메뉴 건너뛰기




Volumn 287, Issue , 2014, Pages 68-89

Implementing algorithms of rough set theory and fuzzy rough set theory in the R package "roughSets"

Author keywords

Discretization; Feature selection; Fuzzy rough set; Instance selection; Rough set; Rule induction

Indexed keywords

ALGORITHMS; FEATURE EXTRACTION;

EID: 84906861442     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.07.029     Document Type: Article
Times cited : (150)

References (120)
  • 2
    • 0000255880 scopus 로고    scopus 로고
    • A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables
    • A. Skowron, L. Polkowski, Physica Verlag Heidelberg
    • J. Bazan A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables A. Skowron, L. Polkowski, Rough Sets in Knowledge Discovery vol. 1 1998 Physica Verlag Heidelberg 321 365
    • (1998) Rough Sets in Knowledge Discovery , vol.1 , pp. 321-365
    • Bazan, J.1
  • 5
    • 0038404485 scopus 로고    scopus 로고
    • Rough set algorithms in classification problem
    • L. Polkowski, S. Tsumoto, T.Y. Lin, Physica-Verlag Heidelberg, New York
    • J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, and J. Wróblewski Rough set algorithms in classification problem L. Polkowski, S. Tsumoto, T.Y. Lin, Rough Set Methods and Applications 2000 Physica-Verlag Heidelberg, New York 49 88
    • (2000) Rough Set Methods and Applications , pp. 49-88
    • Bazan, J.G.1    Nguyen, H.S.2    Nguyen, S.H.3    Synak, P.4    Wróblewski, J.5
  • 6
    • 17444379002 scopus 로고    scopus 로고
    • On fuzzy-rough sets approach to feature selection
    • R.B. Bhatt, and M. Gopal On fuzzy-rough sets approach to feature selection Patt. Recog. Lett. 26 2005 965 975
    • (2005) Patt. Recog. Lett. , vol.26 , pp. 965-975
    • Bhatt, R.B.1    Gopal, M.2
  • 8
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on big data
    • C.L.P. Chen, and C. Zhang Data-intensive applications, challenges, techniques and technologies: A survey on big data Inform. Sci. 275 2014 314 347
    • (2014) Inform. Sci. , vol.275 , pp. 314-347
    • Chen, C.L.P.1    Zhang, C.2
  • 9
    • 84859718675 scopus 로고    scopus 로고
    • A novel algorithm for finding reducts with fuzzy rough sets
    • D. Chen, L. Zhang, S. Zhao, Q. Hu, and P. Zhu A novel algorithm for finding reducts with fuzzy rough sets IEEE Trans. Fuzzy Syst. 20 2012 385 389
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , pp. 385-389
    • Chen, D.1    Zhang, L.2    Zhao, S.3    Hu, Q.4    Zhu, P.5
  • 10
    • 80052924367 scopus 로고    scopus 로고
    • Parameterized attribute reduction with gaussian kernel based fuzzy rough sets
    • D.G. Chen, Q.H. Hu, and Y.P. Yang Parameterized attribute reduction with gaussian kernel based fuzzy rough sets Inform. Sci. 181 2011 5169 5179
    • (2011) Inform. Sci. , vol.181 , pp. 5169-5179
    • Chen, D.G.1    Hu, Q.H.2    Yang, Y.P.3
  • 13
    • 57049171821 scopus 로고    scopus 로고
    • Fuzzy rough sets: From theory into practice
    • W. Pedrycz, A. Skowron, V. Kreinovich, Wiley
    • C. Cornelis, M. De Cock, and A. Radzikowska Fuzzy rough sets: from theory into practice W. Pedrycz, A. Skowron, V. Kreinovich, Handbook of Granular Computing 2008 Wiley 533 552
    • (2008) Handbook of Granular Computing , pp. 533-552
    • Cornelis, C.1    De Cock, M.2    Radzikowska, A.3
  • 14
    • 70350576588 scopus 로고    scopus 로고
    • Attribute selection with fuzzy decision reducts
    • C. Cornelis, R. Jensen, G. Hurtado, and D. Ślȩzak Attribute selection with fuzzy decision reducts Inform. Sci. 180 2 2010 209 224
    • (2010) Inform. Sci. , vol.180 , Issue.2 , pp. 209-224
    • Cornelis, C.1    Jensen, R.2    Hurtado, G.3    Ślȩzak, D.4
  • 17
    • 84869381912 scopus 로고    scopus 로고
    • Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification
    • J. Dai, and Q. Xu Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification Appl. Soft Comput. 13 2013 211 221
    • (2013) Appl. Soft Comput. , vol.13 , pp. 211-221
    • Dai, J.1    Xu, Q.2
  • 19
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • D. Dubois, and H. Prade Rough fuzzy sets and fuzzy rough sets Int. J. Gen. Syst. 17 1990 91 209
    • (1990) Int. J. Gen. Syst. , vol.17 , pp. 91-209
    • Dubois, D.1    Prade, H.2
  • 22
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • U.M. Fayyad, and K.B. Irani On the handling of continuous-valued attributes in decision tree generation Mach. Learn. 8 1992 87 102
    • (1992) Mach. Learn. , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 25
    • 84872953374 scopus 로고
    • PARVUS: An extendable package of programs for data exploration, classification and correlation
    • M. Forina, E. Leardi, C. Armanino, and S. Lanteri PARVUS: an extendable package of programs for data exploration, classification and correlation J. Chem. 4 2 1988 191 193
    • (1988) J. Chem. , vol.4 , Issue.2 , pp. 191-193
    • Forina, M.1    Leardi, E.2    Armanino, C.3    Lanteri, S.4
  • 27
    • 0002135094 scopus 로고
    • LERS - A system for learning from examples based on rough sets
    • R. Słowiński (Ed.)
    • J.W. Grzymała-Busse, LERS - a system for learning from examples based on rough sets, in: R. Słowiński (Ed.), Intelligent Decision Support, 1992, pp. 3-18.
    • (1992) Intelligent Decision Support , pp. 3-18
    • Grzymała-Busse, J.W.1
  • 28
    • 0031189666 scopus 로고    scopus 로고
    • A new version of the rule induction system LERS
    • J.W. Grzymała-Busse A new version of the rule induction system LERS Fund. Inform. 31 1 1997 27 39
    • (1997) Fund. Inform. , vol.31 , Issue.1 , pp. 27-39
    • Grzymała-Busse, J.W.1
  • 30
    • 33746256987 scopus 로고    scopus 로고
    • Lers - A data mining system
    • Oded Maimon, Lior Rokach, Springer US ISBN 978-0-387-24435-8
    • J.W. Grzymała-Busse Lers - a data mining system Oded Maimon, Lior Rokach, Data Mining and Knowledge Discovery Handbook 2005 Springer US 1347 1351 ISBN 978-0-387-24435-8
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 1347-1351
    • Grzymała-Busse, J.W.1
  • 32
    • 77955946056 scopus 로고    scopus 로고
    • A local version of the MLEM2 algorithm for rule induction
    • J.W. Grzymała-Busse, and W. Rzasa A local version of the MLEM2 algorithm for rule induction Fund. Inform. 100 1-4 2010 99 116
    • (2010) Fund. Inform. , vol.100 , Issue.14 , pp. 99-116
    • Grzymała-Busse, J.W.1    Rzasa, W.2
  • 35
    • 77956394680 scopus 로고    scopus 로고
    • Soft fuzzy rough sets for robust feature evaluation and selection
    • Q. Hu, S. An, and D. Yu Soft fuzzy rough sets for robust feature evaluation and selection Inform. Sci. 180 2010 4384 44007
    • (2010) Inform. Sci. , vol.180 , pp. 4384-44007
    • Hu, Q.1    An, S.2    Yu, D.3
  • 38
    • 84878955469 scopus 로고    scopus 로고
    • A dominance intuitionistic fuzzy-rough set approach and its applications
    • B. Huang, Y. Zhuang, H. Li, and D. Wei A dominance intuitionistic fuzzy-rough set approach and its applications Appl. Math. Model. 37 2013 7128 7141
    • (2013) Appl. Math. Model. , vol.37 , pp. 7128-7141
    • Huang, B.1    Zhuang, Y.2    Li, H.3    Wei, D.4
  • 39
    • 0030305457 scopus 로고    scopus 로고
    • R: A language for data analysis and graphics
    • R. Ihaka, and R. Gentleman R: a language for data analysis and graphics J. Comput. Graph. Statist. 5 1996 299 314
    • (1996) J. Comput. Graph. Statist. , vol.5 , pp. 299-314
    • Ihaka, R.1    Gentleman, R.2
  • 40
    • 84893390190 scopus 로고    scopus 로고
    • Rough set methods for attribute clustering and selection
    • A. Janusz, and D. Ślȩzak Rough set methods for attribute clustering and selection Appl. Artif. Intell. 28 3 2014 220 242
    • (2014) Appl. Artif. Intell. , vol.28 , Issue.3 , pp. 220-242
    • Janusz, A.1    Ślȩzak, D.2
  • 45
    • 80052812410 scopus 로고    scopus 로고
    • Fuzzy-rough nearest neighbour classification and prediction
    • R. Jensen, and C. Cornelis Fuzzy-rough nearest neighbour classification and prediction Theoret. Comp. Sci. 412 2011 5871 5884
    • (2011) Theoret. Comp. Sci. , vol.412 , pp. 5871-5884
    • Jensen, R.1    Cornelis, C.2
  • 47
    • 9644262464 scopus 로고    scopus 로고
    • Fuzzy-rough data reduction with ant colony optimization
    • R. Jensen, and Q. Shen Fuzzy-rough data reduction with ant colony optimization Fuzzy Sets Syst. 149 1 2005 5 20
    • (2005) Fuzzy Sets Syst. , vol.149 , Issue.1 , pp. 5-20
    • Jensen, R.1    Shen, Q.2
  • 48
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • R. Jensen, and Q. Shen New approaches to fuzzy-rough feature selection IEEE Trans. Fuzzy Syst. 19 2009 824 838
    • (2009) IEEE Trans. Fuzzy Syst. , vol.19 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 51
    • 84886089024 scopus 로고    scopus 로고
    • Finding rough and fuzzy-rough set reducts with SAT
    • R. Jensen, A. Tuson, and Q. Shen Finding rough and fuzzy-rough set reducts with SAT Inform. Sci. 255 2014 100 120
    • (2014) Inform. Sci. , vol.255 , pp. 100-120
    • Jensen, R.1    Tuson, A.2    Shen, Q.3
  • 52
    • 84887173794 scopus 로고    scopus 로고
    • Water quality analysis using a variable consistency dominance-based rough set approach
    • J. Karami, A. Alimohammadi, and T. Seifouri Water quality analysis using a variable consistency dominance-based rough set approach Comp., Environ. Urban Syst. 43 2014 25 33
    • (2014) Comp., Environ. Urban Syst. , vol.43 , pp. 25-33
    • Karami, J.1    Alimohammadi, A.2    Seifouri, T.3
  • 56
    • 0343551037 scopus 로고    scopus 로고
    • Learning of decision rules from similarity based rough approximations
    • A. Skowron, L. Polkowski, Physica Verlag Heidelberg
    • K. Krawiec, R. Słowiński, and D. Vanderpooten Learning of decision rules from similarity based rough approximations A. Skowron, L. Polkowski, Rough Sets in Knowledge Discovery vol. 2 1998 Physica Verlag Heidelberg 37 54
    • (1998) Rough Sets in Knowledge Discovery , vol.2 , pp. 37-54
    • Krawiec, K.1    Słowiński, R.2    Vanderpooten, D.3
  • 57
    • 84891791887 scopus 로고    scopus 로고
    • Phylogenetic analysis of dna sequences based on k-word and rough set theory
    • C. Li, Y. Yang, M. Jia, Y. Zhang, X. Yu, and C. Wang Phylogenetic analysis of dna sequences based on k-word and rough set theory Phys. A: Statist. Mech. Appl. 398 2014 162 171
    • (2014) Phys. A: Statist. Mech. Appl. , vol.398 , pp. 162-171
    • Li, C.1    Yang, Y.2    Jia, M.3    Zhang, Y.4    Yu, X.5    Wang, C.6
  • 60
    • 84892693977 scopus 로고    scopus 로고
    • Research on information technology with character pattern recognition method based on rough set theory
    • Y.L. Liu Research on information technology with character pattern recognition method based on rough set theory Advan. Mater. Res. 886 2014 519 523
    • (2014) Advan. Mater. Res. , vol.886 , pp. 519-523
    • Liu, Y.L.1
  • 61
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernandez, S. García, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inform. Sci. 250 2013 113 141
    • (2013) Inform. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernandez, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 62
    • 84862690781 scopus 로고    scopus 로고
    • On the choice of the best imputation methods for missing values considering three groups of classification methods
    • J. Luengo, S. García, and F. Herrera On the choice of the best imputation methods for missing values considering three groups of classification methods Knowl. Inform. Syst. 32 1 2012 77 108
    • (2012) Knowl. Inform. Syst. , vol.32 , Issue.1 , pp. 77-108
    • Luengo, J.1    García, S.2    Herrera, F.3
  • 64
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R.S. Michalski, J.G. Carbonell, T.M. Mitchell, Morgan Kaufman
    • R.S. Michalski A theory and methodology of inductive learning R.S. Michalski, J.G. Carbonell, T.M. Mitchell, Machine Learning 1983 Morgan Kaufman 83 134
    • (1983) Machine Learning , pp. 83-134
    • Michalski, R.S.1
  • 67
  • 68
    • 0000518312 scopus 로고    scopus 로고
    • Discretization methods in data mining
    • A. Skowron, L. Polkowski, Physica Verlag Heidelberg
    • H.S. Nguyen, and S.H. Nguyen Discretization methods in data mining A. Skowron, L. Polkowski, Rough Sets in Knowledge Discovery vol. 1 1998 Physica Verlag Heidelberg 451 482
    • (1998) Rough Sets in Knowledge Discovery , vol.1 , pp. 451-482
    • Nguyen, H.S.1    Nguyen, S.H.2
  • 69
    • 0035493279 scopus 로고    scopus 로고
    • On efficient handling of continuous attributes in large data bases
    • S.H. Nguyen On efficient handling of continuous attributes in large data bases Fund. Inform. 48 2001 61 81
    • (2001) Fund. Inform. , vol.48 , pp. 61-81
    • Nguyen, S.H.1
  • 71
    • 0003372660 scopus 로고
    • Rough tolerance equality
    • J. Nieminen Rough tolerance equality Fund. Inform. 11 3 1988 289 296
    • (1988) Fund. Inform. , vol.11 , Issue.3 , pp. 289-296
    • Nieminen, J.1
  • 74
    • 0019699783 scopus 로고
    • Information systems - Theoretical foundations
    • Z. Pawlak Information systems - theoretical foundations Inform. Sci. 6 1981 205 218
    • (1981) Inform. Sci. , vol.6 , pp. 205-218
    • Pawlak, Z.1
  • 77
    • 33749668975 scopus 로고    scopus 로고
    • Rough sets and boolean reasoning
    • Z. Pawlak, and A. Skowron Rough sets and boolean reasoning Inform. Sci. 177 2007 41 73
    • (2007) Inform. Sci. , vol.177 , pp. 41-73
    • Pawlak, Z.1    Skowron, A.2
  • 78
    • 33749667344 scopus 로고    scopus 로고
    • Rough sets: Some extensions
    • Z. Pawlak, and A. Skowron Rough sets: some extensions Inform. Sci. 177 2007 28 40
    • (2007) Inform. Sci. , vol.177 , pp. 28-40
    • Pawlak, Z.1    Skowron, A.2
  • 79
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Z. Pawlak, and A. Skowron Rudiments of rough sets Inform. Sci. 177 2007 3 27
    • (2007) Inform. Sci. , vol.177 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 81
    • 84957618344 scopus 로고    scopus 로고
    • Rough set based data exploration using ROSE system
    • Z.W. Ras, A. Skowron, Lecture Notes in Artificial Intelligence Springer-Verlag Berlin
    • B. Predki, and S. Wilk Rough set based data exploration using ROSE system Z.W. Ras, A. Skowron, Foundations of Intelligent Systems Lecture Notes in Artificial Intelligence vol. 1609 1999 Springer-Verlag Berlin 172 180
    • (1999) Foundations of Intelligent Systems , vol.1609 , pp. 172-180
    • Predki, B.1    Wilk, S.2
  • 83
    • 0036498107 scopus 로고    scopus 로고
    • A comparative study of fuzzy rough sets
    • A.M. Radzikowska, and E.E. Kerre A comparative study of fuzzy rough sets Fuzzy Sets Syst. 126 2002 137 156
    • (2002) Fuzzy Sets Syst. , vol.126 , pp. 137-156
    • Radzikowska, A.M.1    Kerre, E.E.2
  • 84
    • 84906873734 scopus 로고    scopus 로고
    • On the use of map reduce for imbalanced big data using random forest
    • S. Río, V. López, J.M. Benítez, and F. Herrera On the use of map reduce for imbalanced big data using random forest Inform. Sci. 285 2014 112 137
    • (2014) Inform. Sci. , vol.285 , pp. 112-137
    • Río, S.1    López, V.2    Benítez, J.M.3    Herrera, F.4
  • 85
    • 0346659790 scopus 로고
    • Operation on families of sets for exhaustive search, given a monotonic function
    • W. Beeri, C. Schmidt, N. Doyle (Eds.)
    • S. Romanski, Operation on families of sets for exhaustive search, given a monotonic function, in: W. Beeri, C. Schmidt, N. Doyle (Eds.), Proceedings of the 3rd International Conference on Data and Knowledge Bases, 1988, pp. 310-322.
    • (1988) Proceedings of the 3rd International Conference on Data and Knowledge Bases , pp. 310-322
    • Romanski, S.1
  • 86
    • 17644430909 scopus 로고    scopus 로고
    • Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations
    • J.M.F. Salido, and S. Murakami Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations Fuzzy Sets Syst. 139 2003 635 660
    • (2003) Fuzzy Sets Syst. , vol.139 , pp. 635-660
    • Salido, J.M.F.1    Murakami, S.2
  • 88
    • 34547577484 scopus 로고    scopus 로고
    • Fuzzy-rough nearest-neighbor algorithm in classification
    • M. Sarkar Fuzzy-rough nearest-neighbor algorithm in classification Fuzzy Sets Syst. 158 2007 2123 2152
    • (2007) Fuzzy Sets Syst. , vol.158 , pp. 2123-2152
    • Sarkar, M.1
  • 89
    • 34547577484 scopus 로고    scopus 로고
    • Fuzzy-rough nearest algorithms in classification
    • M. Sarkar Fuzzy-rough nearest algorithms in classification Fuzzy Sets Syst. 158 2012 2134 2152
    • (2012) Fuzzy Sets Syst. , vol.158 , pp. 2134-2152
    • Sarkar, M.1
  • 90
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • C.E. Shannon A mathematical theory of communication Bell Syst. Tech. J. 27 1948 379 423 623-656
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 91
    • 0034207737 scopus 로고    scopus 로고
    • A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems
    • Q. Shen, and A. Chouchoulas A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems Eng. Appl. Artif. Intell. 13 2000 263 278
    • (2000) Eng. Appl. Artif. Intell. , vol.13 , pp. 263-278
    • Shen, Q.1    Chouchoulas, A.2
  • 93
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • D. Ślȩzak Approximate entropy reducts Fund. Inform. 53 2002 365 390
    • (2002) Fund. Inform. , vol.53 , pp. 365-390
    • Ślȩzak, D.1
  • 94
    • 0012574486 scopus 로고    scopus 로고
    • Approximate bayesian networks
    • B. Bounchon-Meunier, J. Gutierrez-Rios, L. Magdalena, R.R. Yager, Springer Verlag
    • D. Ślȩzak Approximate bayesian networks B. Bounchon-Meunier, J. Gutierrez-Rios, L. Magdalena, R.R. Yager, Technologies for Constructing Intelligent Systems: 2 Tools 2002 Springer Verlag 313 326
    • (2002) Technologies for Constructing Intelligent Systems: 2 Tools , pp. 313-326
    • Ślȩzak, D.1
  • 95
    • 0030219662 scopus 로고    scopus 로고
    • Rough set reasoning about uncertain data
    • R. Słowiński, and J. Stefanowski Rough set reasoning about uncertain data Fund. Inform. 27 2-3 1996 229 244
    • (1996) Fund. Inform. , vol.27 , Issue.23 , pp. 229-244
    • Słowiński, R.1    Stefanowski, J.2
  • 96
    • 0003322095 scopus 로고
    • Similarity Relation as a Basis for Rough Approximations
    • Warsaw University Technology
    • R. Słowiński, D. Vanderpooten, Similarity Relation as a Basis for Rough Approximations, Technical report, ICS Research Report 53/95, Warsaw University Technology, 1995.
    • (1995) Technical Report, ICS Research Report 53/95
    • Słowiński, R.1
  • 97
    • 0001906848 scopus 로고    scopus 로고
    • Similarity relation as a basis for rough approximations
    • P.P. Wang (Ed.) Bookwrights, Raleigh, NC
    • R. Słowiński, D. Vanderpooten, Similarity relation as a basis for rough approximations, in: P.P. Wang (Ed.), Advances in Machine Intelligence and Soft Computing, Bookwrights, Raleigh, NC, 1997, pp. 17-33.
    • (1997) Advances in Machine Intelligence and Soft Computing , pp. 17-33
    • Słowiński, R.1
  • 98
    • 0033719032 scopus 로고    scopus 로고
    • A generalized definition of rough approximations based on similarity
    • R. Słowiński, and D. Vanderpooten A generalized definition of rough approximations based on similarity IEEE Trans. Knowl. Data Eng. 12 2 2000 331 336
    • (2000) IEEE Trans. Knowl. Data Eng. , vol.12 , Issue.2 , pp. 331-336
    • Słowiński, R.1    Vanderpooten, D.2
  • 99
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • L. Polkowski, A. Skowron, Physica-Verlag Heidelberg
    • J. Stefanowski On rough set based approaches to induction of decision rules L. Polkowski, A. Skowron, Rough Sets in Knowledge Discovery: 1 Methodology and Applications 1998 Physica-Verlag Heidelberg 500 529
    • (1998) Rough Sets in Knowledge Discovery: 1 Methodology and Applications , pp. 500-529
    • Stefanowski, J.1
  • 101
    • 33747062126 scopus 로고    scopus 로고
    • Rough sets for handling imbalanced data: Combining filtering and rule-based classifiers
    • J. Stefanowski, and S. Wilk Rough sets for handling imbalanced data: combining filtering and rule-based classifiers Fund. Inform. 72 2006 379 391
    • (2006) Fund. Inform. , vol.72 , pp. 379-391
    • Stefanowski, J.1    Wilk, S.2
  • 103
  • 104
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team, R: A language and environment for statistical computing, Technical report, R Foundation for Statistical Computing, Vienna, Austria, 2010 < http://www.r-project.org/foundation/ >.
    • (2010) R: A Language and Environment for Statistical Computing, Technical Report
  • 106
    • 0032291072 scopus 로고    scopus 로고
    • Automated induction of medical expert system rules from clinical databases based on rough set theory
    • S. Tsumoto Automated induction of medical expert system rules from clinical databases based on rough set theory Inform. Sci. 112 1998 67 84
    • (1998) Inform. Sci. , vol.112 , pp. 67-84
    • Tsumoto, S.1
  • 108
    • 84878013591 scopus 로고    scopus 로고
    • A fuzzy rough prototype selection method
    • N. Verbiest, C. Cornelis, and F. Herrera A fuzzy rough prototype selection method Patt. Recog. 46 2013 2770 2782
    • (2013) Patt. Recog. , vol.46 , pp. 2770-2782
    • Verbiest, N.1    Cornelis, C.2    Herrera, F.3
  • 110
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen Feature selection based on rough sets and particle swarm optimization Patt. Recog. Lett. 28 4 2007 459 471
    • (2007) Patt. Recog. Lett. , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 111
    • 0037263253 scopus 로고    scopus 로고
    • LTF-C: Architecture, training algorithm and applications of new neural classifier
    • M. Wojnarski LTF-C: architecture, training algorithm and applications of new neural classifier Fund. Inform. 54 1 2003 89 105
    • (2003) Fund. Inform. , vol.54 , Issue.1 , pp. 89-105
    • Wojnarski, M.1
  • 112
    • 84947782845 scopus 로고    scopus 로고
    • Covering with reducts - A fast algorithm for rule generation
    • LNAI Springer Verlag Berlin
    • J. Wróblewski Covering with reducts - a fast algorithm for rule generation Proceeding of RSCTC'98 LNAI vol. 1424 1998 Springer Verlag Berlin 402 407
    • (1998) Proceeding of RSCTC'98 , vol.1424 , pp. 402-407
    • Wróblewski, J.1
  • 113
    • 0035429376 scopus 로고    scopus 로고
    • Ensembles of classifiers based on approximate reducts
    • J. Wróblewski Ensembles of classifiers based on approximate reducts Fund. Inform. 47 2001 351 360
    • (2001) Fund. Inform. , vol.47 , pp. 351-360
    • Wróblewski, J.1
  • 114
    • 1642525198 scopus 로고    scopus 로고
    • Contructive and axiomatic approaches of fuzzy approximation operators
    • W.Z. Wu, and W.X. Zhang Contructive and axiomatic approaches of fuzzy approximation operators Inform. Sci. 159 2004 3 4
    • (2004) Inform. Sci. , vol.159 , pp. 3-4
    • Wu, W.Z.1    Zhang, W.X.2
  • 115
    • 0037403099 scopus 로고    scopus 로고
    • Generalized fuzzy rough sets
    • W.Z. Wu, J.S. Mi, and W.X. Zhang Generalized fuzzy rough sets Inform. Sci. 151 2003 263 282
    • (2003) Inform. Sci. , vol.151 , pp. 263-282
    • Wu, W.Z.1    Mi, J.S.2    Zhang, W.X.3
  • 116
    • 84884860341 scopus 로고    scopus 로고
    • A new patterns recognition method based on fuzzy rough sets
    • X.D. Yu A new patterns recognition method based on fuzzy rough sets Appl. Mech. Mater. 380-384 2013 3795 3798
    • (2013) Appl. Mech. Mater. , vol.380-384 , pp. 3795-3798
    • Yu, X.D.1
  • 120
    • 0000673928 scopus 로고
    • Analysis of uncertain information in the framework of variable precision rough sets
    • W. Ziarko Analysis of uncertain information in the framework of variable precision rough sets Found. Comput. Dec. Sci. 18 3-4 1993 381 396
    • (1993) Found. Comput. Dec. Sci. , vol.18 , Issue.34 , pp. 381-396
    • Ziarko, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.