-
4
-
-
0012654281
-
Solving oversampled data problems by maximum entropy
-
P. Fougere (Ed.), Norwell, MA: Kluwer
-
Bryan, R. (1990). Solving oversampled data problems by maximum entropy. In P. Fougere (Ed.), Maximum entropy and Bayesian methods, Dartmouth, U.S.A., 1989 (pp. 221-232). Norwell, MA: Kluwer.
-
(1990)
Maximum Entropy and Bayesian Methods, Dartmouth, U.S.A., 1989
, pp. 221-232
-
-
Bryan, R.1
-
5
-
-
0001561263
-
Bayesian back-propagation
-
Buntine, W., & Weigend, A. (1991). Bayesian back-propagation. Complex Systems, 5, 603-643.
-
(1991)
Complex Systems
, vol.5
, pp. 603-643
-
-
Buntine, W.1
Weigend, A.2
-
6
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
9
-
-
0002600689
-
Developments in maximum entropy data analysis
-
J. Skilling (Ed.), Dordrecht: Kluwer
-
Gull, S. F. (1989). Developments in maximum entropy data analysis. In J. Skilling (Ed.), Maximum entropy and Bayesian methods, Cambridge 1988 (pp. 53-71). Dordrecht: Kluwer.
-
(1989)
Maximum Entropy and Bayesian Methods, Cambridge 1988
, pp. 53-71
-
-
Gull, S.F.1
-
10
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
D. E. Rumelhart & J. E. McClelland (Eds.), Cambridge, MA: MIT Press
-
Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. E. McClelland (Eds.), Parallel distributed processing (pp. 282-317). Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing
, pp. 282-317
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
11
-
-
0027803368
-
Keeping neural networks simple by minimizing the description length of the weights
-
New York: ACM Press
-
Hinton, G. E., & van Camp, D. (1993). Keeping neural networks simple by minimizing the description length of the weights. In Proc. 6th Annu. Workshop on Comput. Learning Theory (pp. 5-13). New York: ACM Press.
-
(1993)
Proc. 6th Annu. Workshop on Comput. Learning Theory
, pp. 5-13
-
-
Hinton, G.E.1
Van Camp, D.2
-
12
-
-
0003748256
-
-
Unpublished doctoral dissertation, California Institute of Technology
-
MacKay, D. J. C. (1991). Bayesian methods for adaptive models. Unpublished doctoral dissertation, California Institute of Technology.
-
(1991)
Bayesian Methods for Adaptive Models
-
-
MacKay, D.J.C.1
-
13
-
-
0001025418
-
Bayesian interpolation
-
MacKay, D. J. C. (1992a). Bayesian interpolation. Neural Computation, 4(3), 415-447.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
14
-
-
0000234257
-
The evidence framework applied to classification networks
-
MacKay, D. J. C. (1992b). The evidence framework applied to classification networks. Neural Computation, 4(5), 698-714.
-
(1992)
Neural Computation
, vol.4
, Issue.5
, pp. 698-714
-
-
MacKay, D.J.C.1
-
15
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay, D. J. C. (1992c). A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3), 448-472.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
17
-
-
0007826152
-
Bayesian non-linear modelling for the 1993 energy prediction competition
-
G. Heidbreder (Ed.), Dordrecht: Kluwer
-
MacKay, D. J. C. (1996). Bayesian non-linear modelling for the 1993 energy prediction competition. In G. Heidbreder (Ed.), Maximum entropy and Bayesian methods, Santa Barbara 1993 (pp. 221-234). Dordrecht: Kluwer.
-
(1996)
Maximum Entropy and Bayesian Methods, Santa Barbara 1993
, pp. 221-234
-
-
MacKay, D.J.C.1
-
18
-
-
0037591475
-
Bayesian learning via stochastic dynamics
-
C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), San Mateo, CA: Morgan Kaufmann
-
Neal, R. M. (1993a). Bayesian learning via stochastic dynamics. In C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), Advances in neural information processing systems, 5 (pp. 475-482). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 475-482
-
-
Neal, R.M.1
-
21
-
-
0002788893
-
A new view of the EM algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan (Ed.), Dordrecht: Kluwer Academic Press
-
Neal, R. M., & Hinton, G. E. (1998). A new view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in graphical models (pp. 355-368). Dordrecht: Kluwer Academic Press.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
24
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
25
-
-
0041016840
-
Bayesian numerical analysis
-
W. T. Grandy, Jr., & P. Milonni (Eds.), Cambridge: Cambridge University Press
-
Skilling, J. (1993). Bayesian numerical analysis. In W. T. Grandy, Jr., & P. Milonni (Eds.), Physics and probability. Cambridge: Cambridge University Press.
-
(1993)
Physics and Probability
-
-
Skilling, J.1
-
26
-
-
0042912545
-
Alpha, evidence, and the entropic prior
-
A. Mohammed-Djafari (Ed.), Dordrecht: Kluwer
-
Strauss, C. E. M., Wolpert, D. H., & Wolf, D. R. (1993). Alpha, evidence, and the entropic prior. In A. Mohammed-Djafari (Ed.), Maximum entropy and Bayesian methods, Paris 1992. Dordrecht: Kluwer.
-
(1993)
Maximum Entropy and Bayesian Methods, Paris 1992
-
-
Strauss, C.E.M.1
Wolpert, D.H.2
Wolf, D.R.3
-
27
-
-
0029754435
-
Review of Bayesian neural networks with an application to near infrared spectroscopy
-
Thodberg, H. H. (1996). Review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks, 7(1), 56-72.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.1
, pp. 56-72
-
-
Thodberg, H.H.1
-
28
-
-
0000238658
-
A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
-
Wahba, G. (1975). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Numer. Math., 24, 383-393.
-
(1975)
Numer. Math.
, vol.24
, pp. 383-393
-
-
Wahba, G.1
-
29
-
-
0000539096
-
Generalization by weight-elimination with applications to forecasting
-
D. Touretzky & R. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
-
Weigend, A. S., Rumelhart, D. E., & Huberman, B. A. (1991). Generalization by weight-elimination with applications to forecasting. In D. Touretzky & R. Lippmann (Eds.), Advances in neural information processing systems, 3 (pp. 875-882). San Mateo, CA: Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 875-882
-
-
Weigend, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
30
-
-
0041016837
-
Applications of maximum entropy techniques to HST data
-
P. Grosbol & R. Warmels (Eds.), Garching: European Southern Observatory/Space Telescope - European Coordinating Facility
-
Weir, N. (1991). Applications of maximum entropy techniques to HST data. In P. Grosbol & R. Warmels (Eds.), Proceedings of the ESO/ST-ECF Data Analysis Workshop, April 1991 (pp. 115-129). Garching: European Southern Observatory/Space Telescope - European Coordinating Facility.
-
(1991)
Proceedings of the ESO/ST-ECF Data Analysis Workshop, April 1991
, pp. 115-129
-
-
Weir, N.1
-
31
-
-
0006837511
-
On the use of evidence in neural networks
-
C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), San Mateo, CA: Morgan Kaufmann
-
Wolpert, D. H. (1993). On the use of evidence in neural networks. In C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), Advances in neural information processing systems, 5 (pp. 539-546). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 539-546
-
-
Wolpert, D.H.1
|