메뉴 건너뛰기




Volumn , Issue , 2013, Pages 175-182

Bearing condition prediction using enhanced online learning fuzzy neural networks

Author keywords

Fuzzy neural network (FNN); Machine health condition (MHC); Online learning; Prognosis; Time series forecast

Indexed keywords

DECISION MAKING; E-LEARNING; FORECASTING; FUZZY INFERENCE; FUZZY LOGIC; HEALTH; LEARNING SYSTEMS; LIFE CYCLE; TIME SERIES;

EID: 84906090616     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-981-4451-48-2_29     Document Type: Conference Paper
Times cited : (9)

References (22)
  • 2
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A. K. S. Jardine, D. M. Lin, and D. Banjevic (2006): A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mech. Syst. Signal Proc., vol. 20, no. 7, pp. 1483-1510.
    • (2006) Mech. Syst. Signal Proc. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.M.2    Banjevic, D.3
  • 3
    • 84862828918 scopus 로고    scopus 로고
    • Fault detection, isolation and identification for hybrid systems with unknown mode changes and fault patterns
    • M. Yu, D. Wang, M. Luo and Q. Chen (2012): Fault detection, isolation and identification for hybrid systems with unknown mode changes and fault patterns, Expert Syst. Appl., vol. 39, no. 11, pp: 9955-9965.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.11 , pp. 9955-9965
    • Yu, M.1    Wang, D.2    Luo, M.3    Chen, Q.4
  • 4
    • 79955466396 scopus 로고    scopus 로고
    • Prognosis of hybrid systems with multiple incipient faults: Augmented global analytical redundancy relations approach
    • M. Yu, D. Wang, M. Luo and L. Huang (2011). Prognosis of hybrid systems with multiple incipient faults: Augmented global analytical redundancy relations approach, IEEE Trans. Syst. Man Cybern. Part A, vol. 41, no. 3, pp. 540-551.
    • (2011) IEEE Trans. Syst. Man Cybern. Part A , vol.41 , Issue.3 , pp. 540-551
    • Yu, M.1    Wang, D.2    Luo, M.3    Huang, L.4
  • 5
    • 79955584653 scopus 로고    scopus 로고
    • Remaining useful life estimation-A review on the statistical data driven approaches
    • X. S. Si, W. Wang, C. H. Hu, et al (2011): Remaining useful life estimation-A review on the statistical data driven approaches, Eur. J. Oper. Res., vol. 213, no. 1, pp. 1-14.
    • (2011) Eur. J. Oper. Res. , vol.213 , Issue.1 , pp. 1-14
    • Si, X.S.1    Wang, W.2    Hu, C.H.3
  • 6
    • 78649765886 scopus 로고    scopus 로고
    • Health condition prediction of gears using a recurrent neural network approach
    • Z. G. Tian and M. J. Zuo (2010): Health condition prediction of gears using a recurrent neural network approach, IEEE Trans. Reliab., vol. 59, no. 4, pp. 700-705.
    • (2010) IEEE Trans. Reliab. , vol.59 , Issue.4 , pp. 700-705
    • Tian, Z.G.1    Zuo, M.J.2
  • 7
    • 68149183407 scopus 로고    scopus 로고
    • Neuro-fuzzy based condition prediction of bearing health
    • F. G. Zhao, J. Chen, L. Guo, el al (2009): Neuro-fuzzy based condition prediction of bearing health, J. Vib. Control, vol. 15, no. 7, pp. 1079-1091.
    • (2009) J. Vib. Control , vol.15 , Issue.7 , pp. 1079-1091
    • Zhao, F.G.1    Chen, J.2    Guo, L.3
  • 9
    • 2442503629 scopus 로고    scopus 로고
    • Prognosis of machine health condition using neuro-fuzzy systems
    • W. Wang, M. F. Golnaraghi, and F. Ismail (2004): Prognosis of machine health condition using neuro-fuzzy systems," Mech. Syst. Signal Proc., vol. 18, no. 4, pp. 813-831.
    • (2004) Mech. Syst. Signal Proc. , vol.18 , Issue.4 , pp. 813-831
    • Wang, W.1    Golnaraghi, M.F.2    Ismail, F.3
  • 10
    • 33750515020 scopus 로고    scopus 로고
    • An adaptive predictor for dynamic system forecasting
    • W. Wang (2007): An adaptive predictor for dynamic system forecasting, Mech. Syst. Signal Proc., vol. 21, pp. 809-823.
    • (2007) Mech. Syst. Signal Proc. , vol.21 , pp. 809-823
    • Wang, W.1
  • 11
    • 63449119191 scopus 로고    scopus 로고
    • A multi-step predictor with a variable input pattern for system state forecasting
    • J. Liu, W. S. Wang, and F. Golnaraghi (2009): A multi-step predictor with a variable input pattern for system state forecasting, Mech. Syst. Signal Proc., vol. 23, no. 5, pp. 1586-1599.
    • (2009) Mech. Syst. Signal Proc. , vol.23 , Issue.5 , pp. 1586-1599
    • Liu, J.1    Wang, W.S.2    Golnaraghi, F.3
  • 12
    • 84859149745 scopus 로고    scopus 로고
    • Bearing condition prediction considering uncertainty: An interval type-2 fuzzy neural network approach
    • C. C. Chen and G. Vachtsevanos (2012): Bearing condition prediction considering uncertainty: An interval type-2 fuzzy neural network approach, Robot. Comput.-Integr. Manuf., vol. 28, no. 4, pp. 509-516.
    • (2012) Robot. Comput.-Integr. Manuf. , vol.28 , Issue.4 , pp. 509-516
    • Chen, C.C.1    Vachtsevanos, G.2
  • 13
    • 84855431793 scopus 로고    scopus 로고
    • Prediction of machine health condition using neuro-fuzzy and Bayesian algorithms
    • C. C. Chen, B. Zhang, and G. Vachtsevanos (2012): Prediction of machine health condition using neuro-fuzzy and Bayesian algorithms, IEEE Trans. Instrum. Meas., vol. 61, no. 2, pp. 297-306.
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.2 , pp. 297-306
    • Chen, C.C.1    Zhang, B.2    Vachtsevanos, G.3
  • 14
    • 80051722734 scopus 로고    scopus 로고
    • Machine condition prediction based on adaptive neuro-fuzzy and highorder particle filtering
    • C. C. Chen, B. Zhang, G. Vachtsevanos, el al (2011): Machine condition prediction based on adaptive neuro-fuzzy and highorder particle filtering, IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4353-4364.
    • (2011) IEEE Trans. Ind. Electron. , vol.58 , Issue.9 , pp. 4353-4364
    • Chen, C.C.1    Zhang, B.2    Vachtsevanos, G.3
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew (2006): Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, no. 1-3, pp. 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • N. Y. Liang, G. B. Huang, P. Saratchandran, et al (2006): A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Trans Neural Netw, vol. 17, no. 6, pp. 1411-1423.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.Y.1    Huang, G.B.2    Saratchandran, P.3
  • 17
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy extreme learning ma-chine for function approximation and classification problems
    • H. J. Rong, G. B. Huang, N. Sundararajan, et al (2009): Online sequential fuzzy extreme learning ma-chine for function approximation and classification problems," IEEE Trans Syst Man Cybern B Cybern, vol. 39, no. 4, pp. 1067-1072.
    • (2009) IEEE Trans Syst Man Cybern B Cybern , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.J.1    Huang, G.B.2    Sundararajan, N.3
  • 18
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • S. Q. Wu, M. J. Er, and Y. Gao (2001): A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks, IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 578-594.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.Q.1    Er, M.J.2    Gao, Y.3
  • 19
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Y. Lin and G. A. Cunningham III (1995): A new approach to fuzzy-neural system modeling," IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 190-198.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.1    Cunningham, G.A.2
  • 20
    • 80052829448 scopus 로고    scopus 로고
    • Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks
    • H. T. Huynh and Y. Won (2011): Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks," Pattern Recognit. Lett., vol. 32, no. 14, pp. 1930-1935.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.14 , pp. 1930-1935
    • Huynh, H.T.1    Won, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.