-
1
-
-
77949507309
-
Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
-
Abeel, T., T. Helleputte, Y. V. de Peer, P. Dupont, and, Y. Saeys. 2010. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26 (3): 392-398.
-
(2010)
Bioinformatics
, vol.26
, Issue.3
, pp. 392-398
-
-
Abeel, T.1
Helleputte, T.2
De Peer, Y.V.3
Dupont, P.4
Saeys, Y.5
-
3
-
-
0038404485
-
Rough set algorithms in classification problem
-
Studies in Fuzziness and Soft Computing, L. Polkowski, S. Tsumoto, and T. Y. Lin. ed. Heidelberg: Physica-Verlag
-
Bazan, J. G., H. S. Nguyen, S. H. Nguyen, P. Synak, and, J. Wróblewski. 2000. Rough set algorithms in classification problem. In Rough set methods and applications: New developments in knowledge discovery in information systems,. Studies in Fuzziness and Soft Computing 56: 49-88, L. Polkowski, S. Tsumoto, and T. Y. Lin. ed. Heidelberg: Physica-Verlag.
-
(2000)
Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems
, vol.56
, pp. 49-88
-
-
Bazan, J.G.1
Nguyen, H.S.2
Nguyen, S.H.3
Synak, P.4
Wróblewski, J.5
-
4
-
-
80054053177
-
Rule-based estimation of attribute relevance
-
Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
-
Błaszczyński, J., R. Słowiski, and, R. Susmaga. 2011. Rule-based estimation of attribute relevance. In Rough sets and knowledge technology,. Lecture Notes in Computer Science 6954: 36-44. Berlin, Heidelberg: Springer.
-
(2011)
Rough Sets and Knowledge Technology
, vol.6954
, pp. 36-44
-
-
Błaszczyński, J.1
Słowiski, R.2
Susmaga, R.3
-
5
-
-
0035478854
-
Random forests
-
Breiman, L. 2001. Random forests. Machine Learning 45 (1): 5-32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar, J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7: 1-30.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
7
-
-
33746218561
-
Leukemia prediction from gene expression data-A rough set approach
-
Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
-
Fang, J., and, J. W. Grzymała-Busse. 2006. Leukemia prediction from gene expression data-A rough set approach. In International conference on artificial intelligence and soft computing,. Lecture Notes in Computer Science 4029: 899-908. Berlin, Heidelberg: Springer.
-
(2006)
International Conference on Artificial Intelligence and Soft Computing
, vol.4029
, pp. 899-908
-
-
Fang, J.1
Grzymała-Busse, J.W.2
-
8
-
-
33144473447
-
Interactive gene clustering-A case study of breast cancer microarray data
-
Grużdź, A., A. Ihnatowicz, and, D. Ślȩzak. 2006. Interactive gene clustering-A case study of breast cancer microarray data. Information Systems Frontiers 8 (1): 21-27.
-
(2006)
Information Systems Frontiers
, vol.8
, Issue.1
, pp. 21-27
-
-
Gruzdź, A.1
Ihnatowicz, A.2
Ślȩzak, D.3
-
9
-
-
84893405732
-
Data clustering: A review
-
Jain, A. K., M. N. Murty, and, P. J. Flynn. 1999. Data clustering: A review. ACM Computing Surveys 31 (3): 264-323.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
10
-
-
84865712771
-
Dynamic rule-based similarity model for DNA microarray data
-
Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
-
Janusz, A. 2012. Dynamic rule-based similarity model for DNA microarray data. In Transactions on rough sets XV,. Lecture Notes in Computer Science 7255: 1-25. Berlin, Heidelberg: Springer.
-
(2012)
Transactions on Rough Sets XV
, vol.7255
, pp. 1-25
-
-
Janusz, A.1
-
11
-
-
84872564620
-
Utilization of attribute clustering methods for scalable computation of reducts from high-dimensional data
-
Washington, D.C. IEEE
-
Janusz, A., and, D. Ślȩzak. 2012. Utilization of attribute clustering methods for scalable computation of reducts from high-dimensional data. In Federated conference on computer science and information systems, 295-302. Washington, D.C.: IEEE.
-
(2012)
Federated Conference on Computer Science and Information Systems
, pp. 295-302
-
-
Janusz, A.1
Ślȩzak, D.2
-
12
-
-
80054089341
-
Applications of approximate reducts to the feature selection problem
-
Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
-
Janusz, A., and, S. Stawicki. 2011. Applications of approximate reducts to the feature selection problem. In Rough sets and knowledge technology,. Lecture Notes in Computer Science 6954: 45-50. Berlin, Heidelberg: Springer.
-
(2011)
Rough Sets and Knowledge Technology
, vol.6954
, pp. 45-50
-
-
Janusz, A.1
Stawicki, S.2
-
13
-
-
68849126540
-
New approaches to fuzzy-rough feature selection
-
Jensen, R., and, Q. Shen. 2009. New approaches to fuzzy-rough feature selection. IEEE Transactions on Fuzzy Systems 17 (4): 824-838.
-
(2009)
IEEE Transactions on Fuzzy Systems
, vol.17
, Issue.4
, pp. 824-838
-
-
Jensen, R.1
Shen, Q.2
-
15
-
-
0031381525
-
Wrappers for feature subset selection
-
December
-
Kohavi, R., and, G. H. John. 1997, December. Wrappers for feature subset selection. Artificial Intelligence 97: 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
16
-
-
33744937046
-
Machine learning for detecting gene-gene interactions: A review
-
McKinney, B. A., D. M. Reif, M. D. Ritchie, and, J. H. Moore. 2006. Machine learning for detecting gene-gene interactions: A review. Applied Bioinformatics 5 (2): 77-88.
-
(2006)
Applied Bioinformatics
, vol.5
, Issue.2
, pp. 77-88
-
-
McKinney, B.A.1
Reif, D.M.2
Ritchie, M.D.3
Moore, J.H.4
-
17
-
-
0036874602
-
Learning rough set classifiers from gene expressions and clinical data
-
Midelfart, H., H. J. Komorowski, K. N ørsett, F. Yadetie, A. K. Sandvik, and, A. Lægreid. 2002. Learning rough set classifiers from gene expressions and clinical data. Fundamenta Informaticae 53 (2): 155-183.
-
(2002)
Fundamenta Informaticae
, vol.53
, Issue.2
, pp. 155-183
-
-
Midelfart, H.1
Komorowski, H.J.2
Rsett, K.N.3
Yadetie, F.4
Sandvik, A.K.5
Lægreid, A.6
-
19
-
-
37349000869
-
Approximate Boolean reasoning: Foundations and applications in data mining
-
Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
-
Nguyen, H. S. 2006. Approximate Boolean reasoning: Foundations and applications in data mining. In Transactions on rough sets V,. Lecture Notes in Computer Science 4100: 334-506. Berlin, Heidelberg: Springer.
-
(2006)
Transactions on Rough Sets v
, vol.4100
, pp. 334-506
-
-
Nguyen, H.S.1
-
20
-
-
58149204055
-
Array express update-From an archive of functional genomics experiments to the atlas of gene expression
-
Parkinson, H. E., M. Kapushesky, N. Kolesnikov, G. Rustici, M. Shojatalab, N. Abeygunawardena, H. Berube, M. Dylag, I. Emam, A. Farne, E. Holloway, M. Lukk, J. Malone, R. Mani, E. Pilicheva, T. F. Rayner, F. I. Rezwan, A. Sharma, E. Williams, X. Z. Bradley, T. Adamusiak, M. Brandizi, T. Burdett, R. Coulson, M. Krestyaninova, P. Kurnosov, E. Maguire, S. G. Neogi, P. Rocca-Serra, S.-A. Sansone, N. Sklyar, M. Zhao, U. Sarkans, and, A. Brazma. 2009. Array express update-From an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Research 37 (Database-Issue): 868-872.
-
(2009)
Nucleic Acids Research
, vol.37
, pp. 868-872
-
-
Parkinson, H.E.1
Kapushesky, M.2
Kolesnikov, N.3
Rustici, G.4
Shojatalab, M.5
Abeygunawardena, N.6
Berube, H.7
Dylag, M.8
Emam, I.9
Farne, A.10
Holloway, E.11
Lukk, M.12
Malone, J.13
Mani, R.14
Pilicheva, E.15
Rayner, T.F.16
Rezwan, F.I.17
Sharma, A.18
Williams, E.19
Bradley, X.Z.20
Adamusiak, T.21
Brandizi, M.22
Burdett, T.23
Coulson, R.24
Krestyaninova, M.25
Kurnosov, P.26
Maguire, E.27
Neogi, S.G.28
Rocca-Serra, P.29
Sansone, S.-A.30
Sklyar, N.31
Zhao, M.32
Sarkans, U.33
Brazma, A.34
more..
-
22
-
-
0012569466
-
Normalized decision functions and measures for inconsistent decision tables analysis
-
Ślȩzak, D. 2000. Normalized decision functions and measures for inconsistent decision tables analysis. Fundamenta Informaticae 44 (3): 291-319.
-
(2000)
Fundamenta Informaticae
, vol.44
, Issue.3
, pp. 291-319
-
-
Ślȩzak, D.1
-
23
-
-
49349099447
-
Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets
-
Washington, D.C. IEEE
-
Ślȩzak, D. 2007. Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets. In Frontiers in the convergence of bioscience and information technologies, 437-442. Washington, D.C.: IEEE.
-
(2007)
Frontiers in the Convergence of Bioscience and Information Technologies
, pp. 437-442
-
-
Ślȩzak, D.1
-
24
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
Świniarski, R. W., and, A. Skowron. 2003. Rough set methods in feature selection and recognition. Pattern Recognition Letters 24 (6): 833-849.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.6
, pp. 833-849
-
-
Świniarski, R.W.1
Skowron, A.2
-
25
-
-
85032194969
-
Rough set based decision support-Models easy to interpret
-
Advanced Information and Knowledge Processing, G. Peters, P. Lingras, D. Ślȩzak, and Y. Yao. ed. Berlin: Springer
-
Widz, S., and, D. Ślȩzak. 2012. Rough set based decision support-Models easy to interpret. In Selected methods and applications of rough sets in management and engineering, Advanced Information and Knowledge Processing, 95-112, G. Peters, P. Lingras, D. Ślȩzak, and Y. Yao. ed. Berlin: Springer.
-
(2012)
Selected Methods and Applications of Rough Sets in Management and Engineering
, pp. 95-112
-
-
Widz, S.1
Ślȩzak, D.2
-
26
-
-
79956285071
-
RSCTC 2010 discovery challenge: Mining DNA microarray data for medical diagnosis and treatment
-
Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
-
Wojnarski, M., A. Janusz, H. S. Nguyen, J. G. Bazan, C. Luo, Z. Chen, F. Hu, G. Wang, L. Guan, and, H. Luo. 2010. RSCTC 2010 discovery challenge: Mining DNA microarray data for medical diagnosis and treatment. In Rough sets and current trends in computing,. Lecture Notes in Computer Science 6086: 4-19. Berlin, Heidelberg: Springer.
-
(2010)
Rough Sets and Current Trends in Computing
, vol.6086
, pp. 4-19
-
-
Wojnarski, M.1
Janusz, A.2
Nguyen, H.S.3
Bazan, J.G.4
Luo, C.5
Chen, Z.6
Hu, F.7
Wang, G.8
Guan, L.9
Luo, H.10
-
27
-
-
0035429376
-
Ensembles of classifiers based on approximate reducts
-
Wróblewski, J. 2001. Ensembles of classifiers based on approximate reducts. Fundamenta Informaticae 47 (3-4): 351-360.
-
(2001)
Fundamenta Informaticae
, vol.47
, Issue.34
, pp. 351-360
-
-
Wróblewski, J.1
|