physiological biomimicry: organs-on-chips
    • Huh D., et al. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 2012, 12:2156-2164.
    • (2012) Lab Chip , vol.12 , pp. 2156-2164
    • Huh, D.1
  • 86
    • 79961171532 scopus 로고    scopus 로고
    • Microfluidics-based diagnostics of infectious diseases in the developing world
    • Chin C.D., et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 2011, 17:1015-1019.
    • (2011) Nat. Med. , vol.17 , pp. 1015-1019
    • Chin, C.D.1
  • 87
    • 84882276691 scopus 로고    scopus 로고
    • Pinched-flow hydrodynamic stretching of single-cells
    • Dudani J.S., et al. Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 2013, 13:3728-3734.
    • (2013) Lab Chip , vol.13 , pp. 3728-3734
    • Dudani, J.S.1
  • 88
    • 0345166901 scopus 로고    scopus 로고
    • A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes
    • Shelby J.P., et al. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:14618-14622.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 14618-14622
    • Shelby, J.P.1
  • 89
    • 33750478294 scopus 로고    scopus 로고
    • Dynamic single cell culture array
    • Di Carlo D., et al. Dynamic single cell culture array. Lab Chip 2006, 6:1445-1449.
    • (2006) Lab Chip , vol.6 , pp. 1445-1449
    • Di Carlo, D.1
  • 90
    • 22844436154 scopus 로고    scopus 로고
    • Microcontact printing of proteins
    • Bernard A., et al. Microcontact printing of proteins. Adv. Mater. 2000, 12:1067-1070.
    • (2000) Adv. Mater. , vol.12 , pp. 1067-1070
    • Bernard, A.1
  • 91
    • 0032703889 scopus 로고    scopus 로고
    • Patterning proteins and cells using soft lithography
    • Kane R.S., et al. Patterning proteins and cells using soft lithography. Biomaterials 1999, 20:2363-2376.
    • (1999) Biomaterials , vol.20 , pp. 2363-2376
    • Kane, R.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.