-
1
-
-
36749061251
-
Skeletal muscle satellite cells and adult myogenesis
-
Le Grand F, Rudnicki MA. 2007. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19:628-633. http://dx.doi.org/10.1016 /j.ceb.2007.09.012.
-
(2007)
Curr. Opin. Cell Biol
, vol.19
, pp. 628-633
-
-
Le Grand, F.1
Rudnicki, M.A.2
-
2
-
-
14644390321
-
An initial blueprint for myogenic differentiation
-
Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlach BD. 2005. An initial blueprint for myogenic differentiation. Genes Dev. 19: 553-569. http://dx.doi.org/10.1101/gad.1281105.
-
(2005)
Genes Dev
, vol.19
, pp. 553-569
-
-
Blais, A.1
Tsikitis, M.2
Acosta-Alvear, D.3
Sharan, R.4
Kluger, Y.5
Dynlach, B.D.6
-
3
-
-
37549039009
-
A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis
-
Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. 2008. A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50-59. http://dx.doi.org/10 .1016/j.stem.2007.10.006.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 50-59
-
-
Brack, A.S.1
Conboy, I.M.2
Conboy, M.J.3
Shen, J.4
Rando, T.A.5
-
4
-
-
84868133935
-
Induction of muscle regeneration by RNAmediated mitochondrial restoration
-
Jash S, Adhya S. 2012. Induction of muscle regeneration by RNAmediated mitochondrial restoration. FASEB J. 26:4187-4197. http://dx .doi.org/10.1096/fj.11-203232.
-
(2012)
FASEB J
, vol.26
, pp. 4187-4197
-
-
Jash, S.1
Adhya, S.2
-
5
-
-
38349100124
-
Notch function in myogenesis
-
Vasyutina E, Lenhard DC, Birchmeier C. 2007. Notch function in myogenesis. Cell Cycle 6:1451-1454. http://dx.doi.org/10.4161/cc.6.12.4372.
-
(2007)
Cell Cycle
, vol.6
, pp. 1451-1454
-
-
Vasyutina, E.1
Lenhard, D.C.2
Birchmeier, C.3
-
7
-
-
0035798097
-
Mammalian TOR: a homeostatic ATP sensor
-
Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. 2001. Mammalian TOR: a homeostatic ATP sensor. Science 294:1102- 1105. http://dx.doi.org/10.1126/science.1063518.
-
(2001)
Science
, vol.294
, pp. 1102-1105
-
-
Dennis, P.B.1
Jaeschke, A.2
Saitoh, M.3
Fowler, B.4
Kozma, S.C.5
Thomas, G.6
-
8
-
-
79959338922
-
AMPK is a direct adenylate charge-regulated protein kinase
-
Oakhill JS, Steel R, Chen Z-P, Scott JW, Ling N, Tam S, Kemp BE. 2011. AMPK is a direct adenylate charge-regulated protein kinase. Science 332: 1433-1435. http://dx.doi.org/10.1126/science.1200094.
-
(2011)
Science
, vol.332
, pp. 1433-1435
-
-
Oakhill, J.S.1
Steel, R.2
Chen, Z.-P.3
Scott, J.W.4
Ling, N.5
Tam, S.6
Kemp, B.E.7
-
9
-
-
84865721346
-
The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis
-
Sanchez AMJ, Candau RB, Csibi A, Pagano AF, Raibon A, Bernardi H. 2012. The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Am. J. Physiol. Cell Physiol. 303:C475-C485. http://dx.doi.org/10.1152/ajpcell.00125.2012.
-
(2012)
Am. J. Physiol. Cell Physiol.
, vol.303
, pp. C475-C485
-
-
Sanchez, A.M.J.1
Candau, R.B.2
Csibi, A.3
Pagano, A.F.4
Raibon, A.5
Bernardi, H.6
-
10
-
-
0037047098
-
A protein kinase B-dependent and rapamycin sensitive pathway controls skeletal muscle growth but not fiber type specification
-
Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S. 2002. A protein kinase B-dependent and rapamycin sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. U. S. A. 99:9213-9218. http://dx.doi.org/10.1073/pnas .142166599.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 9213-9218
-
-
Pallafacchina, G.1
Calabria, E.2
Serrano, A.L.3
Kalhovde, J.M.4
Schiaffino, S.5
-
11
-
-
73449107531
-
mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinaseindependent mechanisms
-
Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD, Schoenherr CJ, Chen J. 2009. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinaseindependent mechanisms. Am. J. Physiol. Cell Physiol. 297:C1434 - C1444. http://dx.doi.org/10.1152/ajpcell.00248.2009.
-
(2009)
Am. J. Physiol. Cell Physiol.
, vol.297
, pp. C1434-C1444
-
-
Ge, Y.1
Wu, A.L.2
Warnes, C.3
Liu, J.4
Zhang, C.5
Kawasome, H.6
Terada, N.7
Boppart, M.D.8
Schoenherr, C.J.9
Chen, J.10
-
12
-
-
74049088121
-
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
-
Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, Richard-Bulteau H, Vignaud A, Baas D, Defour A, Freyssenet D, Tanti JF, Le-Marchand-Brustel Y, Ferrier B, Conjard-Duplany A, Romanino K, Bauche´ S, Hantai¨ D, Mueller M, Kozma SC, Thomas G, Ru¨egg MA, Ferry A, Pende M, Bigard X, Koulmann N, Schaeffer L, Gangloff YG. 2009. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J. Cell Biol. 187:859-874. http://dx.doi .org/10.1083/jcb.200903131.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 859-874
-
-
Risson, V.1
Mazelin, L.2
Roceri, M.3
Sanchez, H.4
Moncollin, V.5
Corneloup, C.6
Richard-Bulteau, H.7
Vignaud, A.8
Baas, D.9
Defour, A.10
Freyssenet, D.11
Tanti, J.F.12
Le-Marchand-Brustel, Y.13
Ferrier, B.14
Conjard-Duplany, A.15
Romanino, K.16
Bauche´, S.17
Hantai¨, D.18
Mueller, M.19
Kozma, S.C.20
Thomas, G.21
Ru¨egg, M.A.22
Ferry, A.23
Pende, M.24
Bigard, X.25
Koulmann, N.26
Schaeffer, L.27
Gangloff, Y.G.28
more..
-
13
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF, Romanino K, Cloe¨tta D, Lin S, Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa CF, Brink M, Zorzato F, Hall MN, Ru¨egg MA. 2008. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 8:411-424. http://dx.doi.org/10.1016/j.cmet.2008.10.002.
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
Romanino, K.2
Cloe¨tta, D.3
Lin, S.4
Mascarenhas, J.B.5
Oliveri, F.6
Xia, J.7
Casanova, E.8
Costa, C.F.9
Brink, M.10
Zorzato, F.11
Hall, M.N.12
Ru¨egg, M.A.13
-
14
-
-
20044392290
-
Atrophy of S6K1-/- skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control
-
Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C, Petroulakis E, Sonenberg N, Kelly PA, Sotiropoulos A, Pende M. 2005. Atrophy of S6K1-/- skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat. Cell Biol. 7:286-294. http://dx.doi.org/10.1038 /ncb1231.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 286-294
-
-
Ohanna, M.1
Sobering, A.K.2
Lapointe, T.3
Lorenzo, L.4
Praud, C.5
Petroulakis, E.6
Sonenberg, N.7
Kelly, P.A.8
Sotiropoulos, A.9
Pende, M.10
-
15
-
-
0030934472
-
The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways
-
Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR. 1997. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J. Biol. Chem. 272:6653-6662. http://dx.doi.org /10.1074/jbc.272.10.6653.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 6653-6662
-
-
Coolican, S.A.1
Samuel, D.S.2
Ewton, D.Z.3
McWade, F.J.4
Florini, J.R.5
-
16
-
-
0033548233
-
Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis
-
Cuenda A, Cohen P. 1999. Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J. Biol. Chem. 274:4341-4346. http://dx.doi.org/10.1074/jbc.274.7.4341.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 4341-4346
-
-
Cuenda, A.1
Cohen, P.2
-
17
-
-
0035965295
-
The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism
-
Erbay E, Chen J. 2001. The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism. J. Biol. Chem. 276:36079-36082. http://dx.doi.org/10.1074/jbc.C100406200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36079-36082
-
-
Erbay, E.1
Chen, J.2
-
18
-
-
0348110375
-
IGF-II transcription in skeletal myogenesis is controlled bymTORand nutrients
-
Erbay E, Park IH, Nuzzi PD, Schoenherr CJ, Chen J. 2003. IGF-II transcription in skeletal myogenesis is controlled bymTORand nutrients. J. Cell Biol. 163:931-936. http://dx.doi.org/10.1083/jcb.200307158.
-
(2003)
J. Cell Biol.
, vol.163
, pp. 931-936
-
-
Erbay, E.1
Park, I.H.2
Nuzzi, P.D.3
Schoenherr, C.J.4
Chen, J.5
-
19
-
-
80053926886
-
Raptor and Rheb negatively regulate skeletal myogenesis through suppression of insulin receptor substrate 1 (IRS1)
-
Ge Y, Yoon MS, Chen J. 2011. Raptor and Rheb negatively regulate skeletal myogenesis through suppression of insulin receptor substrate 1 (IRS1). J. Biol. Chem. 286:35675-35682. http://dx.doi.org/10.1074/jbc .M111.262881.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 35675-35682
-
-
Ge, Y.1
Yoon, M.S.2
Chen, J.3
-
20
-
-
79959339110
-
Phospholipase D regulates myogenic differentiation through the activation of both mTORC1 and mTORC2 complexes
-
Jaafar R, Zeiller C, Pirola L, Di Grazia A, Naro F, Vidal H, Lefai E, Ne´moz G. 2011. Phospholipase D regulates myogenic differentiation through the activation of both mTORC1 and mTORC2 complexes. J. Biol. Chem. 286:22609-22621. http://dx.doi.org/10.1074/jbc.M110.203885.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 22609-22621
-
-
Jaafar, R.1
Zeiller, C.2
Pirola, L.3
Di Grazia, A.4
Naro, F.5
Vidal, H.6
Lefai, E.7
Ne´moz, G.8
-
21
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
22
-
-
77954413330
-
Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis
-
Sun Y, Ge Y, Drnevich J, Zhao Y, Band M, Chen J. 2010. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol. 189:1157-1169. http://dx.doi.org/10.1083/jcb .200912093.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1157-1169
-
-
Sun, Y.1
Ge, Y.2
Drnevich, J.3
Zhao, Y.4
Band, M.5
Chen, J.6
-
23
-
-
31744432337
-
The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
-
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FI, Wang D-Z. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38: 228-233. http://dx.doi.org/10.1038/ng1725.
-
(2006)
Nat. Genet.
, vol.38
, pp. 228-233
-
-
Chen, J.F.1
Mandel, E.M.2
Thomson, J.M.3
Wu, Q.4
Callis, T.E.5
Hammond, S.M.6
Conlon, F.I.7
Wang, D.-Z.8
-
24
-
-
84867170366
-
miR-26a is required for skeletal muscle differentiation and regeneration in mice
-
Dey BK, Gagan J, Yan Z, Dutta A. 2012. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev. 26:2180- 2191. http://dx.doi.org/10.1101/gad.198085.112.
-
(2012)
Genes Dev
, vol.26
, pp. 2180-2191
-
-
Dey, B.K.1
Gagan, J.2
Yan, Z.3
Dutta, A.4
-
25
-
-
84867363983
-
Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation
-
Goljanek-Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Munsterberg A. 2012. Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. J. Cell Sci. 125: 3590-3600. http://dx.doi.org/10.1242/jcs.101758.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 3590-3600
-
-
Goljanek-Whysall, K.1
Pais, H.2
Rathjen, T.3
Sweetman, D.4
Dalmay, T.5
Munsterberg, A.6
-
26
-
-
42449121033
-
Targeted mRNA degradation by complex-mediated delivery of antisense RNAs to intracellular human mitochondria
-
Mukherjee S, Mahata B, Mahato B, Adhya S. 2008. Targeted mRNA degradation by complex-mediated delivery of antisense RNAs to intracellular human mitochondria. Hum. Mol. Genet. 17:1292-1298. http://dx.doi.org/10.1093/hmg/ddn017.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 1292-1298
-
-
Mukherjee, S.1
Mahata, B.2
Mahato, B.3
Adhya, S.4
-
27
-
-
84897398515
-
Refining microRNA target predictions: sorting the wheat from the chaff
-
Ritchie W, Rasko JEJ. 2014. Refining microRNA target predictions: sorting the wheat from the chaff. Biochem. Biophys. Res. Commun. 445:780- 784. http://dx.doi.org/10.1016/j.bbrc.2014.01.181.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.445
, pp. 780-784
-
-
Ritchie, W.1
Rasko, J.E.J.2
-
28
-
-
0033214910
-
Transcriptional regulation of rat cyclin D1 gene by CpG methylation status in promoter region
-
Kitazawa S, Kitazawa R, Maeda S. 1999. Transcriptional regulation of rat cyclin D1 gene by CpG methylation status in promoter region. J. Biol. Chem. 274:28787-28793. http://dx.doi.org/10.1074/jbc.274.40.28787.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 28787-28793
-
-
Kitazawa, S.1
Kitazawa, R.2
Maeda, S.3
-
29
-
-
80053035284
-
AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function
-
Hardie DG. 2011. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes Dev. 25:1895-1908. http://dx .doi.org/10.1101/gad.17420111.
-
(2011)
Genes Dev
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
30
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo S-H, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussour F, Brindle P, Takemori H, Montminy M. 2005. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109-1114. http://dx.doi.org/10.1038/nature03967.
-
(2005)
Nature
, vol.437
, pp. 1109-1114
-
-
Koo, S.-H.1
Flechner, L.2
Qi, L.3
Zhang, X.4
Screaton, R.A.5
Jeffries, S.6
Hedrick, S.7
Xu, W.8
Boussour, F.9
Brindle, P.10
Takemori, H.11
Montminy, M.12
-
31
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214-226. http://dx.doi.org /10.1016/j.molcel.2008.03.003.
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
32
-
-
67349217986
-
Molecular mechanisms of mTOR mediated translational control
-
Ma XM, Blenis J. 2009. Molecular mechanisms of mTOR mediated translational control. Nat. Rev. Mol. Cell Biol. 10:307-318. http://dx.doi.org/10 .1038/nrm2672.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
33
-
-
0033153166
-
Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism
-
Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N. 1999. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13:1422-1437. http://dx.doi.org/10.1101/gad.13.11.1422.
-
(1999)
Genes Dev
, vol.13
, pp. 1422-1437
-
-
Gingras, A.C.1
Gygi, S.P.2
Raught, B.3
Polakiewicz, R.D.4
Abraham, R.T.5
Hoekstra, M.F.6
Aebersold, R.7
Sonenberg, N.8
-
34
-
-
84856141914
-
Myoblast fusion: lessons from flies and mice
-
Abmayr SM, Pavlath GK. 2012. Myoblast fusion: lessons from flies and mice. Development 139:641-656. http://dx.doi.org/10.1242/dev.068353.
-
(2012)
Development
, vol.139
, pp. 641-656
-
-
Abmayr, S.M.1
Pavlath, G.K.2
-
35
-
-
0347989458
-
Cellular and molecular regulation of muscle regeneration
-
Charge´ SB, Rudnicki MA. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84:209-238. http://dx.doi.org/10.1152 /physrev.00019.2003.
-
(2004)
Physiol. Rev.
, vol.84
, pp. 209-238
-
-
Charge´, S.B.1
Rudnicki, M.A.2
-
36
-
-
11844304072
-
Restraining PI3K: mTOR signalling goes back to the membrane
-
Harrington LS, Findlay GM, Lamb RF. 2005. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem. Sci. 30:35-42. http://dx.doi.org/10.1016/j.tibs.2004.11.003.
-
(2005)
Trends Biochem. Sci.
, vol.30
, pp. 35-42
-
-
Harrington, L.S.1
Findlay, G.M.2
Lamb, R.F.3
-
37
-
-
84055178474
-
Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks
-
Magnuson B, Ekim B, Fingar DC. 2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 441:1-21. http://dx.doi.org/10.1042/BJ20110892.
-
(2012)
Biochem. J.
, vol.441
, pp. 1-21
-
-
Magnuson, B.1
Ekim, B.2
Fingar, D.C.3
-
38
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. 2012. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109 -113. http://dx.doi.org/10.1038 /nature11083.
-
(2012)
Nature
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
Chantranupong, L.2
Keys, H.R.3
Wang, T.4
Gray, N.S.5
Sabatini, D.M.6
-
39
-
-
77952967459
-
mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
-
Dowling RJO, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y, Kozma SC, Thomas G, Sonenberg N. 2010. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172-1176. http://dx.doi .org/10.1126/science.1187532.
-
(2010)
Science
, vol.328
, pp. 1172-1176
-
-
Dowling, R.J.O.1
Topisirovic, I.2
Alain, T.3
Bidinosti, M.4
Fonseca, B.D.5
Petroulakis, E.6
Wang, X.7
Larsson, O.8
Selvaraj, A.9
Liu, Y.10
Kozma, S.C.11
Thomas, G.12
Sonenberg, N.13
-
40
-
-
39149093333
-
Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4Ebinding protein 1
-
Averous J, Fonseca BD, Proud CG. 2008. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4Ebinding protein 1. Oncogene 27:1106-1113. http://dx.doi.org/10.1038/sj .onc.1210715.
-
(2008)
Oncogene
, vol.27
, pp. 1106-1113
-
-
Averous, J.1
Fonseca, B.D.2
Proud, C.G.3
-
41
-
-
78751477191
-
Gene silencing by microRNAs: contributions of translational depression and mRNA decay
-
Huntzinger E, Izaurralde E. 2011. Gene silencing by microRNAs: contributions of translational depression and mRNA decay. Nat. Rev. Genet. 12:99-110. http://dx.doi.org/10.1038/nrg2936.
-
(2011)
Nat. Rev. Genet
, vol.12
, pp. 99-110
-
-
Huntzinger, E.1
Izaurralde, E.2
|