메뉴 건너뛰기




Volumn 28, Issue 4, 2007, Pages 459-471

Feature selection based on rough sets and particle swarm optimization

Author keywords

Feature selection; Genetic algorithms; Hill climbing method; Particle swarm optimization; Reduct; Rough sets; Stochastic method

Indexed keywords

COMPUTATION THEORY; GENETIC ALGORITHMS; GLOBAL OPTIMIZATION; HEURISTIC METHODS; ROUGH SET THEORY; STOCHASTIC PROGRAMMING;

EID: 33845523839     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2006.09.003     Document Type: Article
Times cited : (767)

References (46)
  • 1
    • 0000255880 scopus 로고    scopus 로고
    • A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision table
    • Polkowski L., and Skowron A. (Eds), Physica-Verlag, Heidelberg
    • Bazan J. A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision table. In: Polkowski L., and Skowron A. (Eds). Rough Sets in Knowledge Discovery (1998), Physica-Verlag, Heidelberg 321-365
    • (1998) Rough Sets in Knowledge Discovery , pp. 321-365
    • Bazan, J.1
  • 2
    • 0038404485 scopus 로고    scopus 로고
    • Rough set algorithms in classification problem
    • Polkowski L., Tsumoto S., and Lin T.Y. (Eds), Physica-Verlag, Heidelberg, New York
    • Bazan J., Nguyen H.S., Nguyen S.H., Synak P., and Wroblewski J. Rough set algorithms in classification problem. In: Polkowski L., Tsumoto S., and Lin T.Y. (Eds). Rough Set Methods and Applications (2000), Physica-Verlag, Heidelberg, New York 49-88
    • (2000) Rough Set Methods and Applications , pp. 49-88
    • Bazan, J.1    Nguyen, H.S.2    Nguyen, S.H.3    Synak, P.4    Wroblewski, J.5
  • 3
    • 0032048398 scopus 로고    scopus 로고
    • Computational methods for rough classification and discovery
    • Bell D., and Guan J. Computational methods for rough classification and discovery. J. ASIS 49 5 (1998) 403-414
    • (1998) J. ASIS , vol.49 , Issue.5 , pp. 403-414
    • Bell, D.1    Guan, J.2
  • 4
    • 33845519299 scopus 로고    scopus 로고
    • Bjorvand, A.T., 1997. 'Rough Enough'-a system supporting the rough sets approach. In: Sixth Scandinavian Conference on Artificial Intelligence SCAI'97.
  • 6
    • 33845528256 scopus 로고    scopus 로고
    • Blake, C., Keogh, E., Merz, C.J., 1998. UCI repository of machine learning databases. Technical Report, Department of Information and Computer Science, University of California, Irvine, CA. .
  • 7
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorization
    • Chouchoulas A., and Shen Q. Rough set-aided keyword reduction for text categorization. Appl. Artif. Intell. 15 9 (2001) 843-873
    • (2001) Appl. Artif. Intell. , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 8
    • 0034863568 scopus 로고    scopus 로고
    • Eberhart R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. In: Proceedings of IEEE International Conference on Evolutionary Computation. Seoul, pp. 81-86.
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learning Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learning Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 33845537528 scopus 로고    scopus 로고
    • Hu, X., 1995. Knowledge discovery in databases: an attribute-oriented rough set approach, Ph.D. thesis, Regina University.
  • 11
    • 0029310113 scopus 로고
    • Learning in relational databases: a rough set approach
    • Hu X., and Cereone N. Learning in relational databases: a rough set approach. Comput. Intell. 11 2 (1995) 323-337
    • (1995) Comput. Intell. , vol.11 , Issue.2 , pp. 323-337
    • Hu, X.1    Cereone, N.2
  • 12
    • 0037692973 scopus 로고    scopus 로고
    • Feature ranking in rough sets
    • Hu K., Lu Y.C., and Shi C.Y. Feature ranking in rough sets. AI Commun. 16 1 (2003) 41-50
    • (2003) AI Commun. , vol.16 , Issue.1 , pp. 41-50
    • Hu, K.1    Lu, Y.C.2    Shi, C.Y.3
  • 13
    • 85132290785 scopus 로고    scopus 로고
    • A mathematical foundation for improved reduct generation in information systems
    • Janusz A., Starzyk J., Nelson D.E., and Sturtz K. A mathematical foundation for improved reduct generation in information systems. Knowledge Informat. Syst. 2 (2000) 131-146
    • (2000) Knowledge Informat. Syst. , vol.2 , pp. 131-146
    • Janusz, A.1    Starzyk, J.2    Nelson, D.E.3    Sturtz, K.4
  • 14
    • 33845521243 scopus 로고    scopus 로고
    • Jensen, R., Shen, Q., 2003. Finding rough set reducts with ant colony optimization. In: Proceedings of the 2003 UK Workshop on Computational Intelligence, pp. 15-22.
  • 15
    • 0030645460 scopus 로고    scopus 로고
    • Kennedy, J., 1997. The particle swarm: social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, April 13-16, pp. 303-308.
  • 16
    • 0029535737 scopus 로고    scopus 로고
    • Kennedy, J., Eberhart, R.C., 1995a. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, pp. 1942-1948.
  • 17
    • 0029517385 scopus 로고    scopus 로고
    • Kennedy, J., Eberhart, R.C., 1995b. A new optimizer using particle swarm theory. In: Sixth International Symposium on Micro Machine and Human Science. Nagoya, pp. 39-43.
  • 18
    • 0031674071 scopus 로고    scopus 로고
    • Kennedy, J., Spears, W.M., 1998. Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE International Conference on Evolutionary Computation. pp. 39-43.
  • 20
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 1 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 22
    • 33845523006 scopus 로고    scopus 로고
    • Nguyen, H.S., 1996. Some efficient algorithms for rough set methods. In: Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'96) 2, July 1-5, 1996, Granada, Spain pp. 1451-1456.
  • 23
    • 2442711286 scopus 로고    scopus 로고
    • Pal S.K., and Skowron A. (Eds) (special issue on Rough Sets)
    • In: Pal S.K., and Skowron A. (Eds). Pattern Recognition Lett. 24 6 (2003) 829-933 (special issue on Rough Sets)
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.6 , pp. 829-933
  • 26
    • 0031145399 scopus 로고    scopus 로고
    • Rough set approach to knowledge-based decision support
    • Pawlak Z. Rough set approach to knowledge-based decision support. Eur. J. Operat. Res. 99 (1997) 48-57
    • (1997) Eur. J. Operat. Res. , vol.99 , pp. 48-57
    • Pawlak, Z.1
  • 27
    • 0031700696 scopus 로고    scopus 로고
    • Shi, Y., Eberhart, R.C., 1998a. A modified particle swarm optimizer. In: Proc. IEEE Int. Conf. on Evolutionary Computation. Anchorage, AK, USA, pp. 69-73.
  • 28
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • Springer-Verlag, New York
    • Shi Y., and Eberhart R.C. Parameter selection in particle swarm optimization. Evolutionary Programming VII: Proc. EP98 (1998), Springer-Verlag, New York 591-600
    • (1998) Evolutionary Programming VII: Proc. EP98 , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 29
    • 84896721435 scopus 로고    scopus 로고
    • Empirical study of particle swarm optimization
    • IEEE Service Center, Piscataway, NJ
    • Shi Y., and Eberhart R.C. Empirical study of particle swarm optimization. Proc. 1999 Congress on Evolutionary Computation (1999), IEEE Service Center, Piscataway, NJ 1945-1950
    • (1999) Proc. 1999 Congress on Evolutionary Computation , pp. 1945-1950
    • Shi, Y.1    Eberhart, R.C.2
  • 31
    • 33845521420 scopus 로고    scopus 로고
    • Skowron, A., Bazan, J., Son, N.H., Wroblewski, J., et al., 2005a. RSES 2.2 User's Guide. Institute of Mathematics, Warsaw University, Warsaw, Poland, January 19, 2005. .
  • 32
    • 33645998132 scopus 로고    scopus 로고
    • Skowron, A., Wang, H., Wojna, A., Bazan J., 2005b. A hierarchical approach to multimodal classification. In: Slezak, D., Wang, G., Szczuka, M., Duentsch, I., Yao, Y.Y., (Eds.), Rough sets, fuzzy sets, data mining, and granular computing. In: Proc. 10th Int. Conf. RSFDGrC 2005, Regina, Canada, September 1-3, 2005, Part 2, Lecture Notes in Artificial Intelligence 3642, Springer, Heidelberg, 2005, pp. 119-127.
  • 33
    • 33845520213 scopus 로고    scopus 로고
    • Slezak, D., 1996. Approximate reducts in decision tables. In: Proc. of IPMU'96, 1996.
  • 34
    • 8344257284 scopus 로고    scopus 로고
    • Slezak, D., Wroblewski, J., 2003. Order based genetic algorithms for the search of approximate entropy reducts. In: Wang, G.Y., et al. (Eds.), RSFDGrC. LNAI, Vol. 2639. Chongqing, China, 2003, pp. 308-311.
  • 36
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • Skowron A., and Polkowski L. (Eds), Physica Verlag, Heidelberg
    • Stefanowski J. On rough set based approaches to induction of decision rules. In: Skowron A., and Polkowski L. (Eds). Rough Sets in Knowledge Discovery Vol. 1 (1998), Physica Verlag, Heidelberg 500-529
    • (1998) Rough Sets in Knowledge Discovery , vol.1 , pp. 500-529
    • Stefanowski, J.1
  • 37
    • 84947768086 scopus 로고    scopus 로고
    • Susmaga, R., 1998. Parallel computation of reducts. In: Polkowski, L., Skowron, A. (Eds.), RSCTC'98, LNAI 1424, 1998, pp. 450-458.
  • 38
    • 3142719118 scopus 로고    scopus 로고
    • Reducts and constructs in attribute reduction
    • IOS Press 159-181
    • Susmaga R. Reducts and constructs in attribute reduction. Fundamenta Informaticae 61(2) (1996), IOS Press 159-181
    • (1996) Fundamenta Informaticae , vol.61 2
    • Susmaga, R.1
  • 39
    • 9444299082 scopus 로고    scopus 로고
    • Susmaga, R., 2004b. Tree-Like Parallelization of Reduct and Construct Computation. In: Tsumoto, S., et al. (Eds.), RSCTC 2004, LNAI 3066, 2004, pp. 455-464.
  • 40
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski R.W., and Skowron A. Rough set methods in feature selection and recognition. Pattern Recognition Lett. 24 6 (2003) 833-849
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 41
    • 33845541525 scopus 로고    scopus 로고
    • Vafaie, H., Imam, I.F., 1994. Feature selection methods: genetic algorithms vs. greedy-like search. In: Proc. Int. Conf. on Fuzzy and Intelligent Control Systems.
  • 42
    • 0036662454 scopus 로고    scopus 로고
    • Decision table reduction based on conditional information entropy
    • Wang G.Y., Yu H., and Yang D.C. Decision table reduction based on conditional information entropy. Chin. J. Comput. 25 7 (2002) 759-766
    • (2002) Chin. J. Comput. , vol.25 , Issue.7 , pp. 759-766
    • Wang, G.Y.1    Yu, H.2    Yang, D.C.3
  • 43
    • 13944274490 scopus 로고    scopus 로고
    • Wang, G.Y., Zhao, J., 2004. Theoretical study on attribute reduction of rough set theory: comparison of algebra and information views. In: Proc. Third IEEE Int. Conf. on Cognitive Informatics.
  • 44
    • 33845547717 scopus 로고    scopus 로고
    • Wroblewski, J., 1995. Finding minimal reducts using genetic algorithms. In: Proc. Second Annual Join Conf. on Information Sciences, Wrightsville Beach, NC. September 28-October 1, pp. 186-189.
  • 45
    • 0030406574 scopus 로고    scopus 로고
    • Theoretical foundations of order-based genetic algorithms
    • IOS Press 423-430
    • Wroblewski J. Theoretical foundations of order-based genetic algorithms. Fundamenta Informaticae 28(3-4) (1996), IOS Press 423-430
    • (1996) Fundamenta Informaticae , vol.28 3-4
    • Wroblewski, J.1
  • 46
    • 0036713519 scopus 로고    scopus 로고
    • Feature extraction using rough set theory and genetic algorithms-an application for the simplification of product quality evaluation
    • Zhai L.Y., et al. Feature extraction using rough set theory and genetic algorithms-an application for the simplification of product quality evaluation. Comput. Industrial Eng. 43 (2002) 661-676
    • (2002) Comput. Industrial Eng. , vol.43 , pp. 661-676
    • Zhai, L.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.