메뉴 건너뛰기




Volumn 35, Issue , 2014, Pages 105-113

Machine health condition prediction via online dynamic fuzzy neural networks

Author keywords

Fuzzy neural network; Machine health condition; Multi step prognosis; Non stationary time series; Real time learning; Self organization

Indexed keywords

FORECASTING; FUZZY INFERENCE; FUZZY LOGIC; FUZZY RULES; HEALTH; LEARNING SYSTEMS; REAL TIME CONTROL;

EID: 84906075323     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2014.05.015     Document Type: Article
Times cited : (75)

References (48)
  • 1
    • 0142196084 scopus 로고    scopus 로고
    • Structure identification of generalized adaptive neuro-fuzzy inference systems
    • M.F. Azeem, M. Hanmandlu, and N. Ahmad Structure identification of generalized adaptive neuro-fuzzy inference systems IEEE Trans. Fuzzy Syst. 11 5 2003 666 681
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.5 , pp. 666-681
    • Azeem, M.F.1    Hanmandlu, M.2    Ahmad, N.3
  • 2
    • 80051494413 scopus 로고    scopus 로고
    • Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems
    • C.S. Chen Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems IEEE Trans. Fuzzy Syst. 19 4 2011 694 706
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.4 , pp. 694-706
    • Chen, C.S.1
  • 3
    • 80051722734 scopus 로고    scopus 로고
    • Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering
    • C.C. Chen, B. Zhang, G. Vachtsevanos, and M. Orchard Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering IEEE Trans. Ind. Electron. 58 9 2011 4353 4364
    • (2011) IEEE Trans. Ind. Electron. , vol.58 , Issue.9 , pp. 4353-4364
    • Chen, C.C.1    Zhang, B.2    Vachtsevanos, G.3    Orchard, M.4
  • 4
    • 79952448247 scopus 로고    scopus 로고
    • Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes
    • D. Dovzan, and I. Skrjanc Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes ISA Trans. 50 2 2011 159 169
    • (2011) ISA Trans. , vol.50 , Issue.2 , pp. 159-169
    • Dovzan, D.1    Skrjanc, I.2
  • 5
    • 2942574444 scopus 로고    scopus 로고
    • Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning
    • M.J. Er, and C. Deng Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning IEEE Trans. Syst. Man Cybern. Part B Cybern. 34 3 2004 1478 1489
    • (2004) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.34 , Issue.3 , pp. 1478-1489
    • Er, M.J.1    Deng, C.2
  • 6
    • 56949090674 scopus 로고    scopus 로고
    • Automatic generation of fuzzy inference systems via unsupervised learning
    • M.J. Er, and Y. Zhou Automatic generation of fuzzy inference systems via unsupervised learning Neural Netw. 21 10 2008 1556 1566
    • (2008) Neural Netw. , vol.21 , Issue.10 , pp. 1556-1566
    • Er, M.J.1    Zhou, Y.2
  • 7
    • 21444447796 scopus 로고    scopus 로고
    • Adaptive noise cancellation using enhanced dynamic fuzzy neural networks
    • M.J. Er, Z.G. Li, H.N. Cai, and Q. Chen Adaptive noise cancellation using enhanced dynamic fuzzy neural networks IEEE Trans. Fuzzy Syst. 13 3 2005 331 342
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.3 , pp. 331-342
    • Er, M.J.1    Li, Z.G.2    Cai, H.N.3    Chen, Q.4
  • 8
    • 0037844875 scopus 로고    scopus 로고
    • COVNET a cooperative coevolutionary model for evolving artificial neural networks
    • N. Garcia-Pedrajas, C. Hervag-Martinez, and J. Munoz-Perez COVNET a cooperative coevolutionary model for evolving artificial neural networks IEEE Trans. Neural Netw. 14 3 2003 575 596
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.3 , pp. 575-596
    • Garcia-Pedrajas, N.1    Hervag-Martinez, C.2    Munoz-Perez, J.3
  • 9
    • 84906820599 scopus 로고    scopus 로고
    • Model-based prognostics of gear health using stochastic non-linear dynamical models
    • M. Gasperin, D. Juricic, P. Boskoski, and J. Vizintin Model-based prognostics of gear health using stochastic non-linear dynamical models Int. J. Cond. Monit. 1 2 2011 67 72
    • (2011) Int. J. Cond. Monit. , vol.1 , Issue.2 , pp. 67-72
    • Gasperin, M.1    Juricic, D.2    Boskoski, P.3    Vizintin, J.4
  • 10
    • 78649636120 scopus 로고    scopus 로고
    • Model-based prognostics of gear health using stochastic dynamical models
    • M. Gasperin, D. Juricic, P. Boskoski, and J. Vizintin Model-based prognostics of gear health using stochastic dynamical models Mech. Syst. Signal Process. 25 2 2011 537 548
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.2 , pp. 537-548
    • Gasperin, M.1    Juricic, D.2    Boskoski, P.3    Vizintin, J.4
  • 11
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine theory and applications
    • G.B. Huang, Q.Y. Zhu, and C.K. Siew Extreme learning machine theory and applications Neurocomputing 70 1-3 2006 489 501
    • (2006) Neurocomputing , vol.70 , Issue.13 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 12
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.B. Huang, L. Chen, and C.K. Siew Universal approximation using incremental constructive feedforward networks with random hidden nodes IEEE Trans. Neural Netw. 17 4 2006 879 892
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 13
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K.S. Jardine, D.M. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Mech. Syst. Signal Process. 20 7 2006 1483 1510
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.M.2    Banjevic, D.3
  • 14
    • 0031999146 scopus 로고    scopus 로고
    • An online self-constructing neural fuzzy inference network and its applications
    • C.F. Juang, and C.T. Lin An online self-constructing neural fuzzy inference network and its applications IEEE Trans. Fuzzy Syst. 6 1 1998 12 32
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 15
    • 8444234276 scopus 로고    scopus 로고
    • An on-line algorithm for creating self-organizing fuzzy neural networks
    • G. Leng, G. Prasad, and T.M. McGinnity An on-line algorithm for creating self-organizing fuzzy neural networks Neural Netw. 17 10 2004 1477 1493
    • (2004) Neural Netw. , vol.17 , Issue.10 , pp. 1477-1493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 16
    • 77955430431 scopus 로고    scopus 로고
    • A new online learning algorithm for structure-adjustable extreme learning machine
    • G. Li, M. Liu, and M. Dong A new online learning algorithm for structure-adjustable extreme learning machine Comput. Math. Appl. 60 3 2010 377 389
    • (2010) Comput. Math. Appl. , vol.60 , Issue.3 , pp. 377-389
    • Li, G.1    Liu, M.2    Dong, M.3
  • 17
    • 77958062360 scopus 로고    scopus 로고
    • Fuzzy regression modeling for tool performance prediction and degradation detection
    • X. Li, M.J. Er, B.S. Lim, J.H. Zhou, O.P. Gan, and L. Rutkowski Fuzzy regression modeling for tool performance prediction and degradation detection Int. J. Neural Syst. 20 5 2010 405 419
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.5 , pp. 405-419
    • Li, X.1    Er, M.J.2    Lim, B.S.3    Zhou, J.H.4    Gan, O.P.5    Rutkowski, L.6
  • 18
    • 11144301148 scopus 로고    scopus 로고
    • A neural network application for reliability modelling and condition-based predictive maintenance
    • C.C. Lin, and H.Y. Tseng A neural network application for reliability modelling and condition-based predictive maintenance Int. J. Adv. Manuf. Technol. 25 1-2 2005 174 179
    • (2005) Int. J. Adv. Manuf. Technol. , vol.25 , Issue.12 , pp. 174-179
    • Lin, C.C.1    Tseng, H.Y.2
  • 19
    • 77954084434 scopus 로고    scopus 로고
    • Stability indices for a self-organizing fuzzy controlled robot a case study
    • J. Lin, and R.J. Lian Stability indices for a self-organizing fuzzy controlled robot a case study Eng. Appl. Artif. Intell. 23 6 2010 1019 1034
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.6 , pp. 1019-1034
    • Lin, J.1    Lian, R.J.2
  • 20
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Y. Lin, and G.A. Cunningham III A new approach to fuzzy-neural system modeling IEEE Trans. Fuzzy Syst. 3 2 1995 190 198
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.1    Cunningham III, G.A.2
  • 21
    • 0035483867 scopus 로고    scopus 로고
    • Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive
    • F.J. Lin, C.H. Lin, and P.H. Shen Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive IEEE Trans. Fuzzy Syst. 9 5 2001 751 759
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.5 , pp. 751-759
    • Lin, F.J.1    Lin, C.H.2    Shen, P.H.3
  • 22
    • 63449119191 scopus 로고    scopus 로고
    • A multi-step predictor with a variable input pattern for system state forecasting
    • J. Liu, W. Wang, and F. Golnaraghi A multi-step predictor with a variable input pattern for system state forecasting Mech. Syst. Signal Process. 23 5 2009 1586 1599
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.5 , pp. 1586-1599
    • Liu, J.1    Wang, W.2    Golnaraghi, F.3
  • 23
    • 79961039032 scopus 로고    scopus 로고
    • On-line elimination of local redundancies in evolving fuzzy systems
    • E. Lughofer, J.L. Bouchot, and A. Shaker On-line elimination of local redundancies in evolving fuzzy systems Evol. Syst. 2 3 2011 165 187
    • (2011) Evol. Syst. , vol.2 , Issue.3 , pp. 165-187
    • Lughofer, E.1    Bouchot, J.L.2    Shaker, A.3
  • 24
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation survey in soft computing framework
    • S. Mitra, and Y. Hayashi Neuro-fuzzy rule generation survey in soft computing framework IEEE Trans. Neural Netw. 11 3 2000 748 768
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 28
    • 80053619531 scopus 로고    scopus 로고
    • Adaptive fuzzy control with guaranteed convergence of optimal approximation error
    • Y.P. Pan, M.J. Er, D.P. Huang, and Q.R. Wang Adaptive fuzzy control with guaranteed convergence of optimal approximation error IEEE Trans. Fuzzy Syst. 19 5 2011 807 818
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.5 , pp. 807-818
    • Pan, Y.P.1    Er, M.J.2    Huang, D.P.3    Wang, Q.R.4
  • 29
    • 84906090616 scopus 로고    scopus 로고
    • Bearing condition prediction using enhanced online learning fuzzy neural networks
    • A.Y.C. Nee, B. Song, S.K. Ong, Springer Singapore
    • Y.P. Pan, X.Y. Hu, M.J. Er, X. Li, and R. Gouriveau Bearing condition prediction using enhanced online learning fuzzy neural networks A.Y.C. Nee, B. Song, S.K. Ong, Re-engineering Manufacturing for Sustainability 2013 Springer Singapore 175 182
    • (2013) Re-engineering Manufacturing for Sustainability , pp. 175-182
    • Pan, Y.P.1    Hu, X.Y.2    Er, M.J.3    Li, X.4    Gouriveau, R.5
  • 30
    • 77957865649 scopus 로고    scopus 로고
    • A fuzzy rule-based meta-scheduler with evolutionary learning for grid computing
    • R.P. Prado, S. Garcia-Galan, A.J. Yuste, and J.E.M. Exposito A fuzzy rule-based meta-scheduler with evolutionary learning for grid computing Eng. Appl. Artif. Intell. 23 7 2010 1072 1082
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.7 , pp. 1072-1082
    • Prado, R.P.1    Garcia-Galan, S.2    Yuste, A.J.3    Exposito, J.E.M.4
  • 32
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H.J. Rong, N. Sundararajan, G.B. Huang, and P. Saratchandran Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction Fuzzy Sets Syst. 157 9 2006 1260 1275
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 33
  • 34
    • 2942753947 scopus 로고    scopus 로고
    • On some aspects of fuzzy logic application in machine monitoring and diagnostics
    • A. Sokolowski On some aspects of fuzzy logic application in machine monitoring and diagnostics Eng. Appl. Artif. Intell. 17 4 2004 429 437
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , Issue.4 , pp. 429-437
    • Sokolowski, A.1
  • 35
    • 79952317714 scopus 로고    scopus 로고
    • Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
    • H. Soleimani-B, C. Lucas, and B.N. Araabi Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling Evol. Syst. 1 1 2010 59 71
    • (2010) Evol. Syst. , vol.1 , Issue.1 , pp. 59-71
    • Soleimani-B, H.1    Lucas, C.2    Araabi, B.N.3
  • 36
    • 78649765886 scopus 로고    scopus 로고
    • Health condition prediction of gears using a recurrent neural network approach
    • Z.G. Tian, and M.J. Zuo Health condition prediction of gears using a recurrent neural network approach IEEE Trans. Reliab. 59 4 2010 700 705
    • (2010) IEEE Trans. Reliab. , vol.59 , Issue.4 , pp. 700-705
    • Tian, Z.G.1    Zuo, M.J.2
  • 37
    • 60849139057 scopus 로고    scopus 로고
    • Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems
    • V.T. Tran, B.S. Yang, and A.C.C. Tan Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems Expert Syst. Appl. 36 5 2009 9378 9387
    • (2009) Expert Syst. Appl. , vol.36 , Issue.5 , pp. 9378-9387
    • Tran, V.T.1    Yang, B.S.2    Tan, A.C.C.3
  • 38
    • 0035481231 scopus 로고    scopus 로고
    • NeuroFAST on-line neuro-fuzzy ART-based structure and parameter learning TSK model
    • S.G. Tzafestas, and K.C. Zikidis NeuroFAST on-line neuro-fuzzy ART-based structure and parameter learning TSK model IEEE Trans. Syst. Man Cybern. Part B Cybern. 31 5 2001 797 802
    • (2001) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.31 , Issue.5 , pp. 797-802
    • Tzafestas, S.G.1    Zikidis, K.C.2
  • 40
    • 33750515020 scopus 로고    scopus 로고
    • An adaptive predictor for dynamic system forecasting
    • W. Wang An adaptive predictor for dynamic system forecasting Mech. Syst. Signal Process. 21 2 2007 809 823
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.2 , pp. 809-823
    • Wang, W.1
  • 41
    • 2442503629 scopus 로고    scopus 로고
    • Prognosis of machine health condition using neuro-fuzzy systems
    • W. Wang, M.F. Golnaraghi, and F. Ismail Prognosis of machine health condition using neuro-fuzzy systems Mech. Syst. Signal Process. 18 4 2004 813 831
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.4 , pp. 813-831
    • Wang, W.1    Golnaraghi, M.F.2    Ismail, F.3
  • 42
    • 33947583430 scopus 로고    scopus 로고
    • A neural network integrated decision support system for condition-based optimal predictive maintenance policy
    • S.J. Wu, N. Gebraeel, M.A. Lawley, and Y. Yih A neural network integrated decision support system for condition-based optimal predictive maintenance policy IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 37 2 2007 226 236
    • (2007) IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. , vol.37 , Issue.2 , pp. 226-236
    • Wu, S.J.1    Gebraeel, N.2    Lawley, M.A.3    Yih, Y.4
  • 43
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • S.Q. Wu, M.J. Er, and Y. Gao A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks IEEE Trans. Fuzzy Syst. 9 4 2001 578 594
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.Q.1    Er, M.J.2    Gao, Y.3
  • 44
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao Evolving artificial neural networks Proc. IEEE 87 9 1999 1423 1447
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 45
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • J.B. Yu, S.J. Wang, and L.F. Xi Evolving artificial neural networks using an improved PSO and DPSO Neurocomputing 71 4-6 2008 1054 1060
    • (2008) Neurocomputing , vol.71 , Issue.46 , pp. 1054-1060
    • Yu, J.B.1    Wang, S.J.2    Xi, L.F.3
  • 46
    • 79955466396 scopus 로고    scopus 로고
    • Prognosis of hybrid systems with multiple incipient faults augmented global analytical redundancy relations approach
    • M. Yu, D. Wang, M. Luo, and L. Huang Prognosis of hybrid systems with multiple incipient faults augmented global analytical redundancy relations approach IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41 3 2011 540 551
    • (2011) IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. , vol.41 , Issue.3 , pp. 540-551
    • Yu, M.1    Wang, D.2    Luo, M.3    Huang, L.4
  • 47
    • 84880880923 scopus 로고    scopus 로고
    • Model based prognosis for hybrid systems with mode-dependent degradation behaviors
    • M. Yu, D. Wang, and M. Luo Model based prognosis for hybrid systems with mode-dependent degradation behaviors IEEE Trans. Ind. Electron. 61 1 2014 546 554
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.1 , pp. 546-554
    • Yu, M.1    Wang, D.2    Luo, M.3
  • 48
    • 68149183407 scopus 로고    scopus 로고
    • Neuro-fuzzy based condition prediction of bearing health
    • F.G. Zhao, J. Chen, L. Guo, and X.L. Li Neuro-fuzzy based condition prediction of bearing health J. Vib. Control 15 7 2009 1079 1091
    • (2009) J. Vib. Control , vol.15 , Issue.7 , pp. 1079-1091
    • Zhao, F.G.1    Chen, J.2    Guo, L.3    Li, X.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.