메뉴 건너뛰기




Volumn 28, Issue 3, 2014, Pages 220-242

Rough set methods for attribute clustering and selection

Author keywords

[No Author keywords available]

Indexed keywords

ATTRIBUTE CLUSTERING; ATTRIBUTE SELECTION; CLUSTERING AND SELECTIONS; CONSTRUCTION TECHNIQUE; DECISION REDUCTS; EXPERIMENT CONFIRM; GREEDY SEARCH; HIGH-DIMENSIONAL DATASET; MICROARRAYS DATA; POOR PERFORMANCE;

EID: 84893390190     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839514.2014.883902     Document Type: Article
Times cited : (56)

References (27)
  • 1
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel, T., T. Helleputte, Y. V. de Peer, P. Dupont, and, Y. Saeys. 2010. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26 (3): 392-398.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    De Peer, Y.V.3    Dupont, P.4    Saeys, Y.5
  • 4
    • 80054053177 scopus 로고    scopus 로고
    • Rule-based estimation of attribute relevance
    • Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
    • Błaszczyński, J., R. Słowiski, and, R. Susmaga. 2011. Rule-based estimation of attribute relevance. In Rough sets and knowledge technology,. Lecture Notes in Computer Science 6954: 36-44. Berlin, Heidelberg: Springer.
    • (2011) Rough Sets and Knowledge Technology , vol.6954 , pp. 36-44
    • Błaszczyński, J.1    Słowiski, R.2    Susmaga, R.3
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Machine Learning 45 (1): 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7: 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 7
    • 33746218561 scopus 로고    scopus 로고
    • Leukemia prediction from gene expression data-A rough set approach
    • Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
    • Fang, J., and, J. W. Grzymała-Busse. 2006. Leukemia prediction from gene expression data-A rough set approach. In International conference on artificial intelligence and soft computing,. Lecture Notes in Computer Science 4029: 899-908. Berlin, Heidelberg: Springer.
    • (2006) International Conference on Artificial Intelligence and Soft Computing , vol.4029 , pp. 899-908
    • Fang, J.1    Grzymała-Busse, J.W.2
  • 8
    • 33144473447 scopus 로고    scopus 로고
    • Interactive gene clustering-A case study of breast cancer microarray data
    • Grużdź, A., A. Ihnatowicz, and, D. Ślȩzak. 2006. Interactive gene clustering-A case study of breast cancer microarray data. Information Systems Frontiers 8 (1): 21-27.
    • (2006) Information Systems Frontiers , vol.8 , Issue.1 , pp. 21-27
    • Gruzdź, A.1    Ihnatowicz, A.2    Ślȩzak, D.3
  • 10
    • 84865712771 scopus 로고    scopus 로고
    • Dynamic rule-based similarity model for DNA microarray data
    • Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
    • Janusz, A. 2012. Dynamic rule-based similarity model for DNA microarray data. In Transactions on rough sets XV,. Lecture Notes in Computer Science 7255: 1-25. Berlin, Heidelberg: Springer.
    • (2012) Transactions on Rough Sets XV , vol.7255 , pp. 1-25
    • Janusz, A.1
  • 11
    • 84872564620 scopus 로고    scopus 로고
    • Utilization of attribute clustering methods for scalable computation of reducts from high-dimensional data
    • Washington, D.C. IEEE
    • Janusz, A., and, D. Ślȩzak. 2012. Utilization of attribute clustering methods for scalable computation of reducts from high-dimensional data. In Federated conference on computer science and information systems, 295-302. Washington, D.C.: IEEE.
    • (2012) Federated Conference on Computer Science and Information Systems , pp. 295-302
    • Janusz, A.1    Ślȩzak, D.2
  • 12
    • 80054089341 scopus 로고    scopus 로고
    • Applications of approximate reducts to the feature selection problem
    • Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
    • Janusz, A., and, S. Stawicki. 2011. Applications of approximate reducts to the feature selection problem. In Rough sets and knowledge technology,. Lecture Notes in Computer Science 6954: 45-50. Berlin, Heidelberg: Springer.
    • (2011) Rough Sets and Knowledge Technology , vol.6954 , pp. 45-50
    • Janusz, A.1    Stawicki, S.2
  • 13
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • Jensen, R., and, Q. Shen. 2009. New approaches to fuzzy-rough feature selection. IEEE Transactions on Fuzzy Systems 17 (4): 824-838.
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • December
    • Kohavi, R., and, G. H. John. 1997, December. Wrappers for feature subset selection. Artificial Intelligence 97: 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 16
    • 33744937046 scopus 로고    scopus 로고
    • Machine learning for detecting gene-gene interactions: A review
    • McKinney, B. A., D. M. Reif, M. D. Ritchie, and, J. H. Moore. 2006. Machine learning for detecting gene-gene interactions: A review. Applied Bioinformatics 5 (2): 77-88.
    • (2006) Applied Bioinformatics , vol.5 , Issue.2 , pp. 77-88
    • McKinney, B.A.1    Reif, D.M.2    Ritchie, M.D.3    Moore, J.H.4
  • 19
    • 37349000869 scopus 로고    scopus 로고
    • Approximate Boolean reasoning: Foundations and applications in data mining
    • Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
    • Nguyen, H. S. 2006. Approximate Boolean reasoning: Foundations and applications in data mining. In Transactions on rough sets V,. Lecture Notes in Computer Science 4100: 334-506. Berlin, Heidelberg: Springer.
    • (2006) Transactions on Rough Sets v , vol.4100 , pp. 334-506
    • Nguyen, H.S.1
  • 22
    • 0012569466 scopus 로고    scopus 로고
    • Normalized decision functions and measures for inconsistent decision tables analysis
    • Ślȩzak, D. 2000. Normalized decision functions and measures for inconsistent decision tables analysis. Fundamenta Informaticae 44 (3): 291-319.
    • (2000) Fundamenta Informaticae , vol.44 , Issue.3 , pp. 291-319
    • Ślȩzak, D.1
  • 23
    • 49349099447 scopus 로고    scopus 로고
    • Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets
    • Washington, D.C. IEEE
    • Ślȩzak, D. 2007. Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets. In Frontiers in the convergence of bioscience and information technologies, 437-442. Washington, D.C.: IEEE.
    • (2007) Frontiers in the Convergence of Bioscience and Information Technologies , pp. 437-442
    • Ślȩzak, D.1
  • 24
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Świniarski, R. W., and, A. Skowron. 2003. Rough set methods in feature selection and recognition. Pattern Recognition Letters 24 (6): 833-849.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Świniarski, R.W.1    Skowron, A.2
  • 25
    • 85032194969 scopus 로고    scopus 로고
    • Rough set based decision support-Models easy to interpret
    • Advanced Information and Knowledge Processing, G. Peters, P. Lingras, D. Ślȩzak, and Y. Yao. ed. Berlin: Springer
    • Widz, S., and, D. Ślȩzak. 2012. Rough set based decision support-Models easy to interpret. In Selected methods and applications of rough sets in management and engineering, Advanced Information and Knowledge Processing, 95-112, G. Peters, P. Lingras, D. Ślȩzak, and Y. Yao. ed. Berlin: Springer.
    • (2012) Selected Methods and Applications of Rough Sets in Management and Engineering , pp. 95-112
    • Widz, S.1    Ślȩzak, D.2
  • 26
    • 79956285071 scopus 로고    scopus 로고
    • RSCTC 2010 discovery challenge: Mining DNA microarray data for medical diagnosis and treatment
    • Lecture Notes in Computer Science: Berlin, Heidelberg: Springer
    • Wojnarski, M., A. Janusz, H. S. Nguyen, J. G. Bazan, C. Luo, Z. Chen, F. Hu, G. Wang, L. Guan, and, H. Luo. 2010. RSCTC 2010 discovery challenge: Mining DNA microarray data for medical diagnosis and treatment. In Rough sets and current trends in computing,. Lecture Notes in Computer Science 6086: 4-19. Berlin, Heidelberg: Springer.
    • (2010) Rough Sets and Current Trends in Computing , vol.6086 , pp. 4-19
    • Wojnarski, M.1    Janusz, A.2    Nguyen, H.S.3    Bazan, J.G.4    Luo, C.5    Chen, Z.6    Hu, F.7    Wang, G.8    Guan, L.9    Luo, H.10
  • 27
    • 0035429376 scopus 로고    scopus 로고
    • Ensembles of classifiers based on approximate reducts
    • Wróblewski, J. 2001. Ensembles of classifiers based on approximate reducts. Fundamenta Informaticae 47 (3-4): 351-360.
    • (2001) Fundamenta Informaticae , vol.47 , Issue.34 , pp. 351-360
    • Wróblewski, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.