메뉴 건너뛰기




Volumn 24, Issue 12, 2013, Pages 1999-2012

Multiple graph label propagation by sparse integration

Author keywords

Graph based semisupervised learning; label propagation; multiple graph integration; sparsity

Indexed keywords

DATA REPRESENTATIONS; LABEL PROPAGATION; MULTIPLE HETEROGENEOUS DATA SOURCE; OPTIMIZATION ALGORITHMS; PREDICTION PERFORMANCE; PREDICTIVE PERFORMANCE; SEMI- SUPERVISED LEARNING; SPARSITY;

EID: 84887988371     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2013.2271327     Document Type: Article
Times cited : (142)

References (50)
  • 1
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc. 18th Int. Conf. Mach. Learn., 2001, pp. 19-26.
    • (2001) Proc. 18th Int. Conf. Mach. Learn. , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 2
    • 0042878370 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA, USA: MIT Press
    • M. Szummer and T. Jaakkola, "Partially labeled classification with Markov random walks," in Advances in Neural Information Processing Systems, vol. 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA, USA: MIT Press, 2001, pp. 945-952.
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 945-952
    • Szummer, M.1    Jaakkola, T.2
  • 3
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • T. Joachims, "Transductive learning via spectral graph partitioning," in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 290-297.
    • (2003) Proc. 20th Int. Conf. Mach. Learn. , pp. 290-297
    • Joachims, T.1
  • 7
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • V. Sindhwani, P. Niyogi, and M. Belkin, "Beyond the point cloud: From transductive to semi-supervised learning," in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 824-831.
    • (2005) Proc. 22nd Int. Conf. Mach. Learn. , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 8
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Jan. 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 9
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion
    • O. Chapelle, B. Schölkopf, and A. Zien, Eds. Cambridge, MA, USA: MIT Press
    • Y. Bengio, O. Delalleau, and N. Le Roux, "Label propagation and quadratic criterion," in Semi-Supervised Learning, O. Chapelle, B. Schölkopf, and A. Zien, Eds. Cambridge, MA, USA: MIT Press, 2006, pp. 193-216.
    • (2006) Semi-Supervised Learning , pp. 193-216
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 10
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • Sep
    • K. Tsuda, H. Shin, and B. Scholkopf, "Fast protein classification with multiple networks," Bioinformatics, vol. 21, pp. 59-65, Sep. 2005.
    • (2005) Bioinformatics , vol.21 , pp. 59-65
    • Tsuda, K.1    Shin, H.2    Scholkopf, B.3
  • 11
    • 58649108536 scopus 로고    scopus 로고
    • Robust label propagation on multiple networks
    • Jan
    • T. Kato, H. Kashima, and M. Sugiyama, "Robust label propagation on multiple networks," IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 35-44, Jan. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.1 , pp. 35-44
    • Kato, T.1    Kashima, H.2    Sugiyama, M.3
  • 15
    • 84864060454 scopus 로고    scopus 로고
    • Combining graph Laplacians for semi-supervised learning
    • Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press
    • A. Argyriou, M. Herbster, and M. Pontil, "Combining graph Laplacians for semi-supervised learning," in Advances in Neural Information Processing Systems, vol. 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press, 2006, pp. 67-74.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 67-74
    • Argyriou, A.1    Herbster, M.2    Pontil, M.3
  • 18
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • DOI 10.1162/08997660360581958
    • A. L. Yuille and A. Rangarajan, "The concave-convex procedure," Neural Comput., vol. 15, no. 4, pp. 915-936, 2003. (Pubitemid 37049812)
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 19
    • 78149477774 scopus 로고    scopus 로고
    • On the convergence of the concave-convex procedure
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Cambridge, MA, USA: MIT Press
    • B. Sriperumbudur and G. Lanckriet, "On the convergence of the concave-convex procedure," in Advances in Neural Information Processing Systems, vol. 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Cambridge, MA, USA: MIT Press, 2009, pp. 1759-1767.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1759-1767
    • Sriperumbudur, B.1    Lanckriet, G.2
  • 20
    • 4544280485 scopus 로고    scopus 로고
    • Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems
    • D. A. Spielman and S.-H. Teng, "Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems," in Proc. 36th Annu. ACM Symp. Theory Comput., 2004, pp. 81-90.
    • (2004) Proc. 36th Annu. ACM Symp. Theory Comput. , pp. 81-90
    • Spielman, D.A.1    Teng, S.-H.2
  • 21
    • 26944453996 scopus 로고    scopus 로고
    • Learning convex combinations of continuously parameterized basic kernels
    • A. Argyriou, C. A. Micchelli, and M. Pontil, "Learning convex combinations of continuously parameterized basic kernels," in Proc. 18th Annu. Conf. Learn. Theory, vol. 3559. 2005, pp. 338-352.
    • (2005) Proc. 18th Annu. Conf. Learn. Theory , vol.3559 , pp. 338-352
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3
  • 22
    • 33745456231 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep.
    • X. Zhu, "Semi-supervised learning literature survey," Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530, 2005.
    • (2005) Semi-supervised Learning Literature Survey , vol.1530
    • Zhu, X.1
  • 23
  • 24
    • 77951203344 scopus 로고    scopus 로고
    • Clustering with multiple graphs
    • Dec.
    • W. Tang, Z. Lu, and I. S. Dhillon, "Clustering with multiple graphs," in Proc. 9th IEEE ICDM, Dec. 2009, pp. 1016-1021.
    • (2009) Proc. 9th IEEE ICDM , pp. 1016-1021
    • Tang, W.1    Lu, Z.2    Dhillon, I.S.3
  • 26
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Annu. Int. Conf. Mach. Learn., 1999, pp. 200-209.
    • (1999) Proc. 16th Annu. Int. Conf. Mach. Learn. , pp. 200-209
    • Joachims, T.1
  • 29
    • 84867796463 scopus 로고    scopus 로고
    • Semi-supervised dimension reduction using trace ratio criterion
    • Mar
    • Y. Huang, D. Xu, and F. Nie, "Semi-supervised dimension reduction using trace ratio criterion," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 519-526, Mar. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.3 , pp. 519-526
    • Huang, Y.1    Xu, D.2    Nie, F.3
  • 30
    • 84876888732 scopus 로고    scopus 로고
    • Semisupervised classification with cluster regularization
    • Nov
    • R. Soares, H. Chen, and X. Yao, "Semisupervised classification with cluster regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1779-1792, Nov. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.11 , pp. 1779-1792
    • Soares, R.1    Chen, H.2    Yao, X.3
  • 31
    • 84867178411 scopus 로고    scopus 로고
    • New semi-supervised classification method based on modified cluster assumption
    • May
    • Y. Wang, S. Chen, and Z.-H. Zhou, "New semi-supervised classification method based on modified cluster assumption," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 689-702, May 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.5 , pp. 689-702
    • Wang, Y.1    Chen, S.2    Zhou, Z.-H.3
  • 32
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Francisco, CA, USA: Morgan Kaufmann
    • V. R. de Sa, "Learning classification with unlabeled data," in Advances in Neural Information Processing Systems, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Francisco, CA, USA: Morgan Kaufmann, 1993, pp. 112-119.
    • (1993) Advances in Neural Information Processing Systems , pp. 112-119
    • De Sa, V.R.1
  • 33
    • 33749404380 scopus 로고    scopus 로고
    • Two view learning: SVM-2K, theory and practice
    • Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press
    • J. D. R. Farquhar, D. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szedmak, "Two view learning: SVM-2K, theory and practice," in Advances in Neural Information Processing Systems, vol. 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press, 2006, pp. 355-362.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 355-362
    • Farquhar, J.D.R.1    Hardoon, D.2    Meng, H.3    Shawe-Taylor, J.4    Szedmak, S.5
  • 36
    • 34547970997 scopus 로고    scopus 로고
    • Spectral clustering and transductive learning with multiple views
    • D. Zhou and C. J. C. Burges, "Spectral clustering and transductive learning with multiple views," in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 1159-1166.
    • (2007) Proc. 24th Int. Conf. Mach. Learn. , pp. 1159-1166
    • Zhou, D.1    Burges, C.J.C.2
  • 37
    • 80051607075 scopus 로고    scopus 로고
    • On multi-view learning with additive models
    • Mar
    • M. Culp, G. Michailidis, and K. Johnson, "On multi-view learning with additive models," Ann. Appl. Stat., vol. 3, no. 1, pp. 292-318, Mar. 2009.
    • (2009) Ann. Appl. Stat. , vol.3 , Issue.1 , pp. 292-318
    • Culp, M.1    Michailidis, G.2    Johnson, K.3
  • 38
    • 79954551538 scopus 로고    scopus 로고
    • On propagated scoring for semisupervised additive models
    • M. Culp, "On propagated scoring for semisupervised additive models," J. Amer. Stat. Assoc., vol. 106, no. 493, pp. 248-259, 2011.
    • (2011) J. Amer. Stat. Assoc. , vol.106 , Issue.493 , pp. 248-259
    • Culp, M.1
  • 39
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
    • Jun
    • S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris, "GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function," Genome Biol., vol. 9, pp. S4-S15, Jun. 2008.
    • (2008) Genome Biol. , vol.9
    • Mostafavi, S.1    Ray, D.2    Warde-Farley, D.3    Grouios, C.4    Morris, Q.5
  • 40
    • 77954309042 scopus 로고    scopus 로고
    • Fast integration of heterogeneous data sources for predicting gene function with limited annotation
    • S. Mostafavi and Q. Morris, "Fast integration of heterogeneous data sources for predicting gene function with limited annotation," Bioinformatics, vol. 26, no. 14, pp. 1759-1765, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1759-1765
    • Mostafavi, S.1    Morris, Q.2
  • 42
    • 84898936871 scopus 로고    scopus 로고
    • On kernel target alignment
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA, USA: MIT Press
    • N. Cristianini, J. Shawe-Taylor, and J. Kandola, "On kernel target alignment," in Advances in Neural Information Processing Systems, vol. 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA, USA: MIT Press, 2002, pp. 367-373.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 367-373
    • Cristianini, N.1    Shawe-Taylor, J.2    Kandola, J.3
  • 43
    • 79952186637 scopus 로고    scopus 로고
    • Kernel learning for novelty detection
    • Autom. Sel. Optim. Kernels
    • J. Shawe-Taylor, "Kernel learning for novelty detection," in Proc. NIPS Workshop, Kernel Learn., Autom. Sel. Optim. Kernels, 2008, pp. 1-45.
    • (2008) Proc. NIPS Workshop, Kernel Learn. , pp. 1-45
    • Shawe-Taylor, J.1
  • 44
    • 78049379109 scopus 로고    scopus 로고
    • Sparsity-accuracy trade-off in MKL
    • Understand. Multiple Kenrel Learn.
    • R. Tomioka and T. Suzuki, "Sparsity-accuracy trade-off in MKL," in Proc. NIPS Workshop, Understand. Multiple Kenrel Learn., 2009, pp. 1-8.
    • (2009) Proc. NIPS Workshop , pp. 1-8
    • Tomioka, R.1    Suzuki, T.2
  • 45
    • 80053459750 scopus 로고    scopus 로고
    • Ultra-fast optimization algorithm for sparse multi kernel learning
    • Jun.
    • F. Orabona and J. Luo, "Ultra-fast optimization algorithm for sparse multi kernel learning," in Proc. 28th ICML, Jun. 2011, pp. 249-256.
    • (2011) Proc. 28th ICML , pp. 249-256
    • Orabona, F.1    Luo, J.2
  • 46
    • 79960124708 scopus 로고    scopus 로고
    • Elastic multiple kernel learning
    • Z.-P. Wu and X.-G. Zhang, "Elastic multiple kernel learning," Acta Autom. Sinica, vol. 37, no. 6, pp. 693-699, 2011.
    • (2011) Acta Autom. Sinica , vol.37 , Issue.6 , pp. 693-699
    • Wu, Z.-P.1    Zhang, X.-G.2
  • 49
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • DOI 10.1093/bioinformatics/bth294
    • G. R. G. Lanckriet, T. D. Bie, N. Cristianini, M. I. Jordan, and W. S. Noble, "A statistical framework for genomic data fusion," Bioinformatics, vol. 20, no. 16, pp. 2626-2635, 2004. (Pubitemid 39530149)
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2626-2635
    • Lanckriet, G.R.G.1    De Bie, T.2    Cristianini, N.3    Jordan, M.I.4    Noble, S.5
  • 50
    • 80053050350 scopus 로고    scopus 로고
    • A fast algorithm for multiple kernel learning with thousands of kernels
    • T. Suzuki and R. Tomioka, "SpicyMKL: A fast algorithm for multiple kernel learning with thousands of kernels," Mach. Learn., vol. 85, nos. 1-2, pp. 77-108, 2011.
    • (2011) Mach. Learn. , vol.85 , Issue.1-2 , pp. 77-108
    • Suzuki, T.1    Tomioka, R.2    Spicy, M.K.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.