메뉴 건너뛰기




Volumn , Issue , 2003, Pages 1-411

Bayesian field theory

(1)  Lemm, Jörg C a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84906591582     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Book
Times cited : (32)

References (541)
  • 2
    • 0001011612 scopus 로고
    • Learning from hints in neural networks
    • Y. Abu Mostafa. Learning from hints in neural networks. Journal of Complexity, 6:192-198, 1990.
    • (1990) Journal of Complexity , vol.6 , pp. 192-198
    • Mostafa, Y.A.1
  • 3
    • 0000918302 scopus 로고
    • Hints and the VC dimension
    • Y. Abu Mostafa. Hints and the VC dimension. Neural Computation, 5:278-288, 1993.
    • (1993) Neural Computation , vol.5 , pp. 278-288
    • Mostafa, Y.A.1
  • 4
    • 0002161562 scopus 로고
    • A method for learning from hints
    • In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, pages, Morgan Kaufmann, San Mateo, CA
    • Y. Abu Mostafa. A method for learning from hints. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 73-80. Morgan Kaufmann, San Mateo, CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 73-80
    • Mostafa, Y.A.1
  • 6
    • 0000430886 scopus 로고    scopus 로고
    • Field theoretical analysis of on-line learning of probability distributions
    • arXiv:condmat/9911474
    • T. Aida. Field theoretical analysis of on-line learning of probability distributions. Phys. Rev. Lett, 83:3554-3557, 1999. arXiv:condmat/9911474.
    • (1999) Phys. Rev. Lett , vol.83 , pp. 3554-3557
    • Aida, T.1
  • 7
    • 0031547721 scopus 로고    scopus 로고
    • Newtonian iterative scheme with simultaneous iterations of inverse derivative
    • R. G. Airapetyan and I. V. Puzynin. Newtonian iterative scheme with simultaneous iterations of inverse derivative. Comp. Phys. Comm., 102:97-108, 1997.
    • (1997) Comp. Phys. Comm , vol.102 , pp. 97-108
    • Airapetyan, R.G.1    Puzynin, I.V.2
  • 8
    • 51849177370 scopus 로고
    • Likelihood and the bayes procedure
    • In J. M. Bernanda, M. H. De Groot, D. V. Lindley, and A. F. M. Smith, editors, Valencia University Press, Valencia
    • H. Akaike. Likelihood and the Bayes procedure. In J. M. Bernanda, M. H. De Groot, D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics, pages 143-166. Valencia University Press, Valencia, 1980.
    • (1980) Bayesian Statistics , pp. 143-166
    • Akaike, H.1
  • 12
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method of prediction
    • D. M. Allen. The relationship between variable selection and data augmentation and a method of prediction. Technometrics, 16:125, 1974.
    • (1974) Technometrics , vol.16 , pp. 125
    • Allen, D.M.1
  • 14
    • 0029587111 scopus 로고
    • Information geometry of the EM and em algorithms for neural networks
    • S.I. Amari. Information geometry of the EM and em algorithms for neural networks. Neural Networks, 8(9):1379-1408, 1995.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1379-1408
    • Amari, S.I.1
  • 15
    • 0040713277 scopus 로고
    • Differential geometry in statistical inference
    • Institute of Mathematical Statistics, Hayward, CA
    • S.I. Amari, O. E. Barndorff Nielsen, R. E. Kass, S. L. Lauritzen, and C. R. Rao, editors. Differential Geometry in Statistical Inference, volume 10 of Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Hayward, CA, 1987.
    • (1987) Lecture Notes Monograph Series , vol.10
    • Amari, S.I.1    Nielsen, O.E.B.2    Kass, R.E.3    Lauritzen, S.L.4    Rao, C.R.5
  • 16
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA
    • S.I. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 757-763. MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 757-763
    • Amari, S.I.1    Cichocki, A.2    Yang, H.H.3
  • 19
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686:337-404, 1950.
    • (1950) Trans. Amer. Math. Soc , vol.686 , pp. 337-404
    • Aronszajn, N.1
  • 20
    • 0012064515 scopus 로고    scopus 로고
    • Foundations and interpretations of quantum mechanics
    • Singapore
    • G. Auletta. Foundations and Interpretations of Quantum Mechanics. World Scientific, Singapore, 2000.
    • (2000) World Scientific
    • Auletta, G.1
  • 21
    • 0001886960 scopus 로고    scopus 로고
    • Practical maximum pseudolikelihood for spatial point patterns
    • August, To appear in Australian and New Zealand Journal of Statistics as a discussion paper
    • A. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial point patterns. Research report 98-16, Department of Mathematics, University of Western Australia, August 1998. To appear in Australian and New Zealand Journal of Statistics as a discussion paper.
    • (1998) Research Report 98-16, Department of Mathematics, University of Western Australia
    • Baddeley, A.1    Turner, R.2
  • 22
    • 0000810448 scopus 로고    scopus 로고
    • Statistical inference, Occam's razor, and statistical mechanics on the space of probability distributions
    • V. Balasubramanian. Statistical inference, Occam's razor, and statistical mechanics on the space of probability distributions. Neural Computation, 9(2):349-368, 1997.
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 349-368
    • Balasubramanian, V.1
  • 27
    • 0001185873 scopus 로고
    • An essay towards solving a problem in the doctrine of chances
    • Reprinted in Biometrika 45:293, 1958
    • T. R. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society London, 53:370, 1763. Reprinted in Biometrika 45:293, 1958.
    • (1763) Philosophical Transactions of the Royal Society London , vol.53 , pp. 370
    • Bayes, T.R.1
  • 30
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6):1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 34
    • 0000540568 scopus 로고
    • Robust Bayes and empirical Bayes analysis with e-contaminated priors
    • J. O. Berger and L. M. Berliner. Robust Bayes and empirical Bayes analysis with e-contaminated priors. Ann. Statist., 14:461-486, 1986.
    • (1986) Ann. Statist , vol.14 , pp. 461-486
    • Berger, J.O.1    Berliner, L.M.2
  • 35
    • 0003774896 scopus 로고
    • The likelihood principle
    • of, IMS Lecture Notes, Hayward, CA, 2nd edition
    • J. O. Berger and R. Wolpert. The Likelihood Principle, volume 9 of Monograph Series. IMS Lecture Notes, Hayward, CA, 2nd edition, 1988.
    • (1988) Monograph Series , vol.9
    • Berger, J.O.1    Wolpert, R.2
  • 37
    • 0002183088 scopus 로고
    • Reference posterior distributions for Bayesian inference (with discussion)
    • J. M. Bernado. Reference posterior distributions for Bayesian inference (with discussion). Journal of the Royal Statistical Society A, 41:113-147, 1979.
    • (1979) Journal of the Royal Statistical Society a , vol.41 , pp. 113-147
    • Bernado, J.M.1
  • 41
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society B, 36:192-236, 1974.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 192-236
    • Besag, J.1
  • 42
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179-195, 1975.
    • (1975) The Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 44
    • 0003826771 scopus 로고
    • Example based image analysis and synthesis
    • Massachusetts Institute of Technology, Cambridge, MA
    • D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and synthesis. Artificial Intelligence Laboratory Memo 1431, Massachusetts Institute of Technology, Cambridge, MA, 1993.
    • (1993) Artificial Intelligence Laboratory Memo 1431
    • Beymer, D.1    Shashua, A.2    Poggio, T.3
  • 45
    • 0000395622 scopus 로고    scopus 로고
    • Field theories for learning probability distributions
    • arXiv:cond-mat/9607180
    • W. Bialek, C. G. Callan, and S. P. Strong. Field theories for learning probability distributions. Phys. Rev. Lett., 77:4693-4697, 1996. arXiv:cond-mat/9607180.
    • (1996) Phys. Rev. Lett , vol.77 , pp. 4693-4697
    • Bialek, W.1    Callan, C.G.2    Strong, S.P.3
  • 46
    • 84972534141 scopus 로고
    • Martingale estimation functions for discretely observed diffusion processes
    • B. M. Bibby and M. Srensen. Martingale estimation functions for discretely observed diffusion processes. Bernoulli, 1:17-39, 1995.
    • (1995) Bernoulli , vol.1 , pp. 17-39
    • Bibby, B.M.1    Srensen, M.2
  • 51
    • 0027659357 scopus 로고
    • Curvature-driven smoothing: A learning algorithm for feedforward networks
    • C. M. Bishop. Curvature-driven smoothing: A learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 4(5):882-884, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.5 , pp. 882-884
    • Bishop, C.M.1
  • 53
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7(1):108-116, 1995.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 55
    • 0030194054 scopus 로고    scopus 로고
    • On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
    • M. J. Black and A. Rangarajan. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Intjl J. Computer Vision, 19(1), 1996.
    • (1996) Intjl J. Computer Vision , vol.19 , Issue.1
    • Black, M.J.1    Rangarajan, A.2
  • 59
    • 0004276231 scopus 로고
    • Dover, New York, Originally published in 1975 by Holt, Rinehart, and Winston, New York
    • N. Bleistein and N. Handelsman. Asymptotic Expansions of Integrals. Dover, New York, 1986. Originally published in 1975 by Holt, Rinehart, and Winston, New York.
    • (1986) Asymptotic Expansions of Integrals
    • Bleistein, N.1    Handelsman, N.2
  • 62
    • 0004256573 scopus 로고
    • Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 1992. Originally published by Addison-Wesley, Reading, MA
    • L. Breiman. Probability. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 1992. Originally published by Addison-Wesley, Reading, MA, 1968.
    • (1968) Probability
    • Breiman, L.1
  • 63
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman. Hinging hyperplanes for regression, classification, and function approximation. IEEE Trans. Inform. Theory, 39(3):999-1013, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 999-1013
    • Breiman, L.1
  • 65
    • 0004004005 scopus 로고
    • of Lecture Notes in Statistics. Springer-Verlag, Berlin, Available at
    • G. L. Bretthorst. Bayesian Spectrum Analysis and Parameter Estimation, volume 48 of Lecture Notes in Statistics. Springer-Verlag, Berlin, 1988. Available at http://bayes.wustl.edu/glb/book.pdf.
    • (1988) Bayesian Spectrum Analysis and Parameter Estimation , vol.48
    • Bretthorst, G.L.1
  • 69
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2): 121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 70
    • 0542448657 scopus 로고
    • Implementation of a generalized cross validation algorithm using deflation techniques for systems of linear equations
    • K. Burrage, A. Willimas, J. Erhel, and B. Pohl. Implementation of a generalized cross validation algorithm using deflation techniques for systems of linear equations. Appl. Num. Math., 19:17-31, 1995.
    • (1995) Appl. Num. Math , vol.19 , pp. 17-31
    • Burrage, K.1    Willimas, A.2    Erhel, J.3    Pohl, B.4
  • 71
  • 73
    • 0003231156 scopus 로고    scopus 로고
    • Bayes and empirical bayes methods for data analysis
    • Chapman & Hall/CRC, Boca Raton, FL, 1996
    • B. P. Carlin and T. A. Louis. Bayes and Empirical Bayes Methods for Data Analysis, volume 69 of Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, FL, 1996.
    • Monographs on Statistics and Applied Probability , vol.69
    • Carlin, B.P.1    Louis, T.A.2
  • 78
    • 0001620014 scopus 로고
    • Asymptotic efficiency in estimation with conditional moment restrictions
    • G. Chamberlain. Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics, 34:305-334, 1987.
    • (1987) Journal of Econometrics , vol.34 , pp. 305-334
    • Chamberlain, G.1
  • 79
    • 0000428387 scopus 로고
    • Time evolution of unstable quantum states and a resolution of Zeno's paradox
    • C. B. Chiu, E. C. G. Sudarshan, and B. Misra. Time evolution of unstable quantum states and a resolution of Zeno's paradox. Phys. Rev. D, 16(2):520-529, 1976.
    • (1976) Phys.Rev.D , vol.16 , Issue.2 , pp. 520-529
    • Chiu, C.B.1    Sudarshan, E.C.G.2    Misra, B.3
  • 83
    • 0039650029 scopus 로고
    • Markov random fields in statistics
    • In G. R. Grimmet and D. J. A. Welsh, editors, Clarendon Press, Oxford
    • P. Clifford. Markov random fields in statistics. In G. R. Grimmet and D. J. A. Welsh, editors, Disorder in Physical Systems. A Volume in Honour of John M. Hammersley, pages 19-32. Clarendon Press, Oxford, 1990.
    • (1990) Disorder in Physical Systems. A Volume in Honour of John M. Hammersley , pp. 19-32
    • Clifford, P.1
  • 84
    • 0003787842 scopus 로고
    • Cambridge University Press, Cambridge
    • J. Collins. Renormalization. Cambridge University Press, Cambridge, 1984.
    • (1984) Renormalization
    • Collins, J.1
  • 85
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:1-25, 1995.
    • (1995) Achine Learning , vol.20 , pp. 1-25
    • Cortes, C.1    Vapnik, V.2
  • 87
    • 0002282678 scopus 로고
    • Probability, frequency, and reasonable expectation
    • R. T. Cox. Probability, frequency, and reasonable expectation. Am. J. Phys., 14:1, 1946.
    • (1946) Am.J.Phys , vol.14 , Issue.1
    • Cox, R.T.1
  • 89
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • P. Craven and G. Wahba. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31:377-403, 1979.
    • (1979) Numer. Math , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 92
    • 84898998301 scopus 로고    scopus 로고
    • Dynamically adapting kernels in support vector machines
    • In M. S. Kearns, S. S. Solla, and D. A. Cohn, editors, MIT Press, Cambridge, MA
    • N. Cristianini, C. Campbell, and J. Shawe Taylor. Dynamically adapting kernels in support vector machines. In M. S. Kearns, S. S. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 204-210. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 204-210
    • Cristianini, N.1    Campbell, C.2    Taylor, J.S.3
  • 95
    • 0004269216 scopus 로고    scopus 로고
    • Bayesian reasoning in high energy physics: Principles and applications
    • Available at
    • G. D'Agostini. Bayesian reasoning in high energy physics: Principles and applications. Yellow Report 99-03, CERN, 1999. Available at http://www-zeus. romal.infn.it/~agostini/prob+stat.html.
    • (1999) Yellow Report 99-03, CERN
    • D'agostini, G.1
  • 96
    • 0003064380 scopus 로고
    • Applications of a general propagation algorithm for probabilistic expert systems
    • A. P. David. Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2:25-36, 1992.
    • (1992) Statistics and Computing , vol.2 , pp. 25-36
    • David, A.P.1
  • 101
    • 0003930163 scopus 로고
    • Dover, New York, Originally published by North-Holland Publishing Co. Amsterdam, 1958
    • N. G. de Bruijn. Asymptotic Methods in Analysis. Dover, New York, 1981. Originally published by North-Holland Publishing Co., Amsterdam, 1958.
    • (1981) Asymptotic Methods in Analysis
    • Bruijn, N.G.D.1
  • 107
    • 0040663467 scopus 로고
    • The renormalization group approach to critical phenomena
    • In C. Domb and M. S. Green, editors, Academic Press, London
    • C. Di Castro and G. Jona Lasinio. The renormalization group approach to critical phenomena. In C. Domb and M. S. Green, editors, Phase Transitions and Critical Phenomena, volume 6. Academic Press, London, 1976.
    • (1976) Phase Transitions and Critical Phenomena , vol.6
    • Castro, C.D.1    Lasinio, G.J.2
  • 108
    • 0001493668 scopus 로고
    • Asymptotic of graphical projection pursuit
    • P. Diaconis and D. Preedman. Asymptotic of graphical projection pursuit. The Annals of Statistics, 12(3):793-815, 1984.
    • (1984) The Annals of Statistics , vol.12 , Issue.3 , pp. 793-815
    • Diaconis, P.1    Preedman, D.2
  • 109
    • 0000149970 scopus 로고    scopus 로고
    • Statistical mechanics of support vector networks
    • R. Dietrich, M. Opper, and H. Sompolinsky. Statistical mechanics of support vector networks. Phys. Rev. Lett, 82(14):2975-2978, 1999.
    • (1999) Phys. Rev. Lett , vol.82 , Issue.14 , pp. 2975-2978
    • Dietrich, R.1    Opper, M.2    Sompolinsky, H.3
  • 110
    • 0002531537 scopus 로고
    • Projection-based approximation and a duality with kernel methods
    • D. L. Donoho and I. M. Johnstone. Projection-based approximation and a duality with kernel methods. Ann. Statist., 17(1):58-106, 1989.
    • (1989) Ann. Statist , vol.17 , Issue.1 , pp. 58-106
    • Donoho, D.L.1    Johnstone, I.M.2
  • 111
    • 0003954462 scopus 로고
    • Wiley, New York, New edition published 1990
    • J. L. Doob. Stochastic Processes. Wiley, New York, 1953. New edition published 1990.
    • (1953) Stochastic Processes
    • Doob, J.L.1
  • 112
    • 0002971429 scopus 로고    scopus 로고
    • Outlier tolerant parameter estimation
    • In W. von der Linden, V. Dose, R. Fischer, and R. Preuss, editors, Kluwer Academic Publishers, Dordrecht
    • V. Dose and W. von der Linden. Outlier tolerant parameter estimation. In W. von der Linden, V. Dose, R. Fischer, and R. Preuss, editors, Maximum Entropy and Bayesian Methods. Kluwer Academic Publishers, Dordrecht, 1999.
    • (1999) Maximum Entropy and Bayesian Methods
    • Dose, V.1    Linden, W.V.D.2
  • 113
    • 0006772472 scopus 로고
    • volume 1097 of Lecture Notes in Mathematics, pages, Springer Verlag, New York
    • R. M. Dudley. A Course on Empirical Processes, volume 1097 of Lecture Notes in Mathematics, pages 2-142. Springer-Verlag, New York, 1984.
    • (1984) A Course on Empirical Processes , pp. 2-142
    • Dudley, R.M.1
  • 114
    • 0000094018 scopus 로고    scopus 로고
    • Monte Carlo maximum likelihood estimation for non-Gaussian state space models
    • J. Durbin and S. J. Koopman. Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika, 84(3):669-684, 1997.
    • (1997) Biometrika , vol.84 , Issue.3 , pp. 669-684
    • Durbin, J.1    Koopman, S.J.2
  • 116
    • 0004152755 scopus 로고
    • Cambridge University Press, Cambridge
    • E. Eells. Probabilistic Causality. Cambridge University Press, Cambridge, 1991.
    • (1991) Probabilistic Causality
    • Eells, E.1
  • 117
    • 0020498290 scopus 로고
    • Supersymmetry and theory of disordered metals
    • K. B. Efetov. Supersymmetry and theory of disordered metals. Advances in Physics, 32:53-127, 1983.
    • (1983) Advances in Physics , vol.32 , pp. 53-127
    • Efetov, K.B.1
  • 118
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jacknife
    • B. Efron. Bootstrap methods: Another look at the jacknife. Ann. Statist., 7:1-26, 1979.
    • (1979) Ann. Statist , vol.7 , pp. 1-26
    • Efron, B.1
  • 119
    • 0001077032 scopus 로고
    • Nonparametric estimates of the standard error: The jackknife, the bootstrap, and other methods
    • B. Efron. Nonparametric estimates of the standard error: The jackknife, the bootstrap, and other methods. Biometrika, 68:589-599, 1981.
    • (1981) Biometrika , vol.68 , pp. 589-599
    • Efron, B.1
  • 128
  • 129
    • 0035939386 scopus 로고    scopus 로고
    • Observation of the quantum Zeno and Anti-Zeno effects in an unstable system
    • M. C. Fischer, B. Gutierrez Medina, and M. G. Raizen. Observation of the quantum Zeno and Anti-Zeno effects in an unstable system. Phys. Rev. Lett, 87(4):040402, 2001.
    • (2001) Phys. Rev. Lett , vol.87 , Issue.4 , pp. 040402
    • Fischer, M.C.1    Medina, B.G.2    Raizen, M.G.3
  • 135
    • 7644232309 scopus 로고
    • Decay theory of unstable quantum systems
    • L. Fonda, G. C. Ghirardi, and A. Rimini. Decay theory of unstable quantum systems. Rep. Prog. Phys., 41:587-631, 1978.
    • (1978) Rep.Prog.Phys , vol.41 , pp. 587-631
    • Fonda, L.1    Ghirardi, G.C.2    Rimini, A.3
  • 136
    • 0001170302 scopus 로고
    • Sur une classe d'equations fonctionelles
    • I. Fredholm. Sur une classe d'equations fonctionelles. Acta Math., 27:365-390, 1903.
    • (1903) Acta Math , vol.27 , pp. 365-390
    • Fredholm, I.1
  • 137
    • 0035846981 scopus 로고    scopus 로고
    • Categorical representation of visual stimuli in the primate prefrontal cortex
    • D. J. Freedman, M. Riesenhuber, T. Poggio, and E. K. Miller. Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291:312-316, 2001.
    • (2001) Science , vol.291 , pp. 312-316
    • Freedman, D.J.1    Riesenhuber, M.2    Poggio, T.3    Miller, E.K.4
  • 138
    • 84950941772 scopus 로고
    • Projection pursuit regression
    • J. H. Friedman and W. Stuetzle. Projection pursuit regression. J. Am. Statist. Assoc., 76(376):817-823, 1981.
    • (1981) J.Am.Statist. Assoc , vol.76 , Issue.376 , pp. 817-823
    • Friedman, J.H.1    Stuetzle, W.2
  • 139
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput., 24:1000-1006, 1974.
    • (1974) IEEE Trans. Comput. , vol.24 , pp. 1000-1006
    • Friedman, J.H.1    Tukey, J.W.2
  • 143
    • 84913828571 scopus 로고
    • Maximum storage capacity in neural networks
    • E. Gardner. Maximum storage capacity in neural networks. Europhysics Letters, 4:481-485, 1987.
    • (1987) Europhysics Letters , vol.4 , pp. 481-485
    • Gardner, E.1
  • 144
    • 36149029786 scopus 로고
    • The space of interactions in neural network models
    • E. Gardner. The space of interactions in neural network models. Journal of Physics A, 21:257-270, 1988.
    • (1988) Journal of Physics A , vol.21 , pp. 257-270
    • Gardner, E.1
  • 145
    • 0002631885 scopus 로고
    • Optimal storage properties of neural network models
    • E. Gardner and B. Derrida. Optimal storage properties of neural network models. Journal of Physics A, 21:271-284, 1988.
    • (1988) Journal of Physics A , vol.21 , pp. 271-284
    • Gardner, E.1    Derrida, B.2
  • 147
    • 0026201666 scopus 로고
    • A common framework for image segmentation
    • D. Geiger and A. L. Yuille. A common framework for image segmentation. Int'l J. Computer Vision, 6(3):227-243, 1991.
    • (1991) Int'l J. Computer Vision , vol.6 , Issue.3 , pp. 227-243
    • Geiger, D.1    Yuille, A.L.2
  • 148
    • 0001649889 scopus 로고
    • On the determination of a differential equation from its spectral function. Trans
    • I. M. GePfand and B. M. Levitan. On the determination of a differential equation from its spectral function. Trans. Amer. Soc., 1:253-302, 1951.
    • (1951) Amer. Soc , vol.1 , pp. 253-302
    • Gepfand, I.M.1    Levitan, B.M.2
  • 152
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Reprinted in Shafer & Pearl, editors, 1990. Readings in Uncertainty Reasoning. Morgan Kaufmann, San Mateo, CA, 1990
    • S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans, on Pattern Analysis and Machine Intelligence, 6:721-741, 1984. Reprinted in Shafer & Pearl, editors, 1990. Readings in Uncertainty Reasoning. Morgan Kaufmann, San Mateo, CA, 1990.
    • (1984) IEEE Trans, on Pattern Analysis and Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 153
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo (with discussion)
    • C. Geyer. Practical Markov chain Monte Carlo (with discussion). Statistical Science, 7:473-511, 1992.
    • (1992) Statistical Science , vol.7 , pp. 473-511
    • Geyer, C.1
  • 154
    • 0037567878 scopus 로고    scopus 로고
    • Cavendish Laboratory, Cambridge, Draft manuscript, available from
    • M. Gibbs and D. J. C. MacKay. Efficient implementation of Gaussian processes. Cavendish Laboratory, Cambridge, 1997. Draft manuscript, available from http://www.cs.toronto.edu/mackay/gpros.ps.gz.
    • (1997) Efficient Implementation of Gaussian Processes
    • Gibbs, M.1    Mackay, D.J.C.2
  • 155
    • 0034698297 scopus 로고    scopus 로고
    • Subatomic features on the silicon (Ill)-(7x7) surface observed by atomic force microscopy
    • F. J. Giessibl, S. Hembacher, H. Bielefeld, and J. Mannhart. Subatomic features on the silicon (Ill)-(7x7) surface observed by atomic force microscopy. Science, 289:422-425, 2000.
    • (2000) Science , vol.289 , pp. 422-425
    • Giessibl, F.J.1    Hembacher, S.2    Bielefeld, H.3    Mannhart, J.4
  • 158
    • 0345338764 scopus 로고
    • Models of noise and robust estimates
    • Massachusetts Institute of Technology, Cambridge, MA
    • F. Girosi. Models of noise and robust estimates. Artificial Intelligence Laboratory Memo 1287, Massachusetts Institute of Technology, Cambridge, MA, 1991.
    • (1991) Artificial Intelligence Laboratory Memo 1287
    • Girosi, F.1
  • 159
    • 0002370522 scopus 로고
    • Some extensions of radial basis functions and their applications in artificial intelligence
    • F. Girosi. Some extensions of radial basis functions and their applications in artificial intelligence. Computers Math. Applic., 24(12):61-80, 1992.
    • (1992) Computers Math. Applic , vol.24 , Issue.12 , pp. 61-80
    • Girosi, F.1
  • 160
    • 0003425666 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Massachusetts Institute of Technology, Cambridge, MA
    • F. Girosi. An equivalence between sparse approximation and support vector machines. Artificial Intelligence Laboratory Memo 1606, Massachusetts Institute of Technology, Cambridge, MA, 1997.
    • (1997) Artificial Intelligence Laboratory Memo 1606
    • Girosi, F.1
  • 162
    • 0001219859 scopus 로고
    • Regularization theory and neural network architectures
    • F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural network architectures. Neural Computation, 7(2):219-269, 1995.
    • (1995) Neural Computation , vol.7 , Issue.2 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 163
    • 0002438120 scopus 로고
    • Extensions of a theory of networks for approximations and learning: Outliers and negative examples
    • In R. Lippmann, J. Moody, and D. Touretzky, editors, Morgan Kaufmann, San Mateo, CA
    • F. Girosi, T. Poggio, and B. Caprile. Extensions of a theory of networks for approximations and learning: Outliers and negative examples. In R. Lippmann, J. Moody, and D. Touretzky, editors, Advances in Neural Information Processing Systems 3. Morgan Kaufmann, San Mateo, CA, 1991.
    • (1991) Advances in Neural Information Processing Systems 3
    • Girosi, F.1    Poggio, T.2    Caprile, B.3
  • 169
    • 32044449925 scopus 로고
    • Generalized cross validation as a method for choosing a good ridge parameter
    • G. H. Golub, M. Heath, and G. Wahba. Generalized cross validation as a method for choosing a good ridge parameter. Technometrics, 21:215- 224, 1979.
    • (1979) Technometrics , vol.21 , pp. 215-224
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 170
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore, 3rd edition
    • G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 3rd edition, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 174
    • 0003247384 scopus 로고
    • Some history of the hierachical Bayesian methodology. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, editors, North-Holland, Amsterdam
    • I. J. Good. Some history of the hierachical Bayesian methodology. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics II. North-Holland, Amsterdam, 1980.
    • (1980) Bayesian Statistics II
    • Good, I.J.1
  • 176
    • 0000451036 scopus 로고
    • Nonparametric roughness penalties for probability densities
    • I. J. Good and R. A. Gaskins. Nonparametric roughness penalties for probability densities. Biometrika, 58:255-277, 1971.
    • (1971) Biometrika , vol.58 , pp. 255-277
    • Good, I.J.1    Gaskins, R.A.2
  • 177
    • 0002240542 scopus 로고
    • M-estimators of location: An outline of the theory
    • In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Wiley, New York
    • C. Goodall. M-estimators of location: An outline of the theory. In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Understanding Robust and Exploratory Data Analysis, pages 339-403. Wiley, New York, 1983.
    • (1983) Understanding Robust and Exploratory Data Analysis , pp. 339-403
    • Goodall, C.1
  • 180
    • 0001300935 scopus 로고
    • Pseudo maximum likelihood methods: Theory
    • C. Gourieroux, A. Monfort, and A. Trognon. Pseudo maximum likelihood methods: Theory. Econometrica, 52:681-700, 1984.
    • (1984) Econometrica , vol.52 , pp. 681-700
    • Gourieroux, C.1    Monfort, A.2    Trognon, A.3
  • 181
    • 0000515915 scopus 로고    scopus 로고
    • Resolution of seismic waveform inversion: Bayes versus Occam
    • W. P. Gouveia and J. A. Scales. Resolution of seismic waveform inversion: Bayes versus Occam. Inverse Problems, 13:323-349, 1997.
    • (1997) Inverse Problems , vol.13 , pp. 323-349
    • Gouveia, W.P.1    Scales, J.A.2
  • 185
    • 0004798493 scopus 로고
    • Bayesian data analysis straight line fitting
    • In J. Skilling, editor, Kluwer Academic Publishers, Dordrecht
    • S. F. Gull. Bayesian data analysis straight line fitting. In J. Skilling, editor, Maximum Entropy and Bayesian Methods, pages 511-518. Kluwer Academic Publishers, Dordrecht, 1989.
    • (1989) Maximum Entropy and Bayesian Methods , pp. 511-518
    • Gull, S.F.1
  • 186
    • 0002600689 scopus 로고
    • Developments in maximum entropy data analysis
    • In J. Skilling, editor, Kluwer Academic Publishers, Dordrecht
    • S. F. Gull. Developments in maximum entropy data analysis. In J. Skilling, editor, Maximum Entropy and Bayesian Methods, pages 53- 71. Kluwer Academic Publishers, Dordrecht, 1989.
    • (1989) Maximum Entropy and Bayesian Methods , pp. 53-71
    • Gull, S.F.1
  • 197
    • 0000414660 scopus 로고
    • Large sample properties of generalized method of moments estimators
    • L. Hansen. Large sample properties of generalized method of moments estimators. Econometrica, 50:1029-1054, 1982.
    • (1982) Econometrica , vol.50 , pp. 1029-1054
    • Hansen, L.1
  • 199
    • 0009363965 scopus 로고    scopus 로고
    • Oldenbourg, Miinchen, 13th edition
    • J. Hartung. Statistik. Oldenbourg, Miinchen, 13th edition, 2002.
    • (2002) Statistik
    • Hartung, J.1
  • 201
  • 202
    • 84866389083 scopus 로고
    • Generalized additive models: Some applications
    • T. J. Hastie and R. J. Tibshirani. Generalized additive models: Some applications. J. Am. Statist. Assoc., 82:371-386, 1987.
    • (1987) J. Am. Statist. Assoc. , vol.82 , pp. 371-386
    • Hastie, T.J.1    Tibshirani, R.J.2
  • 204
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 205
    • 0021486446 scopus 로고
    • The knowledge based expert system: A tutorial
    • F. Hayes Roth. The knowledge based expert system: A tutorial. IEEE Computer, 17(9): 11-28, 1984.
    • (1984) IEEE Computer , vol.17 , Issue.9 , pp. 11-28
    • Roth, F.H.1
  • 206
    • 0004199141 scopus 로고
    • Addison-Wesley, Reading, MA
    • R. Hecht Nielsen. Neurocomputing. Addison-Wesley, Reading, MA, 1990.
    • (1990) Neurocomputing
    • Nielsen, R.H.1
  • 210
    • 84950242370 scopus 로고
    • Wiley, New York, First German editions published by Springer-Verlag, Berlin, 1924, 1937
    • D. Hilbert and R. Courant. Methods of Mathematical Physics, volumes 1 & 2. Wiley, New York, 1989. First German editions published by Springer-Verlag, Berlin, 1924, 1937.
    • (1989) Methods of Mathematical Physics , vol.1-2
    • Hilbert, D.1    Courant, R.2
  • 211
    • 0029652445 scopus 로고
    • The cwake-sleep' algorithm for unsupervised neural networks
    • G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The cwake-sleep' algorithm for unsupervised neural networks. Science, 268:1158-1161, 1995.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 212
    • 0000999440 scopus 로고
    • Learning and relearning in Boltzmann machines
    • In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors, MIT Press, Cambridge, MA
    • G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors, Parallel Distributed Processing, pages 282-317. MIT Press, Cambridge, MA, 1986.
    • (1986) Parallel Distributed Processing , pp. 282-317
    • Hinton, G.E.1    Sejnowski, T.J.2
  • 214
    • 0000079452 scopus 로고
    • An inverse Sturm-Liouville problem with mixed given data
    • H. Hochstadt and B. Lieberman. An inverse Sturm-Liouville problem with mixed given data. SIAM J. Appl. Math., 34:676-680, 1976.
    • (1976) SIAM J. Appl. Math , vol.34 , pp. 676-680
    • Hochstadt, H.1    Lieberman, B.2
  • 218
    • 0003463297 scopus 로고
    • University of Michigan Press, Ann Arbor, MC, 1975. MIT Press, Cambridge, MA, second edition
    • J. H. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MC, 1975. MIT Press, Cambridge, MA, second edition, 1992.
    • (1992) Adaption in Natural and Artificial Systems
    • Holland, J.H.1
  • 219
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6:65-70, 1979.
    • (1979) Scandinavian Journal of Statistics , vol.6 , pp. 65-70
    • Holm, S.1
  • 224
    • 0000375621 scopus 로고
    • Robust estimation of location parameter
    • P. J. Huber. Robust estimation of location parameter. Ann. Math. Stat., 35(1):1753-1758, 1964.
    • (1964) Ann. Math. Stat , vol.35 , Issue.1 , pp. 1753-1758
    • Huber, P.J.1
  • 225
    • 0002943590 scopus 로고
    • Robust smoothing
    • In E. Launer and G. Wilkinson, editors, Academic Press, New York
    • P. J. Huber. Robust smoothing. In E. Launer and G. Wilkinson, editors, Robustness in Statistics. Academic Press, New York, 1979.
    • (1979) Robustness in Statistics
    • Huber, P.J.1
  • 227
    • 0000263797 scopus 로고
    • Projection pursuit
    • P. J. Huber. Projection pursuit. Ann. Statist., 13(2):435-475, 1985.
    • (1985) Ann. Statist , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 229
    • 0002551521 scopus 로고
    • Robust scale estimators and confidence intervals for location
    • In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Wiley, New York
    • B. Iglewicz. Robust scale estimators and confidence intervals for location. In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Understanding Robust and Exploratory Data Analysis, pages 405-431. Wiley, New York, 1983.
    • (1983) Understanding Robust and Exploratory Data Analysis , pp. 405-431
    • Iglewicz, B.1
  • 238
    • 0003414592 scopus 로고
    • Oxford University Press, Oxford, 3rd edition, First edition published 1939
    • H. Jeffreys. Theory of Probability. Oxford University Press, Oxford, 3rd edition, 1961. First edition published 1939.
    • (1961) Theory of Probability
    • Jeffreys, H.1
  • 239
    • 0002541945 scopus 로고
    • Ockham's razor and Bayesian analysis
    • H. Jeffreys and J. O. Berger. Ockham's razor and Bayesian analysis. American Scientist, 80:468-477, 1992.
    • (1992) American Scientist , vol.80 , pp. 468-477
    • Jeffreys, H.1    Berger, J.O.2
  • 244
    • 0029215135 scopus 로고
    • Model-based matching of line drawings by linear combinations of prototypes
    • In,IEEE Computer Society Press, Cambridge, MA
    • M. J. Jones and T. Poggio. Model-based matching of line drawings by linear combinations of prototypes. In Proceedings of the IEEE 5th International Conference on Computer Vision, pages 531-536. IEEE Computer Society Press, Cambridge, MA, 1995.
    • (1995) Proceedings of the IEEE 5th International Conference on Computer Vision , pp. 531-536
    • Jones, M.J.1    Poggio, T.2
  • 246
    • 0000262562 scopus 로고
    • Hierachical mixtures of experts and the EM algorithm
    • M. I. Jordan and R. A. Jacobs. Hierachical mixtures of experts and the EM algorithm. Neural Computation, 6:181-214, 1994.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 247
    • 0002697827 scopus 로고
    • Can one hear the shape of a drum?
    • M. Kac. Can one hear the shape of a drum? Am. Math. Mon., 73:1-23, 1966.
    • (1966) Am. Math. Mon , vol.73 , pp. 1-23
    • Kac, M.1
  • 249
    • 0016264378 scopus 로고
    • Judgment under uncertainty: Heuristics and biases
    • L. Kahnemann and A. Tversky. Judgment under uncertainty: Heuristics and biases. Science, 182:1124-1131, 1974.
    • (1974) Science , vol.182 , pp. 1124-1131
    • Kahnemann, L.1    Tversky, A.2
  • 250
    • 0000125532 scopus 로고
    • Prospect theory: An analysis of decision under risk
    • L. Kahnemann and A. Tversky. Prospect theory: An analysis of decision under risk. Econometrica, 47(263):269-291, 1979.
    • (1979) Econometrica , vol.47 , Issue.263 , pp. 269-291
    • Kahnemann, L.1    Tversky, A.2
  • 251
    • 0003829798 scopus 로고
    • Oxford University Press, Oxford
    • M. Kaku. Quantum Field Theory. Oxford University Press, Oxford, 1993.
    • (1993) Quantum Field Theory
    • Kaku, M.1
  • 253
    • 0003851652 scopus 로고
    • volume 3 of Kants Werke. Koniglich PreuBische Akademie der Wissenschaften, Berlin, 2nd edition, 1787. Reprinted by Walter de Gruyter & Co, Berlin
    • I. Kant. Kritik der reinen Vernunft, volume 3 of Kants Werke. Koniglich PreuBische Akademie der Wissenschaften, Berlin, 2nd edition, 1787. Reprinted by Walter de Gruyter & Co, Berlin, 1968.
    • (1968) Kritik Der Reinen Vernunft
    • Kant, I.1
  • 255
    • 0002572909 scopus 로고
    • Inverse problems
    • J. B. Keller. Inverse problems. Ann. Math. Mon., 83:107-118, 1976.
    • (1976) Ann. Math. Mon , vol.83 , pp. 107-118
    • Keller, J.B.1
  • 258
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with arch models
    • S. Kim, N. Shephard, and S. Chib. Stochastic volatility: Likelihood inference and comparison with arch models. Review of Economic Studies, 65:361-393, 1998.
    • (1998) Review of Economic Studies , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 259
    • 0000406385 scopus 로고
    • A correspondence between bayesian estimation on stochastic processes and smoothing by splines
    • G. S. Kimmeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat., 41:495-502, 1970.
    • (1970) Ann. Math. Stat , vol.41 , pp. 495-502
    • Kimmeldorf, G.S.1    Wahba, G.2
  • 260
    • 0000014796 scopus 로고
    • Spline functions and stochastic processes
    • Part
    • G. S. Kimmeldorf and G. Wahba. Spline functions and stochastic processes. Sankhya Ser. A, 32(Part 2):173-180, 1970.
    • (1970) Sankhya Ser. A , vol.32 , Issue.2 , pp. 173-180
    • Kimmeldorf, G.S.1    Wahba, G.2
  • 264
    • 0004238261 scopus 로고
    • Wissenschaftsverlag, Mannheim
    • H. Kleinert. Pfadintegrale. Wissenschaftsverlag, Mannheim, 1993.
    • (1993) Pfadintegrale
    • Kleinert, H.1
  • 268
    • 0034212485 scopus 로고    scopus 로고
    • Acceleration of quantum decay processes by frequent observations
    • A. G. Kofrnan and G. Kurizki. Acceleration of quantum decay processes by frequent observations. Nature, 405:546-549, 2000.
    • (2000) Nature , vol.405 , pp. 546-549
    • Kofrnan, A.G.1    Kurizki, G.2
  • 279
    • 0002748218 scopus 로고
    • How neural nets work
    • In D. Z. Anderson, editor, American Institute of Physics, New York
    • A. Lapedes and R. Farber. How neural nets work. In D. Z. Anderson, editor, Neural Information Processing Systems, pages 442-456. American Institute of Physics, New York, 1988.
    • (1988) Neural Information Processing Systems , pp. 442-456
    • Lapedes, A.1    Farber, R.2
  • 286
    • 0008847393 scopus 로고
    • Prom data distributions to regularization in invariant learning
    • T. K. Leen. Prom data distributions to regularization in invariant learning. Neural Computation, 7(5):974-981, 1995.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 974-981
    • Leen, T.K.1
  • 287
    • 84906618049 scopus 로고    scopus 로고
    • Lecture notes
    • Available at
    • J. C. Lemm. Lecture notes 'Econophysics'. Available at http://pauli.uni-muenster.de/~lemm/econoWS99/econo.ps.gz.
    • Econophysics
    • Lemm, J.C.1
  • 288
    • 84906618050 scopus 로고
    • Entscheidungsstrategien und Informationskosten
    • Universitat Minister
    • J. C. Lemm. Entscheidungsstrategien und Informationskosten. Diplomarbeit, Fachbereich Psychologie, Universitat Minister, 1984.
    • (1984) Diplomarbeit, Fachbereich Psychologie
    • Lemm, J.C.1
  • 289
    • 58149324137 scopus 로고
    • Inhomogeneous random phase approximation: A solvable model
    • J. C. Lemm. Inhomogeneous random phase approximation: A solvable model. Annals of Physics, 244(1):201-238, 1995.
    • (1995) Annals of Physics , vol.244 , Issue.1 , pp. 201-238
    • Lemm, J.C.1
  • 290
    • 0039983618 scopus 로고
    • Inhomogeneous random phase approximation for nuclear and atomic reactions
    • J. C. Lemm. Inhomogeneous random phase approximation for nuclear and atomic reactions. Annals of Physics, 244(1): 136-200, 1995.
    • (1995) Annals of Physics , vol.244 , Issue.1 , pp. 136-200
    • Lemm, J.C.1
  • 291
    • 84906600046 scopus 로고    scopus 로고
    • Prior information and generalized questions
    • Massachusetts Institute of Technology, Cambridge, MA
    • J. C. Lemm. Prior information and generalized questions. Artificial Intelligence Laboratory Memo 1598, Massachusetts Institute of Technology, Cambridge, MA, 1996.
    • (1996) Artificial Intelligence Laboratory Memo 1598
    • Lemm, J.C.1
  • 292
    • 84906618046 scopus 로고    scopus 로고
    • Fuzzy interface with prior concepts and non-convex regularization. In Wilfried Brauer, editor, Fazzy-Neuro Systems '98- Computational Intelligence
    • Munich, Germany, Proceedings in Artificial Intelligence, Infix, Sankt Augustin
    • .C. Lemm. Fuzzy interface with prior concepts and non-convex regularization. In Wilfried Brauer, editor, Fazzy-Neuro Systems '98- Computational Intelligence. Proceedings of the 5. International Workshop 'Fuzzy-Neuro Systems '98' (FNS '98), March 19-20, 1998, Munich, Germany, Proceedings in Artificial Intelligence, pages 298-305. Infix, Sankt Augustin, 1998.
    • (1998) Proceedings of the 5. International Workshop 'Fuzzy-Neuro Systems '98' (FNS '98), March 19-20, 1998 , pp. 298-305
    • Lemm, J.C.1
  • 293
    • 84906618047 scopus 로고    scopus 로고
    • Fuzzy rules and regularization theory
    • editor, 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT '98). Mainz, Aachen
    • J. C. Lemm. Fuzzy rules and regularization theory. In ELITE European Laboratory for Intelligent Techniques Engineering, editor, 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT '98). Mainz, Aachen, 1998.
    • (1998) ELITE European Laboratory for Intelligent Techniques Engineering
    • Lemm, J.C.1
  • 296
    • 0039983622 scopus 로고    scopus 로고
    • Bayesian field theory
    • Universitat Minister, arXiv:physics/9912005
    • J. C. Lemm. Bayesian field theory. Technical Report MS-TP1-99-1, Universitat Minister, 1999. arXiv:physics/9912005.
    • (1999) Technical Report MS-TP1-99-1
    • Lemm, J.C.1
  • 298
    • 0034735548 scopus 로고    scopus 로고
    • Inverse time-dependent quantum mechanics
    • arXiv:quant-ph/0002010.4
    • J. C. Lemm. Inverse time-dependent quantum mechanics. Phys. Lett. A, 276(1-4):19-24, 2000. arXiv:quant-ph/0002010.
    • (2000) Phys.Lett.A , vol.276 , Issue.1-4 , pp. 19-24
    • Lemm, J.C.1
  • 302
    • 0040576557 scopus 로고
    • Beyond the timeindependent mean field theory for nuclear and atomic reactions: Inclusion of particle-hole correlations in a generalized random phase approximation
    • J. C. Lemm, B. G. Giraud, and A. Weiguny. Beyond the timeindependent mean field theory for nuclear and atomic reactions: Inclusion of particle-hole correlations in a generalized random phase approximation. Phys. Rev. Lett., 73:420-423, 1994.
    • (1994) Phys. Rev. Lett , vol.73 , pp. 420-423
    • Lemm, J.C.1    Giraud, B.G.2    Weiguny, A.3
  • 303
    • 0040187698 scopus 로고    scopus 로고
    • Bayesian inverse quantum theory
    • arXiv:quant-ph/0006027
    • J. C. Lemm and J. Uhlig. Bayesian inverse quantum theory. Few-Body Systems, 29:25-52, 2000. arXiv:quant-ph/0006027.
    • (2000) Few-Body Systems , vol.29 , pp. 25-52
    • Lemm, J.C.1    Uhlig, J.2
  • 304
    • 0007513498 scopus 로고    scopus 로고
    • Hartree-Fock approximation for inverse many-body problems
    • arXiv:nuclth/9908056
    • J. C. Lemm and J. Uhlig. Hartree-Fock approximation for inverse many-body problems. Phys. Rev. Lett, 84:4517-4520, 2000. arXiv:nuclth/9908056.
    • (2000) Phys. Rev. Lett , vol.84 , pp. 4517-4520
    • Lemm, J.C.1    Uhlig, J.2
  • 305
    • 0000607639 scopus 로고    scopus 로고
    • A Bayesian approach to inverse quantum statistics
    • arXivicondmat/9907013
    • J. C. Lemm, J. Uhlig, and A. Weiguny. A Bayesian approach to inverse quantum statistics. Phys. Rev. Lett, 84:2068-2071, 2000. arXivicondmat/9907013.
    • (2000) Phys. Rev. Lett , vol.84 , pp. 2068-2071
    • Lemm, J.C.1    Uhlig, J.2    Weiguny, A.3
  • 306
    • 0042913040 scopus 로고    scopus 로고
    • Bayesian reconstruction of approximately periodic potentials for quantum systems at finite temperatures
    • MS TP1-00-4, arXiv:quant-ph/0005122
    • J. C. Lemm, J. Uhlig, and A. Weiguny. Bayesian reconstruction of approximately periodic potentials for quantum systems at finite temperatures. The European Physical Journal B, 20(3):349-366, 2001. MS TP1-00-4, arXiv:quant-ph/0005122.
    • (2001) The European Physical Journal B , vol.20 , Issue.3 , pp. 349-366
    • Lemm, C.1    Uhlig, J.2    Weiguny, A.3
  • 310
    • 0000810338 scopus 로고
    • A statistical paradox
    • D. V. Lindley. A statistical paradox. Biometrica, 44:187-192, 1957.
    • (1957) Biometrica , vol.44 , pp. 187-192
    • Lindley, D.V.1
  • 312
    • 0007221106 scopus 로고
    • Inference for a bernoulli process (a Bayesian view)
    • D. V. Lindley and L. D. Phillips. Inference for a Bernoulli process (a Bayesian view). Amer. Statist., 30:112-119, 1976.
    • (1976) Amer. Statist , vol.30 , pp. 112-119
    • Lindley, D.V.1    Phillips, L.D.2
  • 314
    • 0001788189 scopus 로고
    • From Laplace to Supernova SN 1987A: Bayesian inference in astrophysics
    • In P. F. Fougere, editor, pages, Kluwer Academic Publishers, Dordrecht, Available from
    • T. Loredo. From Laplace to Supernova SN 1987A: Bayesian inference in astrophysics. In P. F. Fougere, editor, Maximum-Entropy and Bayesian Methods, Dartmouth, 1989, pages 81-142. Kluwer Academic Publishers, Dordrecht, 1990. Available from http://bayes.wustl.edu/gregory/gregory.html.
    • (1990) Maximum-Entropy and Bayesian Methods, Dartmouth, 1989 , pp. 81-142
    • Loredo, T.1
  • 316
    • 0004145762 scopus 로고
    • Wiley, New York, Also published by Dover, New York, 1989
    • D. R. Luce and H. Raiffa. Games and Decisions. Wiley, New York, 1957. Also published by Dover, New York, 1989.
    • (1957) Games and Decisions
    • Luce, D.R.1    Raiffa, H.2
  • 317
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):720-736, 1992.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • Mackay, D.J.C.1
  • 318
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D. J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3):448-472, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 319
    • 0000335983 scopus 로고    scopus 로고
    • Bayesian methods for backpropagation networks
    • In E. Domany, J. L. van Hemmen, and K. Schulten, editors, Springer-Verlag, New York
    • D. J. C. MacKay. Bayesian methods for backpropagation networks. In E. Domany, J. L. van Hemmen, and K. Schulten, editors, Models of Neural Networks III, pages 211-254. Springer-Verlag, New York, 1996.
    • (1996) Models of Neural Networks III , pp. 211-254
    • Mackay, D.J.C.1
  • 320
    • 0007826152 scopus 로고    scopus 로고
    • Bayesian non-linear modeling for the prediction competition
    • In G. Heidbreder, editor, Kluwer Academic Publishers, Dordrecht
    • D. J. C. MacKay. Bayesian non-linear modeling for the prediction competition. In G. Heidbreder, editor, Maximum Entropy and Bayesian Methods, Santa Barbara 1993, pages 221-234. Kluwer Academic Publishers, Dordrecht, 1996.
    • (1996) Maximum Entropy and Bayesian Methods, Santa Barbara 1993 , pp. 221-234
    • Mackay, D.J.C.1
  • 321
    • 0004065145 scopus 로고    scopus 로고
    • Hyperparameters: Optimise or integrate out?
    • In G. Heidbreder, editor, Kluwer Academic Publishers, Dordrecht, An extended version appeared in Neural Comp. 11:1035-1068, 1999 under the title 'Comparison of Approximate Methods for Handling Hyperparameters'
    • D. J. C. MacKay. Hyperparameters: Optimise or integrate out? In G. Heidbreder, editor, Maximum Entropy and Bayesian Methods, Santa Barbara 1993, pages 43-59. Kluwer Academic Publishers, Dordrecht, 1996. An extended version appeared in Neural Comp. 11:1035-1068, 1999 under the title 'Comparison of Approximate Methods for Handling Hyperparameters'.
    • (1996) Maximum Entropy and Bayesian Methods, Santa Barbara 1993 , pp. 43-59
    • Mackay, D.J.C.1
  • 322
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to Gaussian processes
    • In C. Bishop, editor, volume 168 of Series F, Computer and Systems Sciences. NATO ASI Series
    • D. J. C. MacKay. Introduction to Gaussian processes. In C. Bishop, editor, Neural Networks and Machine Learning, volume 168 of Series F, Computer and Systems Sciences. NATO ASI Series, 1998.
    • (1998) Neural Networks and Machine Learning
    • Mackay, D.J.C.1
  • 323
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • A preprint version is available at
    • D. J. C. MacKay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11:1035-1068, 1999. A preprint version is available at http://wol.ra.phy.cam.ac.uk/mackay/alpha.ps.gz.
    • (1999) Neural Computation , vol.11 , pp. 1035-1068
    • Mackay, D.J.C.1
  • 326
    • 84915425007 scopus 로고
    • Some comments on cp
    • C. Mallows, Some comments on cp. Technometrics, 15:661-675, 1973.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.1
  • 330
    • 84944477553 scopus 로고
    • Generalized inverses, ridge regression, biased linear estimation, and nonlinear regression
    • D. W. Marquardt. Generalized inverses, ridge regression, biased linear estimation, and nonlinear regression. Technometrics, 12:591-613, 1970.
    • (1970) Technometrics , vol.12 , pp. 591-613
    • Marquardt, D.W.1
  • 332
    • 84950881632 scopus 로고
    • Probabilistic solution of illposed problems in computational vision
    • J. L. Marroquin, S. Mitter, and T. Poggio. Probabilistic solution of illposed problems in computational vision. J. Am. Stat. Assoc., 82:76-89, 1987.
    • (1987) J. Am. Stat. Assoc , vol.82 , pp. 76-89
    • Marroquin, J.L.1    Mitter, S.2    Poggio, T.3
  • 334
    • 0004163930 scopus 로고
    • Academic Press, San Diego, 2nd edition
    • M. L. Mehta. Random Matrices. Academic Press, San Diego, 2nd edition, 1991.
    • (1991) Random Matrices
    • Mehta, M.L.1
  • 344
    • 0004290881 scopus 로고
    • MIT Press, Cambridge, MA, expanded edition, Original edition published 1969
    • M. L. Minski and S. A. Papert. Perceptrons. MIT Press, Cambridge, MA, expanded edition, 1990. Original edition published 1969.
    • (1990) Perceptrons
    • Minski, M.L.1    Papert, S.A.2
  • 347
    • 0001862333 scopus 로고
    • A full Bayesian approach for inverse problems
    • In K. M. Hanson and R. N. Silver, editors, Santa Fe, New Mexico, Kluwer Academic Publishers, Dordrecht, 1996
    • A. Mohammad Djafari. A full Bayesian approach for inverse problems. In K. M. Hanson and R. N. Silver, editors, Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico, 1995. Kluwer Academic Publishers, Dordrecht, 1996.
    • (1995) Maximum Entropy and Bayesian Methods
    • Djafari, A.M.1
  • 348
    • 84906622421 scopus 로고    scopus 로고
    • A scale invariant Bayesian method to solve linear inverse problems
    • In G. Heidbreder, editor, Kluwer Academic Publishers, Dordrecht, 1996. An extended version can be found in the Santa Fe Institute Technical Report 94-07-001
    • A. Mohammad Djafari and J. Idier. A scale invariant Bayesian method to solve linear inverse problems. In G. Heidbreder, editor, Maximum Entropy and Bayesian Methods, Santa Barbara 1993, pages 121-134. Kluwer Academic Publishers, Dordrecht, 1996. An extended version can be found in the Santa Fe Institute Technical Report 94-07-001.
    • Maximum Entropy and Bayesian Methods, Santa Barbara 1993 , pp. 121-134
    • Djafari, A.M.1    Idier, J.2
  • 349
    • 0000302959 scopus 로고
    • Separation of a mixture of independent signals using time delayed correlations
    • L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett., 72(23):3634- 3637, 1994.
    • (1994) Phys. Rev. Lett , vol.72 , Issue.23 , pp. 3634-3637
    • Molgedey, L.1    Schuster, H.G.2
  • 352
    • 0000178613 scopus 로고
    • On the reciprocal of the general algebraic matrix
    • E. H. Moore. On the reciprocal of the general algebraic matrix. Bull Amer. Math. Soc., 26:394-395, 1920.
    • (1920) Bull Amer. Math. Soc. , vol.26 , pp. 394-395
    • Moore, E.H.1
  • 354
    • 84950432453 scopus 로고
    • Parametric empirical Bayes inference: Theory and applications
    • C. Morris. Parametric empirical Bayes inference: Theory and applications. J. Amer. Statist. Assoc., 78:47-65, 1983.
    • (1983) J. Amer. Statist. Assoc , vol.78 , pp. 47-65
    • Morris, C.1
  • 356
    • 0000406912 scopus 로고
    • Inference in an authorship problem. A comparative study of discrimination methods applied to authorships of the disputed Federalist papers
    • F. Mosteller and D. Wallace. Inference in an authorship problem. A comparative study of discrimination methods applied to authorships of the disputed Federalist papers. J. Amer. Statist. Assoc., 58:275-309, 1963.
    • (1963) J. Amer. Statist. Assoc , vol.58 , pp. 275-309
    • Mosteller, F.1    Wallace, D.2
  • 357
    • 0030572056 scopus 로고    scopus 로고
    • Two-dimensional conformal field theory for disordered systems at criticality
    • FS
    • C. Mudry, C. Chamon, and X.G Wen. Two-dimensional conformal field theory for disordered systems at criticality. Nucl. Phys. J5, 466 [FS]:383-443, 1996.
    • (1996) Nucl. Phys. J5 , vol.466 , pp. 383-443
    • Mudry, C.1    Chamon, C.2    Wen, X.G.3
  • 359
    • 84990602490 scopus 로고
    • Optimal approximations by piecewise smooth functions and associated variational problems
    • D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Applied Math., 42:577-684, 1989.
    • (1989) Comm. Pure Applied Math , vol.42 , pp. 577-684
    • Mumford, D.1    Shah, J.2
  • 361
    • 0000570384 scopus 로고
    • On nonparametric estimates of density functions and regression curves
    • E. A. Nadaraya. On nonparametric estimates of density functions and regression curves. Theor. Prob. Appl, 10:186-190, 1965.
    • (1965) Theor. Prob. Appl , vol.10 , pp. 186-190
    • Nadaraya, E.A.1
  • 364
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
    • University of Toronto, Canada
    • R. M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Technical Report 9702, Department of Statistics, University of Toronto, Canada, 1997.
    • (1997) Technical Report 9702, Department of Statistics
    • Neal, R.M.1
  • 369
    • 0032203371 scopus 로고    scopus 로고
    • Incorporating prior information in machine learning by creating virtual examples
    • In
    • P. Niyogi, F. Girosi, and T. Poggio. Incorporating prior information in machine learning by creating virtual examples. In IEEE Proceedings on Intelligent Signal Processing, volume 86, pages 2196-2209, 1998.
    • (1998) IEEE Proceedings on Intelligent Signal Processing , vol.86 , pp. 2196-2209
    • Niyogi, P.1    Girosi, F.2    Poggio, T.3
  • 373
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 375
    • 0001654264 scopus 로고
    • Generalization performance of Bayes optimal classification algorithm for learning a perceptron
    • M. Opper and D. Haussler. Generalization performance of Bayes optimal classification algorithm for learning a perceptron. Phys. Rev. Lett., 66:2677, 1991.
    • (1991) Phys. Rev. Lett. , vol.66 , pp. 2677
    • Opper, M.1    Haussler, D.2
  • 376
    • 0003100887 scopus 로고    scopus 로고
    • Statistical mechanics of generalization
    • In E. Domany, J. L. van Hemmen, and K. Schulten, editors, Springer-Verlag, New York
    • M. Opper and W. Kinzel. Statistical mechanics of generalization. In E. Domany, J. L. van Hemmen, and K. Schulten, editors, Models of Neural Networks III, pages 151-210. Springer-Verlag, New York, 1996.
    • (1996) Models of Neural Networks III , pp. 151-210
    • Opper, M.1    Kinzel, W.2
  • 377
    • 0039814276 scopus 로고    scopus 로고
    • Mean field methods for classification with Gaussian processes
    • In M.S. Kearns, S. S. Solla, and D. A. Cohn, editors, MIT Press, Cambridge, MA
    • M. Opper and O. Winther. Mean field methods for classification with Gaussian processes. In M.S. Kearns, S. S. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 309-315. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Neural Information Processing Systems 11 , pp. 309-315
    • Opper, M.1    Winther, O.2
  • 378
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian process classification and SVM: Mean field results and leave-one-out estimator
    • In A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, MIT Press, Cambridge, MA
    • M. Opper and O. Winther. Gaussian process classification and SVM: Mean field results and leave-one-out estimator. In A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 43-65. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 43-65
    • Opper, M.1    Winther, O.2
  • 381
    • 0000461110 scopus 로고
    • An approach to time series analysis
    • E. Parzen. An approach to time series analysis. Ann. Math. Statist., 32:951-989, 1962.
    • (1962) Ann. Math. Statist , vol.32 , pp. 951-989
    • Parzen, E.1
  • 382
    • 0001473437 scopus 로고
    • On the estimation of a probability function and mode
    • E. Parzen. On the estimation of a probability function and mode. Ann. Math. Statist., 33:3, 1962.
    • (1962) Ann. Math. Statist , vol.33 , pp. 3
    • Parzen, E.1
  • 383
    • 0007375021 scopus 로고
    • Probability density functional and reproducing kernel Hilbert spaces
    • In M. Rosenblatt, editor, Wiley, New York
    • E. Parzen. Probability density functional and reproducing kernel Hilbert spaces. In M. Rosenblatt, editor, Proc. Symposium on Time Series Analysis, pages 155-169. Wiley, New York, 1963.
    • (1963) Proc. Symposium on Time Series Analysis , pp. 155-169
    • Parzen, E.1
  • 387
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • J. Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669- 710, 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 669-710
    • Pearl, J.1
  • 388
    • 0008573121 scopus 로고    scopus 로고
    • On the identification of nonparametric structural models
    • In M. Berkane, editor, Springer-Verlag, New York, Available from
    • J. Pearl. On the identification of nonparametric structural models. In M. Berkane, editor, Latent Variable Modelling with Application to Causality, Lecture Notes in Statistics, pages 29-68. Springer-Verlag, New York, 1997. Available from http://Singapore.cs.ucla.edu/csl.papers.html.
    • (1997) Latent Variable Modelling with Application to Causality, Lecture Notes in Statistics , pp. 29-68
    • Pearl, J.1
  • 390
    • 1442295830 scopus 로고    scopus 로고
    • Bayesianism and causality, or, why i am only a half-bayesian
    • In D. Corfield and J. Williamson, editors, Kluwer Academic Publishers, Dordrecht, Available from
    • J. Pearl. Bayesianism and causality, or, why I am only a half-Bayesian. In D. Corfield and J. Williamson, editors, Foundations of Bayesianism, Kluwer Applied Logic Series. Kluwer Academic Publishers, Dordrecht, 2001. Available from http://Singapore.cs.ucla.edu/csl-papers.html.
    • (2001) Foundations of Bayesianism, Kluwer Applied Logic Series
    • Pearl, J.1
  • 394
    • 4243588527 scopus 로고    scopus 로고
    • Reparametrization invariant statistical inference and gravity
    • V. Periwal. Reparametrization invariant statistical inference and gravity. Phys. Rev. Lett., 78:4671-4674, 1997.
    • (1997) Phys. Rev. Lett , vol.78 , pp. 4671-4674
    • Periwal, V.1
  • 395
    • 0033575644 scopus 로고    scopus 로고
    • Geometric statistical inference
    • V. Periwal. Geometric statistical inference. Nucl. Phys. B, 554:719-730, 1999.
    • (1999) Nucl. Phys. B , vol.554 , pp. 719-730
    • Periwal, V.1
  • 398
    • 0004254296 scopus 로고
    • Dover, New York, Original edition published by Wiley, New York, 1969
    • D. A. Pierre. Optimization Theory with Applications. Dover, New York, 1986. Original edition published by Wiley, New York, 1969.
    • (1986) Optimization Theory with Applications
    • Pierre, D.A.1
  • 400
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • In
    • T. Poggio and F. Girosi. Networks for approximation and learning. In Proceedings of the IEEE, volume 78, pages 1481-1497, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 401
    • 0022417790 scopus 로고
    • Computational vision and regularization theory
    • T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature, 317:314-319, 1985.
    • (1985) Nature , vol.317 , pp. 314-319
    • Poggio, T.1    Torre, V.2    Koch, C.3
  • 402
    • 0004081949 scopus 로고    scopus 로고
    • Springer-Verlag, New York
    • E. Polak. Optimization. Springer-Verlag, New York, 1997.
    • (1997) Optimization
    • Polak, E.1
  • 404
    • 0000796434 scopus 로고
    • ALVINN: An autonomous land vehicle in a neural network
    • In D. Touretzky, editor, Morgan Kaufmann, San Mateo, CA
    • D. A. Pomerleau. ALVINN: An autonomous land vehicle in a neural network. In D. Touretzky, editor, Advances in Neural Information Processing Systems 1, pages 305-313. Morgan Kaufmann, San Mateo, CA, 1989.
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 305-313
    • Pomerleau, D.A.1
  • 408
    • 84906582594 scopus 로고    scopus 로고
    • Random walks in field theory
    • In H. Meyer-Ortmanns and A. Kliimper, editors, Springer-Verlag, Berlin
    • A. Pordt. Random walks in field theory. In H. Meyer-Ortmanns and A. Kliimper, editors, Field Theoretical Tools for Polymer and Particle Physics. Springer-Verlag, Berlin, 1998.
    • (1998) Field Theoretical Tools for Polymer and Particle Physics
    • Pordt, A.1
  • 409
    • 84906582595 scopus 로고    scopus 로고
    • Quantum information and computation
    • Available from
    • J. Preskill. Quantum information and computation. A course on quantum computation at Caltech, 1998. Available from http://www.theory.caltech.edu/ people/preskill.
    • (1998) A Course on Quantum Computation at Caltech
    • Preskill, J.1
  • 417
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14:465- 471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 418
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080-1100, 1986.
    • (1986) Annals of Statistics , vol.14 , pp. 1080-1100
    • Rissanen, J.1
  • 420
    • 0011026447 scopus 로고
    • Asymptotically subminimax solutions of compound statistical decision problems
    • University of Berkeley Press, Berkeley
    • H. Robbins. Asymptotically subminimax solutions of compound statistical decision problems. In Proc. Second Berkely Symp. Math. Statist. Probab., volume 1, pages 131-148. University of Berkeley Press, Berkeley, 1951.
    • (1951) Proc. Second Berkely Symp. Math. Statist. Probab , vol.1 , pp. 131-148
    • Robbins, H.1
  • 421
    • 0000033354 scopus 로고
    • An empirical Bayes approach to statistics
    • University of Berkeley Press, Berkeley
    • H. Robbins. An empirical Bayes approach to statistics. In Proc. Third Berkely Symp. Math. Statist. Probab., volume 1, pages 157-164. University of Berkeley Press, Berkeley, 1955.
    • (1955) Proc. Third Berkely Symp. Math. Statist. Probab , vol.1 , pp. 157-164
    • Robbins, H.1
  • 422
    • 0002533801 scopus 로고
    • The empirical Bayes approach to statistical decision problems
    • H. Robbins. The empirical Bayes approach to statistical decision problems. Ann. Math. Statist., 35:1-20, 1964.
    • (1964) Ann. Math. Statist , vol.35 , pp. 1-20
    • Robbins, H.1
  • 423
    • 0000801059 scopus 로고
    • Some thoughts on empirical Bayes estimation
    • H. Robbins. Some thoughts on empirical Bayes estimation. Ann. Statist., 1:713-755, 1964.
    • (1964) Ann. Statist , vol.1 , pp. 713-755
    • Robbins, H.1
  • 425
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton, NJ
    • R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 428
    • 0000389568 scopus 로고
    • Statistical mechanics and phase transitions in clustering
    • K. Rose, E. Gurewitz, and G. C. Fox. Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett, 65:945-948, 1990.
    • (1990) Phys. Rev. Lett , vol.65 , pp. 945-948
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 431
    • 0034096783 scopus 로고    scopus 로고
    • Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method
    • T. Roths, D. Maier, C. Friedrich, M. Marth, and J. Honerkamp. Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method. Rheol. Ada, 39(2):163-173, 2000.
    • (2000) Rheol. Ada , vol.39 , Issue.2 , pp. 163-173
    • Roths, T.1    Maier, D.2    Friedrich, C.3    Marth, M.4    Honerkamp, J.5
  • 435
    • 0003918536 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge
    • L. H. Ryder. Quantum Field Theory. Cambridge University Press, Cambridge, 1996.
    • (1996) Quantum Field Theory
    • Ryder, L.H.1
  • 436
    • 0003984043 scopus 로고
    • Wiley, New York, 1954. Also published by Dover, New York
    • L. J. Savage. Foundations of Statistics. Wiley, New York, 1954. Also published by Dover, New York, 1972.
    • (1972) Foundations of Statistics
    • Savage, L.J.1
  • 440
    • 50249155939 scopus 로고    scopus 로고
    • Shrinking the tube: A new support vector regression algorithm
    • In M.S. Kearns, S. S. Solla, and Cohn D. A. editors, MIT Press, Cambridge, MA
    • B. Scholkopf, P. L. Bartlett, A. Smola, and R. Williamson. Shrinking the tube: A new support vector regression algorithm. In M.S. Kearns, S. S. Solla, and Cohn D. A., editors, Advances in Neural Information Processing Systems 11, pages 330-336. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 330-336
    • Scholkopf, B.1    Bartlett, P.L.2    Smola, A.3    Williamson, R.4
  • 445
    • 0039086690 scopus 로고
    • Annealed theories of learning. In Neural Networks: The Statistical Mechanics Perspective
    • World Scientific, Singapore
    • H. S. Seung. Annealed theories of learning. In Neural Networks: The Statistical Mechanics Perspective. Proceedings of the CTP-PBSRI Joint Workshop on Theoretical Physics. World Scientific, Singapore, 1995.
    • (1995) Proceedings of the CTP-PBSRI Joint Workshop on Theoretical Physics
    • Seung, H.S.1
  • 446
    • 0007125205 scopus 로고
    • Constructive probability
    • G. Shafer. Constructive probability. Synthese, 48:1-60, 1981.
    • (1981) Synthese , vol.48 , pp. 1-60
    • Shafer, G.1
  • 448
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 26:379-423, 623-656, 1948.
    • (1948) Bell System Tech. J. , vol.26 , pp. 379-423
    • Shannon, C.E.1
  • 451
    • 0002724228 scopus 로고
    • Axioms for probability and belief-function propagation
    • In G. Shafer and J. Pearl, editors, Morgan Kaufmann, San Mateo, CA
    • P. P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. In G. Shafer and J. Pearl, editors, Readings in Uncertain Reasoning, pages 575-609. Morgan Kaufmann, San Mateo, CA, 1990.
    • (1990) Readings in Uncertain Reasoning , pp. 575-609
    • Shenoy, P.P.1    Shafer, G.2
  • 452
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • N. Shephard and M. K. Pitt. Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84(3):653-667, 1997.
    • (1997) Biometrika , vol.84 , Issue.3 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 453
    • 0012476607 scopus 로고
    • A distributed lag estimator derived from smoothness priors
    • R. Shiller. A distributed lag estimator derived from smoothness priors. Econometrica, 41:775-778, 1973.
    • (1973) Econometrica , vol.41 , pp. 775-778
    • Shiller, R.1
  • 455
    • 0000997747 scopus 로고
    • Spline smoothing: The equivalent variable kernel method
    • B. W. Silverman. Spline smoothing: The equivalent variable kernel method. Ann. Statist., 12:898-916, 1984.
    • (1984) Ann. Statist , vol.12 , pp. 898-916
    • Silverman, B.W.1
  • 456
    • 0003260456 scopus 로고
    • Density estimation for statistics and data analysis
    • of, Chapman & Hall, London
    • B. W. Silverman. Density Estimation for Statistics and Data Analysis, volume 26 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1986.
    • (1986) Monographs on Statistics and Applied Probability , vol.26
    • Silverman, B.W.1
  • 458
    • 0002330337 scopus 로고
    • Fundamentals of maxent in data analysis
    • In B. Buck and V. A. Macaulay, editors, Oxford University Press, Oxford
    • J. Skilling. Fundamentals of maxent in data analysis. In B. Buck and V. A. Macaulay, editors, Maximum Entropy in Action, pages 19-40. Oxford University Press, Oxford, 1991.
    • (1991) Maximum Entropy in Action , pp. 19-40
    • Skilling, J.1
  • 459
    • 0542426780 scopus 로고
    • On parameter estimation and quantified maxent
    • In W. T. Grandy and L. H. Schick, editors, Laramie, Kluwer Academic Publishers, Dordrecht, 1991
    • J. Skilling. On parameter estimation and quantified maxent. In W. T. Grandy and L. H. Schick, editors, Maximum Entropy and Bayesian Methods. Laramie, 1990, pages 267 -273. Kluwer Academic Publishers, Dordrecht, 1991.
    • (1990) Maximum Entropy and Bayesian Methods , pp. 267-273
    • Skilling, J.1
  • 460
    • 0003053548 scopus 로고
    • Bayesian computation via gibbs sampler and related markov chain monte carlo methods (with discussion)
    • A. F. M. Smith and G. O. Roberts. Bayesian computation via Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). Journal of the Royal Statistical Society B, 55:3-23, 1993.
    • (1993) Journal of the Royal Statistical Society B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 462
    • 84879910175 scopus 로고    scopus 로고
    • Prom regularization operators to support vector kernels
    • In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, MIT Press, Cambridge, MA
    • A. J. Smola and B. Scholkopf. Prom regularization operators to support vector kernels. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10. MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10
    • Smola, A.J.1    Scholkopf, B.2
  • 464
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A. J. Smola, B. Scholkopf, and K.R. Miiller. The connection between regularization operators and support vector kernels. Neural Networks, 11:637-649, 1998.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.J.1    Scholkopf, B.2    Miiller, K.R.3
  • 465
    • 4243776825 scopus 로고
    • Imaging of quantum mechanical potentials
    • R. Snieder and A. Tarantola. Imaging of quantum mechanical potentials. Phys. Rev. A, 39:3303-3309, 1989.
    • (1989) Phys. Rev. A , vol.39 , pp. 3303-3309
    • Snieder, R.1    Tarantola, A.2
  • 466
    • 0033327850 scopus 로고    scopus 로고
    • Probabilistic interpretation and Bayesian methods for support vector machines
    • In
    • P. Sollich. Probabilistic interpretation and Bayesian methods for support vector machines. In Proceedings of ICANN 1999, pages 91-96, 1999.
    • (1999) Proceedings of ICANN 1999 , pp. 91-96
    • Sollich, P.1
  • 467
    • 84899032333 scopus 로고    scopus 로고
    • Probabilistic methods for support vector machines
    • In S. A. Solla, T. K. Leen, and K.-R-Miiller, editors, MIT Press, Cambridge, MA
    • P. Sollich. Probabilistic methods for support vector machines. In S. A. Solla, T. K. Leen, and K.-R-Miiller, editors, Advances in Neural Information Processing Systems 12, pages 349-355. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 349-355
    • Sollich, P.1
  • 468
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • P. Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46(1-3):21-52, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 21-52
    • Sollich, P.1
  • 470
    • 0004665928 scopus 로고    scopus 로고
    • Quantum computing
    • arXiv:quant-ph/9708022
    • A. Steane. Quantum computing. Rep. Prog. Phys., 61:117-173, 1998. arXiv:quant-ph/9708022.
    • (1998) Rep. Prog. Phys , vol.61 , pp. 117-173
    • Steane, A.1
  • 471
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical predictions
    • M. Stone. Cross-validation choice and assessment of statistical predictions. Journal of the Royal Statistical Society B, 36:111-147, 1974.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 472
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by crossvalidation and Akaike's criterion
    • M. Stone. An asymptotic equivalence of choice of model by crossvalidation and Akaike's criterion. Journal of the Royal Statistical Society B, 39:44, 1977.
    • (1977) Journal of the Royal Statistical Society B , vol.39 , pp. 44
    • Stone, M.1
  • 473
    • 0001227575 scopus 로고
    • Additive regression and other nonparametric models
    • M. Stone. Additive regression and other nonparametric models. Ann. Statist., 13:689-705, 1985.
    • (1985) Ann. Statist , vol.13 , pp. 689-705
    • Stone, M.1
  • 474
    • 0042912545 scopus 로고
    • Alpha, evidence, and the entropic prior
    • In A. Mohammad-Djafari, editor, Kluwer Academic Publishers, Dordrecht
    • C. E. M. Strauss, D. H. Wolpert, and D. R. Wolf. Alpha, evidence, and the entropic prior. In A. Mohammad-Djafari, editor, Maximum Entropy and Bayesian Methods. Kluwer Academic Publishers, Dordrecht, 1992.
    • (1992) Maximum Entropy and Bayesian Methods
    • Strauss, C.E.M.1    Wolpert, D.H.2    Wolf, D.R.3
  • 475
    • 84906600049 scopus 로고
    • Finding human faces with a Gaussian mixture distribution-based face model
    • Springer-Verlag, New York
    • K. K. Sung and T. Poggio. Finding human faces with a Gaussian mixture distribution-based face model. In Recent Progress in Computer Vision, LNCS Series. Springer-Verlag, New York, 1995.
    • (1995) Recent Progress in Computer Vision, LNCS Series
    • Sung, K.K.1    Poggio, T.2
  • 476
    • 0001128508 scopus 로고    scopus 로고
    • An inverse problem approach to optical homodyne tomography
    • M. Tan. An inverse problem approach to optical homodyne tomography. J. Mod. Opt, 44:2233, 1997.
    • (1997) J. Mod. Opt , vol.44 , pp. 2233
    • Tan, M.1
  • 481
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • L. Tierney. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22:1701-1762, 1994.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 482
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • Dokl
    • A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl, 4:1035-1038, 1963.
    • (1963) Soviet Math , vol.4 , pp. 1035-1038
    • Tikhonov, A.N.1
  • 484
    • 0034563695 scopus 로고    scopus 로고
    • Parameter estimation in nonlinear stochastic differential equations
    • J. Timmer. Parameter estimation in nonlinear stochastic differential equations. Chaos, Solitons, and Fractals, 11:2571-2578, 2000.
    • (2000) Chaos, Solitons, and Fractals , vol.11 , pp. 2571-2578
    • Timmer, J.1
  • 486
    • 84877738467 scopus 로고    scopus 로고
    • Finite-dimensional approximation of Gaussian processes
    • In M.S. Kearns, S. S. Solla, and D. A. Cohn, editors, MIT Press, Cambridge, MA
    • G. F. Trecate, C. K. I. Williams, and M. Opper. Finite-dimensional approximation of Gaussian processes. In M.S. Kearns, S. S. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 218-224. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 218-224
    • Trecate, G.F.1    Williams, C.K.I.2    Opper, M.3
  • 487
    • 58149416322 scopus 로고
    • Elimination by aspects
    • A. Tversky. Elimination by aspects. Psychological Review, 79(4):281- 301, 1972.
    • (1972) Psychological Review , vol.79 , Issue.4 , pp. 281-301
    • Tversky, A.1
  • 488
    • 0019392722 scopus 로고
    • The framing of decisions and the psychology of choice
    • A. Tversky and D. Kahnemann. The framing of decisions and the psychology of choice. Science, 211:453-458, 1981.
    • (1981) Science , vol.211 , pp. 453-458
    • Tversky, A.1    Kahnemann, D.2
  • 495
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Th. Prob. and Its Application, 17(2):264-280, 1971.
    • (1971) Th. Prob. and its Application , vol.17 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 496
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • V. N. Vapnik and A. Y. Chervonenkis. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3):283-305, 1991.
    • (1991) Pattern Recognition and Image Analysis , vol.1 , Issue.3 , pp. 283-305
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 498
    • 8444224173 scopus 로고
    • Stamperia de' Classici Latini, Naples, 1858. Originally published in
    • G. Vico. De antiquissima Italorum sapientia. Stamperia de' Classici Latini, Naples, 1858. Originally published in 1710.
    • (1710) De Antiquissima Italorum Sapientia
    • Vico, G.1
  • 500
    • 0141903763 scopus 로고    scopus 로고
    • Evidence integrals
    • In R. N. Silver and K. M. Hanson, editors, Kluwer Academic Publishers, Dordrecht
    • W. von der Linden, R. Fischer, and V. Dose. Evidence integrals. In R. N. Silver and K. M. Hanson, editors, Maximum Entropy and Bayesian Methods, page 443. Kluwer Academic Publishers, Dordrecht, 1996.
    • (1996) Maximum Entropy and Bayesian Methods , pp. 443
    • Von Linden, W.D.1    Fischer, R.2    Dose, V.3
  • 501
    • 0012189333 scopus 로고    scopus 로고
    • On the importance of a-marginalization in maximum entropy
    • In R. N. Silver and K. M. Hanson, editors, Kluwer Academic Publishers, Dordrecht
    • W. von der Linden, R. Fischer, and V. Dose. On the importance of a-marginalization in maximum entropy. In R. N. Silver and K. M. Hanson, editors, Maximum Entropy and Bayesian Methods, page 229. Kluwer Academic Publishers, Dordrecht, 1996.
    • (1996) Maximum Entropy and Bayesian Methods , pp. 229
    • Von Linden, W.D.1    Fischer, R.2    Dose, V.3
  • 505
    • 0000238658 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter
    • G. Wahba. A comparison of GCV and GML for choosing the smoothing parameter. Numer. Math., 24:383-393, 1975.
    • (1975) Numer. Math , vol.24 , pp. 383-393
    • Wahba, G.1
  • 506
    • 0000939344 scopus 로고
    • Bayesian confidence intervals for the cross-validated smoothing spline
    • G. Wahba. Bayesian confidence intervals for the cross-validated smoothing spline. Journal of the Royal Statistical Society B, 45, 1983.
    • (1983) Journal of the Royal Statistical Society B , vol.45
    • Wahba, G.1
  • 508
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
    • In B. Scholkopf, C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, MA
    • G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Scholkopf, C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Machines, pages 69-88. MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Machines , pp. 69-88
    • Wahba, G.1
  • 509
    • 0002617598 scopus 로고
    • A completely automatic French curve
    • G. Wahba and S. Wold. A completely automatic French curve. Commun. Statist, 4:1-17, 1975.
    • (1975) Commun. Statist , vol.4 , pp. 1-17
    • Wahba, G.1    Wold, S.2
  • 511
    • 21144484106 scopus 로고
    • The statistical mechanics of learning a rule
    • T. L. H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule. Rev. Mod. Phys., 65:499-556, 1993.
    • (1993) Rev. Mod. Phys , vol.65 , pp. 499-556
    • Watkin, T.L.H.1    Rau, A.2    Biehl, M.3
  • 514
    • 0028425697 scopus 로고
    • Functional approximation by feed-forward networks: A least-squares approach to generalization
    • A. R. Webb. Functional approximation by feed-forward networks: A least-squares approach to generalization. IEEE Trans. Neural Networks, 5:363-371, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 363-371
    • Webb, A.R.1
  • 518
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • H. White. Maximum likelihood estimation of misspecified models. Econometrica, 50:1-25, 1981.
    • (1981) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 520
    • 24144472168 scopus 로고    scopus 로고
    • Gaussian processes
    • In M. A. Arbib, editor, MIT Press, Cambridge, MA, second edition
    • C. K. I. Williams. Gaussian processes. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, second edition, 2002.
    • (2002) The Handbook of Brain Theory and Neural Networks
    • Williams, C.K.I.1
  • 522
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, pages, MIT Press, Cambridge, MA
    • C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520. MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 514-520
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 525
    • 84906618042 scopus 로고
    • A rigorous investigation of 'evidence' and 'Occam factors' in Bayesian reasoning
    • Available from
    • D. H. Wolpert. A rigorous investigation of 'evidence' and 'Occam factors' in Bayesian reasoning. Working Paper SFI 92-03-013, Santa Fe Institute, 1992. Available from http//www.santafe.edu/sfi/publications.
    • (1992) Working Paper SFI 92-03-013, Santa Fe Institute
    • Wolpert, D.H.1
  • 526
    • 0006837511 scopus 로고
    • On the use of evidence in neural networks
    • In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Morgan Kaufmann, San Mateo, CA
    • D. H. Wolpert. On the use of evidence in neural networks. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 539-546. Morgan Kaufmann, San Mateo, CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 539-546
    • Wolpert, D.H.1
  • 528
    • 0000459352 scopus 로고    scopus 로고
    • The existence of a priori distinctions between learning algorithms
    • D. H. Wolpert. The existence of a priori distinctions between learning algorithms. Neural Computation, 8(7):1391-1420, 1996.
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1391-1420
    • Wolpert, D.H.1
  • 529
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7): 1341-1390, 1996.
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1
  • 530
    • 0141972892 scopus 로고
    • What Bayes has to say about the evidence procedure
    • In G. Heidbreder, editor, Kluwer Academic Publishers, Dordrecht, 1996. An extended version can be found in the Santa Fe Institute Technical report 94-07-001
    • D. H. Wolpert and C. E. M. Strauss. What Bayes has to say about the evidence procedure. In G. Heidbreder, editor, Maximum Entropy and Bayesian Methods, Santa Barbara 1993, pages 61-78. Kluwer Academic Publishers, Dordrecht, 1996. An extended version can be found in the Santa Fe Institute Technical report 94-07-001.
    • (1993) Maximum Entropy and Bayesian Methods, Santa Barbara , pp. 61-78
    • Wolpert, D.H.1    Strauss, C.E.M.2
  • 531
    • 0041117406 scopus 로고
    • A comparison of kriging with nonparametric regression methods
    • S. J. Yakowitz and F. Szidarovsky. A comparison of kriging with nonparametric regression methods. J. Multivariate Analysis, 16:21-53, 1985.
    • (1985) J. Multivariate Analysis , vol.16 , pp. 21-53
    • Yakowitz, S.J.1    Szidarovsky, F.2
  • 532
    • 0002595644 scopus 로고
    • Generalized deformable models, statistical physics and matching problems
    • A. L. Yuille. Generalized deformable models, statistical physics and matching problems. Neural Computation, 2(1):l-24, 1990.
    • (1990) Neural Computation , vol.2 , Issue.1
    • Yuille, A.L.1
  • 533
    • 0000629349 scopus 로고
    • Statistical physics algorithm that converge
    • A. L. Yuille and J. J. Kosowski. Statistical physics algorithm that converge. Neural Computation, 6(3):341-356, 1994.
    • (1994) Neural Computation , vol.6 , Issue.3 , pp. 341-356
    • Yuille, A.L.1    Kosowski, J.J.2
  • 534
    • 0001375902 scopus 로고
    • Statistical physics, mixtures of distributions, and EM algorithm
    • A. L. Yuille, P. Stolorz, and J. Utans. Statistical physics, mixtures of distributions, and EM algorithm. Neural Computation, 6(2):334-340, 1994.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 334-340
    • Yuille, A.L.1    Stolorz, P.2    Utans, J.3
  • 536
    • 0003830507 scopus 로고    scopus 로고
    • Gaussian regression and optimal finite dimensional linear models
    • Aston University, Birmingham
    • H. Zhu, C. K. I. Williams, R. Rohwer, and M. Morciniec. Gaussian regression and optimal finite dimensional linear models. Technical Report NCRG/97/011, Aston University, Birmingham, 1997.
    • (1997) Technical Report NCRG/97/011
    • Zhu, H.1    Williams, C.K.I.2    Rohwer, R.3    Morciniec, M.4
  • 538
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its application to texture modeling
    • S. C. Zhu, Y. N. Wu, and D. Mumford. Minimax entropy principle and its application to texture modeling. Neural Computation, 9(8):1627- 1660, 1997.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1627-1660
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3
  • 539
    • 0030247213 scopus 로고    scopus 로고
    • Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation
    • S. C. Zhu and A. L. Yuille. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans, on Pattern Analysis and Machine Intelligence, 18(9):884-900, 1996.
    • (1996) IEEE Trans, on Pattern Analysis and Machine Intelligence , vol.18 , Issue.9 , pp. 884-900
    • Zhu, S.C.1    Yuille, A.L.2
  • 540
    • 0001001451 scopus 로고    scopus 로고
    • Potential surfaces from the inversion of time dependent probability density data
    • W. Zhu and H. Rabitz. Potential surfaces from the inversion of time dependent probability density data. J. Chem. Phys., 111:472-480, 1999.
    • (1999) J. Chem. Phys , vol.111 , pp. 472-480
    • Zhu, W.1    Rabitz, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.