메뉴 건너뛰기




Volumn 255, Issue , 2014, Pages 100-120

Finding rough and fuzzy-rough set reducts with SAT

Author keywords

Boolean satisfiability; Feature selection; Fuzzy rough set theory; Rough set theory

Indexed keywords

BOOLEAN SATISFIABILITY; FUZZY ROUGH SET THEORY; FUZZY-ROUGH SETS; INPUT FEATURES; MINIMAL SUBSET; PROPOSITIONAL SATISFIABILITY; SETS OF FEATURES; WEB CONTENT;

EID: 84886089024     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.07.033     Document Type: Article
Times cited : (64)

References (48)
  • 2
    • 0042656300 scopus 로고
    • Dynamic reducts as a tool for extracting laws from decision tables
    • Z.W. Ras, M. Zemankova, Lecture Notes in Artificial Intelligence Springer-Verlag
    • J. Bazan, A. Skowron, and P. Synak Dynamic reducts as a tool for extracting laws from decision tables Z.W. Ras, M. Zemankova, Proceedings of the Eighth Symposium on Methodologies for Intelligent Systems Lecture Notes in Artificial Intelligence vol. 869 1994 Springer-Verlag 346 355
    • (1994) Proceedings of the Eighth Symposium on Methodologies for Intelligent Systems , vol.869 , pp. 346-355
    • Bazan, J.1    Skowron, A.2    Synak, P.3
  • 5
    • 84886102312 scopus 로고    scopus 로고
    • Two new feature selection algorithms with rough sets theory
    • Y. Caballero, R. Bello, D. Alvarez, and M.M. Garca Two new feature selection algorithms with rough sets theory IFIP AI 2006 2006 209 216
    • (2006) IFIP AI , vol.2006 , pp. 209-216
    • Caballero, Y.1    Bello, R.2    Alvarez, D.3    Garca, M.M.4
  • 7
    • 72449177821 scopus 로고    scopus 로고
    • A rough set approach to feature selection based on ant colony optimization
    • Y. Chen, D. Miao, and R. Wang A rough set approach to feature selection based on ant colony optimization Pattern Recognition Letters 31 3 2010 226 233
    • (2010) Pattern Recognition Letters , vol.31 , Issue.3 , pp. 226-233
    • Chen, Y.1    Miao, D.2    Wang, R.3
  • 8
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorisation
    • A. Chouchoulas, and Q. Shen Rough set-aided keyword reduction for text categorisation Applied Artificial Intelligence 15 9 2001 843 873
    • (2001) Applied Artificial Intelligence , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 11
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, and H. Liu Feature selection for classification Intelligent Data Analysis 1 3 1997 131 156
    • (1997) Intelligent Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 15
    • 0033170342 scopus 로고    scopus 로고
    • Towards a characterisation of the behaviour of stochastic local search algorithms for SAT
    • H.H. Hoos, and T. Stützle Towards a characterisation of the behaviour of stochastic local search algorithms for SAT Artificial Intelligence 112 1999 213 232
    • (1999) Artificial Intelligence , vol.112 , pp. 213-232
    • Hoos, H.H.1    Stützle, T.2
  • 16
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough based approaches
    • R. Jensen, and Q. Shen Semantics-preserving dimensionality reduction: rough and fuzzy-rough based approaches IEEE Transactions on Knowledge and Data Engineering 16 12 2004 1457 1471
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 18
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • R. Jensen, and Q. Shen New approaches to fuzzy-rough feature selection IEEE Transactions on Fuzzy Systems 17 4 2009 824 838
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 19
    • 72649106562 scopus 로고    scopus 로고
    • Are more features better? A response to attributes reduction using fuzzy rough sets
    • R. Jensen, and Q. Shen Are more features better? A response to attributes reduction using fuzzy rough sets IEEE Transactions on Fuzzy Systems 17 6 2009 1456 1458
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.6 , pp. 1456-1458
    • Jensen, R.1    Shen, Q.2
  • 21
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the Myopia of inductive learning algorithms with RELIEFF
    • I. Kononenko, E. Simec, and M. Robnik-Sikonja Overcoming the Myopia of inductive learning algorithms with RELIEFF Applied Intelligence 7 1997 39 55
    • (1997) Applied Intelligence , vol.7 , pp. 39-55
    • Kononenko, I.1    Simec, E.2    Robnik-Sikonja, M.3
  • 22
    • 0035156139 scopus 로고    scopus 로고
    • Comparative study of alternative types of knowledge reduction in inconsistent systems
    • M. Kryszkiewicz Comparative study of alternative types of knowledge reduction in inconsistent systems International Journal of Intelligent Systems 16 1 2001 105 120
    • (2001) International Journal of Intelligent Systems , vol.16 , Issue.1 , pp. 105-120
    • Kryszkiewicz, M.1
  • 23
    • 9444221426 scopus 로고    scopus 로고
    • Heuristically fast finding of the shortest reducts, rough sets and current trends in computing
    • T.Y. Lin, and P. Yin Heuristically fast finding of the shortest reducts, rough sets and current trends in computing Lecture Notes in Computer Science 3066/2004 2004 465 470
    • (2004) Lecture Notes in Computer Science , vol.3066 , Issue.2004 , pp. 465-470
    • Lin, T.Y.1    Yin, P.2
  • 25
    • 0004872609 scopus 로고    scopus 로고
    • Dynamic flexible constraint satisfaction
    • I. Miguel, and Q. Shen Dynamic flexible constraint satisfaction Applied Intelligence 13 3 2000 231 245
    • (2000) Applied Intelligence , vol.13 , Issue.3 , pp. 231-245
    • Miguel, I.1    Shen, Q.2
  • 26
    • 0034970955 scopus 로고    scopus 로고
    • Solution techniques for constraint satisfaction problems: Foundations
    • I. Miguel, and Q. Shen Solution techniques for constraint satisfaction problems: foundations Artificial Intelligence Review 15 4 2001 243 267
    • (2001) Artificial Intelligence Review , vol.15 , Issue.4 , pp. 243-267
    • Miguel, I.1    Shen, Q.2
  • 27
    • 0042129931 scopus 로고    scopus 로고
    • Fuzzy rrDFCSP and planning
    • I. Miguel, and Q. Shen Fuzzy rrDFCSP and planning Artificial Intelligence 148 1-2 2003 11 52
    • (2003) Artificial Intelligence , vol.148 , Issue.12 , pp. 11-52
    • Miguel, I.1    Shen, Q.2
  • 29
    • 0003858954 scopus 로고    scopus 로고
    • Department of Computer and Information Science, Trondheim, Norway, Norwegian University of Science and Technology
    • A. Ohrn, Discernibility and Rough Sets in Medicine: Tools and Applications, Department of Computer and Information Science, Trondheim, Norway, Norwegian University of Science and Technology, 239, 1999.
    • (1999) Discernibility and Rough Sets in Medicine: Tools and Applications , vol.239
    • Ohrn, A.1
  • 30
    • 84873284210 scopus 로고    scopus 로고
    • Unsupervised fuzzy-rough set-based dimensionality reduction
    • N. Mac Parthaláin, and R. Jensen Unsupervised fuzzy-rough set-based dimensionality reduction Information Sciences 229 2013 106 121
    • (2013) Information Sciences , vol.229 , pp. 106-121
    • Mac Parthaláin, N.1    Jensen, R.2
  • 32
    • 33749668975 scopus 로고    scopus 로고
    • Rough sets and Boolean reasoning
    • Z. Pawlak, and A. Skowron Rough sets and Boolean reasoning Information Sciences 177 1 2007 41 73
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 41-73
    • Pawlak, Z.1    Skowron, A.2
  • 34
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y. Qian, J. Liang, W. Pedrycz, and C. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artificial Intelligence 174 2010 597 618
    • (2010) Artificial Intelligence , vol.174 , pp. 597-618
    • Qian, Y.1    Liang, J.2    Pedrycz, W.3    Dang, C.4
  • 35
    • 0036498107 scopus 로고    scopus 로고
    • A comparative study of fuzzy rough sets
    • A.M. Radzikowska, and E.E. Kerre A comparative study of fuzzy rough sets Fuzzy Sets and Systems 126 2 2002 137 155
    • (2002) Fuzzy Sets and Systems , vol.126 , Issue.2 , pp. 137-155
    • Radzikowska, A.M.1    Kerre, E.E.2
  • 36
    • 0002395767 scopus 로고
    • The discernibility matrices and functions in information systems
    • R. Slowinski, Kluwer Academic Publishers Dordrecht
    • A. Skowron, and C. Rauszer The discernibility matrices and functions in information systems R. Slowinski, Intelligent Decision Support 1992 Kluwer Academic Publishers Dordrecht 331 362
    • (1992) Intelligent Decision Support , pp. 331-362
    • Skowron, A.1    Rauszer, C.2
  • 38
    • 85132290785 scopus 로고    scopus 로고
    • A mathematical foundation for improved reduct generation in information systems
    • J.A. Starzyk, D.E. Nelson, and K. Sturtz A mathematical foundation for improved reduct generation in information systems Knowledge and Information Systems 2 2 2000 131 146
    • (2000) Knowledge and Information Systems , vol.2 , Issue.2 , pp. 131-146
    • Starzyk, J.A.1    Nelson, D.E.2    Sturtz, K.3
  • 40
    • 27744505065 scopus 로고    scopus 로고
    • Computationally efficient sup-t transitive closure for sparse fuzzy binary relations
    • M. Wallace, Y. Avrithis, and S. Kollias Computationally efficient sup-t transitive closure for sparse fuzzy binary relations Fuzzy Sets and Systems 157 3 2006 341 372
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.3 , pp. 341-372
    • Wallace, M.1    Avrithis, Y.2    Kollias, S.3
  • 41
    • 0035505464 scopus 로고    scopus 로고
    • Reduction algorithms based on discernibility matrix: The ordered attributes method
    • J. Wang, and J. Wang Reduction algorithms based on discernibility matrix: the ordered attributes method Journal of Computer Science and Technology 16 2001 489 504
    • (2001) Journal of Computer Science and Technology , vol.16 , pp. 489-504
    • Wang, J.1    Wang, J.2
  • 42
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen Feature selection based on rough sets and particle swarm optimization Pattern Recognition Letters 28 4 2007 459 471
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 45
    • 38649088943 scopus 로고    scopus 로고
    • A novel condensing tree structure for rough set feature selection
    • M. Yang, and P. Yang A novel condensing tree structure for rough set feature selection Neurocomputing 71 4-6 2008 1092 1100
    • (2008) Neurocomputing , vol.71 , Issue.46 , pp. 1092-1100
    • Yang, M.1    Yang, P.2
  • 46
    • 58249098798 scopus 로고    scopus 로고
    • Discernibility matrix simplification for constructing attribute reducts
    • Y. Yao, and Y. Zhao Discernibility matrix simplification for constructing attribute reducts Information Sciences 179 7 2009 867 882
    • (2009) Information Sciences , vol.179 , Issue.7 , pp. 867-882
    • Yao, Y.1    Zhao, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.