메뉴 건너뛰기




Volumn 13, Issue 1, 2014, Pages

Exploiting Issatchenkia orientalis SD108 for succinic acid production

Author keywords

Acid tolerance; Issatchenkia orientalis; Metabolic engineering; Succinic acid

Indexed keywords

CARBOXYLIC ACID; CITRIC ACID; SUCCINIC ACID; URACIL;

EID: 84906823543     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-014-0121-4     Document Type: Review
Times cited : (86)

References (44)
  • 1
    • 26944484678 scopus 로고    scopus 로고
    • Top Value Added Chemicals from Biomass
    • Results of Screening for Potential Candidates from Sugars and Synthesis Gas. In 2004
    • Werpy T, Petersen G: Top Value Added Chemicals from Biomass, vol. I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. In 2004 []., http://www1.eere.energy.gov/bioenergy/pdfs/35523.pdf
    • , vol.1
    • Werpy, T.1    Petersen, G.2
  • 2
    • 33747280991 scopus 로고    scopus 로고
    • Production of succinic acid by bacterial fermentation
    • Song H, Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 2006, 39:352-361. 10.1016/j.enzmictec.2005.11.043.
    • (2006) Enzyme Microb Technol , vol.39 , pp. 352-361
    • Song, H.1    Lee, S.Y.2
  • 4
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 Gene, encoding a transcriptional activator
    • Tanaka K, Ishii Y, Ogawa J, Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 Gene, encoding a transcriptional activator. Appl Environ Microbiol 2012, 78:8161-8163. 10.1128/AEM.02356-12.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 5
    • 70350521215 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges
    • Abbott DA, Zelle RM, Pronk JT, Van Maris AJ. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 2009, 9:1123-1136. 10.1111/j.1567-1364.2009.00537.x.
    • (2009) FEMS Yeast Res , vol.9 , pp. 1123-1136
    • Abbott, D.A.1    Zelle, R.M.2    Pronk, J.T.3    Van Maris, A.J.4
  • 6
    • 77955554360 scopus 로고    scopus 로고
    • Isolation and identification of a novel yeast fermenting ethanol under acidic conditions
    • Hisamatsu M, Furubayashi T, Karita S, Mishima T, Isono N. Isolation and identification of a novel yeast fermenting ethanol under acidic conditions. J Appl Glycosci 2006, 53:111-113. 10.5458/jag.53.111.
    • (2006) J Appl Glycosci , vol.53 , pp. 111-113
    • Hisamatsu, M.1    Furubayashi, T.2    Karita, S.3    Mishima, T.4    Isono, N.5
  • 7
    • 77955551410 scopus 로고    scopus 로고
    • Study on ethanol fermentation using D-glucose rich fractions obtained from lignocelluloses by a two-step extraction with sulfuric acid and Issatchenkia orientalis MF 121
    • Thalagala TATP, Kodama S, Mishima T, Isono N, Furujyo A, Kawasaki Y, Hisamatsu M. Study on ethanol fermentation using D-glucose rich fractions obtained from lignocelluloses by a two-step extraction with sulfuric acid and Issatchenkia orientalis MF 121. J Appl Glycosci 2009, 56:7-11. 10.5458/jag.56.7.
    • (2009) J Appl Glycosci , vol.56 , pp. 7-11
    • Thalagala, T.A.T.P.1    Kodama, S.2    Mishima, T.3    Isono, N.4    Furujyo, A.5    Kawasaki, Y.6    Hisamatsu, M.7
  • 9
    • 47249095445 scopus 로고    scopus 로고
    • Progress in bioethanol processing
    • Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energy Combust Sci 2008, 34:551-573. 10.1016/j.pecs.2007.11.001.
    • (2008) Prog Energy Combust Sci , vol.34 , pp. 551-573
    • Balat, M.1    Balat, H.2    Oz, C.3
  • 10
    • 77955658467 scopus 로고    scopus 로고
    • A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products
    • Fitzpatrick M, Champagne P, Cunningham MF, Whitney RA. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 2010, 101:8915-8922. 10.1016/j.biortech.2010.06.125.
    • (2010) Bioresour Technol , vol.101 , pp. 8915-8922
    • Fitzpatrick, M.1    Champagne, P.2    Cunningham, M.F.3    Whitney, R.A.4
  • 11
    • 42149108423 scopus 로고    scopus 로고
    • Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives
    • Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 2008, 35:377-391. 10.1007/s10295-008-0327-8.
    • (2008) J Ind Microbiol Biotechnol , vol.35 , pp. 377-391
    • Kumar, R.1    Singh, S.2    Singh, O.V.3
  • 16
    • 0037477462 scopus 로고    scopus 로고
    • Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes
    • Gibson N, Mcalister-Henn L. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. J Biol Chem 2003, 278:25628-25636. 10.1074/jbc.M213231200.
    • (2003) J Biol Chem , vol.278 , pp. 25628-25636
    • Gibson, N.1    Mcalister-Henn, L.2
  • 17
    • 17044399754 scopus 로고    scopus 로고
    • Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit
    • Radonjic M, Andrau JC, Lijnzaad P, Kemmeren P, Kockelkorn TT, Van Leenen D, Van Berkum NL, Holstege FC. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol Cell 2005, 18:171-183. 10.1016/j.molcel.2005.03.010.
    • (2005) Mol Cell , vol.18 , pp. 171-183
    • Radonjic, M.1    Andrau, J.C.2    Lijnzaad, P.3    Kemmeren, P.4    Kockelkorn, T.T.5    Van Leenen, D.6    Van Berkum, N.L.7    Holstege, F.C.8
  • 18
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 2012, 40:e142. 10.1093/nar/gks549.
    • (2012) Nucleic Acids Res , vol.40 , pp. e142
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 19
    • 34250687522 scopus 로고    scopus 로고
    • Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis
    • Kosa P, Gavenclakova B, Nosek J. Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis. Gene 2007, 396:338-345. 10.1016/j.gene.2007.04.008.
    • (2007) Gene , vol.396 , pp. 338-345
    • Kosa, P.1    Gavenclakova, B.2    Nosek, J.3
  • 20
    • 33751279921 scopus 로고    scopus 로고
    • Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures
    • Geertman JMA, Van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res 2006, 6:1193-1203. 10.1111/j.1567-1364.2006.00124.x.
    • (2006) FEMS Yeast Res , vol.6 , pp. 1193-1203
    • Geertman, J.M.A.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 21
    • 80051469649 scopus 로고    scopus 로고
    • Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production
    • Thakker C, Zhu J, San KY, Bennett G. Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production. J Biotechnol 2011, 155:236-243. 10.1016/j.jbiotec.2011.05.001.
    • (2011) J Biotechnol , vol.155 , pp. 236-243
    • Thakker, C.1    Zhu, J.2    San, K.Y.3    Bennett, G.4
  • 22
    • 84867170059 scopus 로고    scopus 로고
    • Genome sequence of Pichia kudriavzevii M12, a potential producer of bioethanol and phytase
    • Chan GF, Gan HM, Ling HL, Rashid NA. Genome sequence of Pichia kudriavzevii M12, a potential producer of bioethanol and phytase. Eukaryot Cell 2012, 11:1300-1301. 10.1128/EC.00229-12.
    • (2012) Eukaryot Cell , vol.11 , pp. 1300-1301
    • Chan, G.F.1    Gan, H.M.2    Ling, H.L.3    Rashid, N.A.4
  • 23
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
    • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 2003, 69:4144-4150. 10.1128/AEM.69.7.4144-4150.2003.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 25
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces-cerevisiae
    • Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces-cerevisiae. Appl Microbiol Biotechnol 1993, 38:776-783. 10.1007/BF00167144.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 26
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74:25-33. 10.1016/S0960-8524(99)00161-3.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hagerdal, B.2
  • 27
    • 78049290979 scopus 로고    scopus 로고
    • Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses
    • King T, Lucchini S, Hinton JC, Gobius K. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 2010, 76:6514-6528. 10.1128/AEM.02392-09.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 6514-6528
    • King, T.1    Lucchini, S.2    Hinton, J.C.3    Gobius, K.4
  • 28
    • 84864546787 scopus 로고    scopus 로고
    • Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics
    • Guerreiro JF, Mira NP, Sa-Correia I. Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics. Proteomics 2012, 12:2303-2318. 10.1002/pmic.201100457.
    • (2012) Proteomics , vol.12 , pp. 2303-2318
    • Guerreiro, J.F.1    Mira, N.P.2    Sa-Correia, I.3
  • 29
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata M, Masaki K, Fujii T, Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 2006, 6:924-936. 10.1111/j.1567-1364.2006.00089.x.
    • (2006) FEMS Yeast Res , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 30
    • 1842453025 scopus 로고    scopus 로고
    • Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress
    • Lawrence CL, Botting CH, Antrobus R, Coote PJ. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 2004, 24:3307-3323. 10.1128/MCB.24.8.3307-3323.2004.
    • (2004) Mol Cell Biol , vol.24 , pp. 3307-3323
    • Lawrence, C.L.1    Botting, C.H.2    Antrobus, R.3    Coote, P.J.4
  • 31
    • 50649120655 scopus 로고    scopus 로고
    • Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast
    • Martinez-Munoz GA, Kane P. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 2008, 283:20309-20319. 10.1074/jbc.M710470200.
    • (2008) J Biol Chem , vol.283 , pp. 20309-20319
    • Martinez-Munoz, G.A.1    Kane, P.2
  • 32
    • 26944440137 scopus 로고    scopus 로고
    • Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications
    • Warnecke T, Gill RT. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 2005, 4:25. 10.1186/1475-2859-4-25.
    • (2005) Microb Cell Fact , vol.4 , pp. 25
    • Warnecke, T.1    Gill, R.T.2
  • 33
    • 84881512097 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase
    • Balzer GJ, Thakker C, Bennett GN, San KY. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Eng 2013, 20:1-8. 10.1016/j.ymben.2013.07.005.
    • (2013) Metab Eng , vol.20 , pp. 1-8
    • Balzer, G.J.1    Thakker, C.2    Bennett, G.N.3    San, K.Y.4
  • 34
    • 84861139695 scopus 로고    scopus 로고
    • Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate
    • Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 2012, 78:3325-3337. 10.1128/AEM.07790-11.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 3325-3337
    • Litsanov, B.1    Brocker, M.2    Bott, M.3
  • 40
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995, 11:355-360. 10.1002/yea.320110408.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 41
    • 0023684064 scopus 로고
    • A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions
    • Higuchi R, Krummel B, Saiki RK. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 1988, 16:7351-7367. 10.1093/nar/16.15.7351.
    • (1988) Nucleic Acids Res , vol.16 , pp. 7351-7367
    • Higuchi, R.1    Krummel, B.2    Saiki, R.K.3
  • 42
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 2009, 37:e16. 10.1093/nar/gkn991.
    • (2009) Nucleic Acids Res , vol.37 , pp. e16
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 43
    • 84876355027 scopus 로고    scopus 로고
    • Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae
    • Liang J, Ning JC, Zhao H. Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae. Nucleic Acids Res 2013, 41:e54. 10.1093/nar/gks1293.
    • (2013) Nucleic Acids Res , vol.41 , pp. e54
    • Liang, J.1    Ning, J.C.2    Zhao, H.3
  • 44
    • 70549086797 scopus 로고    scopus 로고
    • Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae
    • Teste MA, Duquenne M, Francois JM, Parrou JL. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 2009, 10:99. 10.1186/1471-2199-10-99.
    • (2009) BMC Mol Biol , vol.10 , pp. 99
    • Teste, M.A.1    Duquenne, M.2    Francois, J.M.3    Parrou, J.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.