메뉴 건너뛰기




Volumn 40, Issue 4, 2012, Pages 1935-1967

Latent variable graphical model selection via convex optimization

Author keywords

Algebraic statistics; Covariance selection; Gaussian graphical models; High dimensional asymptotics; Latent variables; Low rank; Regularization; Sparsity

Indexed keywords


EID: 84871998365     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-AOS949     Document Type: Article
Times cited : (293)

References (37)
  • 1
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • MR2387969
    • BICKEL, P. J. and LEVINA, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36 199-227. MR2387969
    • (2008) Ann Statist. , vol.36 , pp. 199-227
    • Bickel, P.J.1    Levina, E.2
  • 2
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • MR2485008
    • BICKEL, P. J. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604. MR2485008
    • (2008) Ann Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 3
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Art. 11. MR2811000
    • CANDÈS, E. J., LI, X.,MA, Y. andWRIGHT, J. (2011). Robust principal component analysis? J. ACM 58 Art. 11, 37. MR2811000
    • (2011) J ACM , vol.58 , pp. 37
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 4
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • MR2565240
    • CANDÈS, E. J. and RECHT, B. (2009). Exact matrix completion via convex optimization. Found. Comput. Math. 9 717-772. MR2565240
    • (2009) Found. Comput Math. , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 5
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • MR2236170
    • CANDÈS, E. J., ROMBERG, J. and TAO, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 489-509. MR2236170
    • (2006) IEEE Trans. Inform Theory , vol.52 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 8
    • 0012070851 scopus 로고    scopus 로고
    • Local operator theory, random matrices and Banach spaces
    • North- Holland, Amsterdam. MR1863696
    • DAVIDSON, K. R. and SZAREK, S. J. (2001). Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I 317-366. North- Holland, Amsterdam. MR1863696
    • (2001) Handbook of the Geometry of Banach Spaces , vol.1 , pp. 317-366
    • Davidson, K.R.1    Szarek, S.J.2
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38.
    • (1977) J. Roy. Statist. Soc Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 10
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • MR2217606
    • DONOHO, D. L. (2006). For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 797-829. MR2217606
    • (2006) Comm. Pure Appl Math. , vol.59 , pp. 797-829
    • Donoho, D.L.1
  • 11
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • MR2241189
    • DONOHO, D. L. (2006). Compressed sensing. IEEE Trans. Inform. Theory 52 1289-1306. MR2241189
    • (2006) IEEE Trans. Inform Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 12
    • 62349123505 scopus 로고    scopus 로고
    • Operator norm consistent estimation of large-dimensional sparse covariance matrices
    • MR2485011
    • EL KAROUI, N. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717-2756. MR2485011
    • (2008) Ann Statist. , vol.36 , pp. 2717-2756
    • El Karoui, N.1
  • 13
    • 34548183010 scopus 로고    scopus 로고
    • "Ideal parent" structure learning for continuous variable Bayesian networks
    • MR2353820
    • ELIDAN, G., NACHMAN, I. and FRIEDMAN, N. (2007). "Ideal parent" structure learning for continuous variable Bayesian networks. J. Mach. Learn. Res. 8 1799-1833. MR2353820
    • (2007) J. Mach. Learn Res. , vol.8 , pp. 1799-1833
    • Elidan, G.1    Nachman, I.2    Friedman, N.3
  • 14
    • 55349144848 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation using a factor model
    • MR2472991
    • FAN, J., FAN, Y. and LV, J. (2008). High dimensional covariance matrix estimation using a factor model. J. Econometrics 147 186-197. MR2472991
    • (2008) J. Econometrics , vol.147 , pp. 186-197
    • Fan, J.1    Fan, Y.2    V, J.L.3
  • 16
    • 0004151494 scopus 로고
    • Cambridge Univ. Press, Cambridge. MR1084815
    • HORN, R. A. and JOHNSON, C. R. (1990). Matrix Analysis. Cambridge Univ. Press, Cambridge. MR1084815
    • (1990) Matrix Analysis
    • Horn, R.A.1    Johnson, C.R.2
  • 17
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • MR1863961
    • JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327. MR1863961
    • (2001) Ann Statist. , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 18
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • MR2572459
    • LAM, C. and FAN, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37 4254-4278. MR2572459
    • (2009) Ann Statist. , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 19
    • 0012829803 scopus 로고    scopus 로고
    • Graphical models
    • Oxford Univ. Press, New York. MR1419991
    • LAURITZEN, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. Oxford Univ. Press, New York. MR1419991
    • (1996) Oxford Statistical Science Series , vol.17
    • Lauritzen, S.L.1
  • 20
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • MR2026339
    • LEDOIT, O. and WOLF, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88 365-411. MR2026339
    • (2004) J. Multivariate Anal. , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 21
    • 20344396845 scopus 로고    scopus 로고
    • YALMIP: A toolbox for modeling and optimization in MATLAB
    • LÖFBERG, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taiwan. Available at http://control.ee.ethz.ch/~joloef/ yalmip.php.
    • (2004) Proceedings of the CACSD Conference, Taiwan
    • Löfberg, J.1
  • 22
    • 0000263239 scopus 로고
    • Distribution of eigenvalues in certain sets of random matrices
    • MR0208649
    • MARC? ENKO, V. A. and PASTUR, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72 507-536. MR0208649
    • (1967) Mat Sb. , vol.72 , pp. 507-536
    • Marc Enko, V.A.1    Pastur, L.A.2
  • 23
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 26
    • 80555142374 scopus 로고    scopus 로고
    • High-dimensional covariance estimation by minimizingτ1-penalized log-determinant divergence
    • RAVIKUMAR, P.,WAINWRIGHT, M. J., RASKUTTI, G. andYU, B. (2011). High-dimensional covariance estimation by minimizingτ1-penalized log-determinant divergence. Electron. J. Stat. 4 935-980.
    • (2011) Electron. J Stat. , vol.4 , pp. 935-980
    • Ravikumar, P.1    Wainwright, M.J.2    Raskutti, G.3    U, B.Y.4
  • 27
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • MR2680543
    • RECHT, B., FAZEL, M. and PARRILO, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 471-501. MR2680543
    • (2010) SIAM Rev. , vol.52 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 28
    • 0004267646 scopus 로고    scopus 로고
    • Princeton Univ. Press, Princeton, NJ. MR1451876
    • ROCKAFELLAR, R. T. (1996). Convex Analysis. Princeton Univ. Press, Princeton, NJ. MR1451876
    • (1996) Convex Analysis
    • Rockafellar, R.T.1
  • 29
    • 62349119614 scopus 로고    scopus 로고
    • Sparse permutation invariant covariance estimation
    • MR2417391
    • ROTHMAN, A. J., BICKEL, P. J., LEVINA, E. and ZHU, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Stat. 2 494-515. MR2417391
    • (2008) Electron. J Stat. , vol.2 , pp. 494-515
    • Rothman, A.J.1    Bickel, P.J.2    Levina, E.3    Zhu, J.4
  • 30
    • 0001568882 scopus 로고
    • Gaussian Markov distributions over finite graphs
    • MR0829559
    • SPEED, T. P. and KIIVERI, H. T. (1986). Gaussian Markov distributions over finite graphs. Ann. Statist. 14 138-150. MR0829559
    • (1986) Ann Statist. , vol.14 , pp. 138-150
    • Speed, T.P.1    Kiiveri, H.T.2
  • 32
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery usingτ1-constrained quadratic programming (Lasso)
    • MR2729873
    • WAINWRIGHT, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery usingτ1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202. MR2729873
    • (2009) IEEE Trans. Inform Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.J.1
  • 33
    • 79251515796 scopus 로고    scopus 로고
    • Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm
    • MR2735941
    • WANG, C., SUN, D. and TOH, K.-C. (2010). Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm. SIAM J. Optim. 20 2994-3013. MR2735941
    • (2010) SIAM J Optim. , vol.20 , pp. 2994-3013
    • Wang, C.1    Sun, D.2    Toh, K.-C.3
  • 34
    • 0011336092 scopus 로고
    • Characterization of the subdifferential of some matrix norms
    • MR1160950
    • WATSON, G. A. (1992). Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170 33-45. MR1160950
    • (1992) Linear Algebra Appl. , vol.170 , pp. 33-45
    • Watson, G.A.1
  • 35
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • WITTEN, D. M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 36
    • 3843104546 scopus 로고    scopus 로고
    • Nonparametric estimation of large covariance matrices of longitudinal data
    • MR2024760
    • WU, W. B. and POURAHMADI, M. (2003). Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 90 831-844. MR2024760
    • (2003) Biometrika , vol.90 , pp. 831-844
    • W, B.W.U.1    Pourahmadi, M.2
  • 37
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449
    • (2006) J. Mach. Learn Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    U, B.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.