메뉴 건너뛰기




Volumn 3, Issue 1, 2009, Pages 292-318

On multi-view learning with additive models

Author keywords

Generalized additive model; Model selection; Multi view learning; Semi supervised learning; Smoothing

Indexed keywords


EID: 80051607075     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/08-AOAS202     Document Type: Article
Times cited : (30)

References (37)
  • 2
    • 18744410770 scopus 로고    scopus 로고
    • Understanding the Yarowsky algorithm
    • Abney, S. (2004). Understanding the Yarowsky algorithm. Comput. Linguist. 30 365-395.
    • (2004) Comput. Linguist. , vol.30 , pp. 365-395
    • Abney, S.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning 45 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 0000014224 scopus 로고
    • Linear smoothers and additive models
    • Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models. Ann. Statist. 17 543-555.
    • (1989) Ann. Statist. , vol.17 , pp. 543-555
    • Buja, A.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Chapelle, O., Sindhwani, V. and Keerthi, S. (2008). Optimization techniques for semi-supervised support vector machines. J. Machine Learning Research 9 203-233.
    • (2008) J. Machine Learning Research , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.3
  • 10
  • 11
    • 53549121719 scopus 로고    scopus 로고
    • An iterative algorithm for extending learners to a semi-supervised setting
    • Culp, M. and Michailidis, G. (2008a). An iterative algorithm for extending learners to a semi-supervised setting. J. Comput. Graph. Statist. 17 1-27.
    • (2008) J. Comput. Graph. Statist. , vol.17 , pp. 1-27
    • Culp, M.1    Michailidis, G.2
  • 14
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion and a rejoinder by the author)
    • Friedman, J. (1991). Multivariate adaptive regression splines (with discussion and a rejoinder by the author). Ann. Statist. 19 1-141.
    • (1991) Ann. Statist. , vol.19 , pp. 1-141
    • Friedman, J.1
  • 15
    • 0003424777 scopus 로고    scopus 로고
    • Benjamin/Cummings, Merlo Park, CA
    • Gould, R. (1998). Graph Theory. Benjamin/Cummings, Merlo Park, CA.
    • (1998) Graph Theory.
    • Gould, R.1
  • 18
    • 0029279020 scopus 로고
    • Rational drug design: A multidiciplinary approach
    • Hunter, W. (1995). Rational drug design: A multidiciplinary approach. Molecular Medical Today 1 31-34.
    • (1995) Molecular Medical Today , vol.1 , pp. 31-34
    • Hunter, W.1
  • 20
    • 34547696887 scopus 로고    scopus 로고
    • On the effectiveness of the Laplacian normalization for graph semi-supervised learning
    • electronic
    • Johnson, R. and Zhang, T. (2007). On the effectiveness of the Laplacian normalization for graph semi-supervised learning. J. Mach. Learn. Res. 81489-1517 (electronic).
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1489-1517
    • Johnson, R.1    Zhang, T.2
  • 21
    • 84950272002 scopus 로고
    • A generalization of Brouwer's fixed point theorem
    • Kakutani, S. (1941). A generalization of Brouwer's fixed point theorem. Duke Math. J. 8 457-459.
    • (1941) Duke Math. J. , vol.8 , pp. 457-459
    • Kakutani, S.1
  • 22
    • 84865377683 scopus 로고    scopus 로고
    • Physicoshemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption process
    • Kansy, M., Senner, F. and Gubemator, K. (2001). Physicoshemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption process. J. Medicinal Chemistry 44923-930.
    • (2001) J. Medicinal Chemistry , vol.44 , pp. 923-930
    • Kansy, M.1    Senner, F.2    Gubemator, K.3
  • 24
    • 85161990843 scopus 로고    scopus 로고
    • Statistical analysis of semi-supervised regression
    • Lafferty, J. and Wasserman, L. (2007). Statistical analysis of semi-supervised regression. In Advances in NIPS 801-808.
    • (2007) Advances in NIPS , pp. 801-808
    • Lafferty, J.1    Wasserman, L.2
  • 26
    • 0002403935 scopus 로고
    • Block relaxation algorithms in statistics
    • In, (H. H. Bock, W. Lenski and M. M. Richter, eds.). Springer, Berlin
    • De Leeuw, J. (1994). Block relaxation algorithms in statistics. In Information Systems and Data Analysis (H. H. Bock, W. Lenski and M. M. Richter, eds.) 308-325. Springer, Berlin.
    • (1994) Information Systems and Data Analysis , pp. 308-325
    • de Leeuw, J.1
  • 28
    • 0000806922 scopus 로고    scopus 로고
    • Automating the construction of internet portals with machine learning
    • McCallum, A., Nigam, K., Rennie, J. and Seymore, K. (2000). Automating the construction of internet portals with machine learning. Information Retrieval J. 3 127-163.
    • (2000) Information Retrieval J. , vol.3 , pp. 127-163
    • McCallum, A.1    Nigam, K.2    Rennie, J.3    Seymore, K.4
  • 29
    • 33846829987 scopus 로고    scopus 로고
    • The pls package: Principal component and partial least squares regression in R
    • Mevik, B. and Wehrens, R. (2007). The pls package: Principal component and partial least squares regression in R. J. Statist. Software 18 1-24.
    • (2007) J. Statist. Software , vol.18 , pp. 1-24
    • Mevik, B.1    Wehrens, R.2
  • 30
    • 29144442904 scopus 로고    scopus 로고
    • Whole-proteome prediction of protein function via graph-theoretic analysis of interaction map
    • Nabieva, E., Jim, K., Agarwal, A., Chazelle, B. and Singh, M. (2005). Whole-proteome prediction of protein function via graph-theoretic analysis of interaction map. Bioinformatics 21 302-310.
    • (2005) Bioinformatics , vol.21 , pp. 302-310
    • Nabieva, E.1    Jim, K.2    Agarwal, A.3    Chazelle, B.4    Singh, M.5
  • 34
    • 19544389868 scopus 로고    scopus 로고
    • Protein network inference from multiple genomic data: A supervised approach
    • Yamanishi, Y., Vert, J. and Kanehisa, M. (2004). Protein network inference from multiple genomic data: A supervised approach. Bioinformatics 20 363-370.
    • (2004) Bioinformatics , vol.20 , pp. 363-370
    • Yamanishi, Y.1    Vert, J.2    Kanehisa, M.3
  • 35
    • 33744955193 scopus 로고    scopus 로고
    • Technical report, Carnegie Mellon Univ., Pittsburgh, PA
    • Zhu, X. (2005). Semi-supervised learning with graphs. Technical report, Carnegie Mellon Univ., Pittsburgh, PA.
    • (2005) Semi-supervised learning with graphs
    • Zhu, X.1
  • 36
    • 33745456231 scopus 로고    scopus 로고
    • Technical report, Computer Sciences, Univ. Wisconsin-Madison
    • Zhu, X. (2007). Semi-supervised learning literature survey. Technical report, Computer Sciences, Univ. Wisconsin-Madison.
    • (2007) Semi-supervised learning literature survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.