메뉴 건너뛰기




Volumn 38, Issue 6, 2010, Pages 3660-3695

Sparsity in multiple kernel learning

Author keywords

High dimensionality; Multiple kernel learning; Oracle inequality; Reproducing kernel Hilbert spaces; Restricted isometry; Sparsity

Indexed keywords


EID: 78650166948     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-AOS825     Document Type: Article
Times cited : (148)

References (25)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • MR0051437
    • ARONSZAJN, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404. MR0051437
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • MR2417268
    • BACH, F. (2008). Consistency of the group lasso and multiple kernel learning. J.Mach. Learn. Res. 9 1179-1225. MR2417268
    • (2008) J.Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 3
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • MR2533469
    • BICKEL, P., RITOV, Y. and TSYBAKOV, A. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 5
    • 48849115978 scopus 로고    scopus 로고
    • Statistical performance of support vector machines
    • MR2396805
    • BLANCHARD, G., BOUSQUET, O. and MASSART, P. (2008). Statistical performance of support vector machines. Ann. Statist. 36 489-531. MR2396805
    • (2008) Ann. Statist. , vol.36 , pp. 489-531
    • Blanchard, G.1    Bousquet, O.2    Massart, P.3
  • 6
    • 0037561860 scopus 로고    scopus 로고
    • A Bennett concentration inequality and its applications to suprema of empirical processes
    • MR1890640
    • BOUSQUET, O. (2002). A Bennett concentration inequality and its applications to suprema of empirical processes. C. R. Math. Acad. Sci. Paris 334 495-500. MR1890640
    • (2002) C. R. Math. Acad. Sci. Paris , vol.334 , pp. 495-500
    • Bousquet, O.1
  • 7
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 10
    • 62549157465 scopus 로고    scopus 로고
    • Sparsity in penalized empirical risk minimization
    • MR2500227
    • KOLTCHINSKII, V. (2009a). Sparsity in penalized empirical risk minimization. Ann. Inst. H. Poincaré Probab. Statist. 45 7-57. MR2500227
    • (2009) Ann. Inst. H. Poincaré Probab. Statist. , vol.45 , pp. 7-57
    • Koltchinskii, V.1
  • 11
    • 72249100613 scopus 로고    scopus 로고
    • The Dantzig selector and sparsity oracle inequalities
    • MR2555200
    • KOLTCHINSKII, V. (2009b). The Dantzig selector and sparsity oracle inequalities. Bernoulli 15 799-828. MR2555200
    • (2009) Bernoulli , vol.15 , pp. 799-828
    • Koltchinskii, V.1
  • 12
    • 68849132263 scopus 로고    scopus 로고
    • Sparse recovery in convex hulls via entropy penalization
    • MR2509076
    • KOLTCHINSKII, V. (2009c). Sparse recovery in convex hulls via entropy penalization. Ann. Statist. 37 1332-1359. MR2509076
    • (2009) Ann. Statist. , vol.37 , pp. 1332-1359
    • Koltchinskii, V.1
  • 16
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • MR2291500
    • LIN, Y. and ZHANG, H. (2006). Component selection and smoothing in multivariate nonparametric regression. Ann. Statist. 34 2272-2297. MR2291500
    • (2006) Ann. Statist. , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.2
  • 17
    • 73949083829 scopus 로고    scopus 로고
    • High-dimensional additive modeling
    • MR2572443
    • MEIER, L., VAN DE GEER, S. and BÜHLMANN, P. (2009). High-dimensional additive modeling. Ann. Statist. 37 3779-3821. MR2572443
    • (2009) Ann. Statist. , vol.37 , pp. 3779-3821
    • Meier, L.1    Van De Geer, S.2    Bühlmann, P.3
  • 18
    • 84937392733 scopus 로고    scopus 로고
    • Geometric parameters of kernel machines
    • Springer, Berlin. MR2040403
    • MENDELSON, S. (2002). Geometric parameters of kernel machines. In COLT 2002. Lecture Notes in Artificial Intelligence 2375 29-43. Springer, Berlin. MR2040403
    • (2002) COLT 2002. Lecture Notes in Artificial Intelligence , vol.2375 , pp. 29-43
    • Mendelson, S.1
  • 19
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • MR2249850
    • MICCHELLI, C. and PONTIL, M. (2005). Learning the kernel function via regularization. J. Mach. Learn. Res. 6 1099-1125. MR2249850
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1099-1125
    • Micchelli, C.1    Pontil, M.2
  • 20
    • 78650083880 scopus 로고    scopus 로고
    • Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness
    • Curran Associates, Red Hook, NY
    • RASKUTTI, G., WAINWRIGHT, M. and YU, B. (2009). Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness. In Advances in Neural Information Processing Systems (NIPS 22) 1563-1570. Curran Associates, Red Hook, NY.
    • (2009) Advances in Neural Information Processing Systems (NIPS 22) , pp. 1563-1570
    • Raskutti, G.1    Wainwright, M.2    Yu, B.3
  • 22
    • 33746031418 scopus 로고    scopus 로고
    • Learning bounds for support vector machines with learned kernels
    • Springer, Berlin. MR2280605
    • SREBRO, N. and BEN-DAVID, S. (2006). Learning bounds for support vector machines with learned kernels. In Learning Theory. Lecture Notes in Comput. Sci. 4005 169-183. Springer, Berlin. MR2280605
    • (2006) Learning Theory. Lecture Notes in Comput. Sci. , vol.4005 , pp. 169-183
    • Srebro, N.1    Ben-David, S.2
  • 23
    • 0030489977 scopus 로고    scopus 로고
    • New concentration inequalities in product spaces
    • TALAGRAND, M. (1996). New concentration inequalities for product measures. Invent. Math. 126 505-563. MR1419006 (Pubitemid 126323770)
    • (1996) Inventiones Mathematicae , vol.126 , Issue.3 , pp. 505-563
    • Talagrand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.